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Coronary artery disease, nitric oxide 
and oxidative stress: the “Yin-Yang” effect – 
a Chinese concept for a worldwide pandemic 
Stéphane Cook

Cardiology, Swiss Cardiovascular Centre, Bern, Switzerland

Prevention of coronary artery disease (CAD)
and reduction of its mortality and morbidity re-
mains a major public health challenge throughout
the “Western world”. Recent evidence supports
the concept that the impairment of endothelial
function, a hallmark of insulin resistance states, is
an upstream event in the pathophysiology of in-
sulin resistance and its main corollaries: athero-
sclerosis and myocardial infarction. Atherosclero-
sis is currently thought to be the consequence of a
subtle imbalance between pro- and anti-oxidants
that produces favourable conditions for lesion pro-
gression towards acute thrombotic complications
and clinical events. Over the last decade, a remark-
able burst of evidence has accumulated, offering
the new perspective that bioavailable nitric oxide
(NO) plays a pivotal role throughout the CAD-
spectrum, from its genesis to the outcome after
acute events.

Vascular NO is a critical modulator of coro-
nary blood flow by inhibiting smooth muscle con-

traction and platelet aggregation. It also acts in an-
giogenesis and cytoprotection. Defective endothe-
lial nitric oxide synthase (eNOS) driven NO syn-
thesis causes development of major cardiovascular
risk factors (insulin resistance, arterial hyperten-
sion and dyslipidaemia) in mice, and characterises
CAD-prone insulin-resistant humans. On the
other hand, stimulation of inducible nitric oxide
synthase (iNOS) and NO overproduction causes
metabolic insulin resistance and characterises ath-
erosclerosis, heart failure and cardiogenic shock in
humans, suggesting a “Yin-Yang” effect of NO in
the cardiovascular homeostasis. Here, we will
present a concise overview of the evidence for this
novel concept, providing the conceptual frame-
work for developing a potential therapeutic strat-
egy to prevent and treat CAD.
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Prevention of coronary artery disease (CAD)
and reduction of its mortality and morbidity re-
mains one of the greatest public health challenges
throughout the Western world. Over the last
decade, a remarkable burst of evidence has accu-
mulated, offering the new perspective that nitric
oxide (NO) plays a pivotal role in CAD. 

Vascular NO is a critical modulator of coro-
nary blood flow through inhibition of smooth
muscle contraction and platelet aggregation, and
plays an important role in angiogenesis [1]. On one
hand, defective endothelial nitric oxide synthase
(eNOS) driven NO synthesis causes majors car-
diovascular risk factors (insulin resistance, arterial
hypertension and dyslipidaemia) in mice [2–4], 
and characterises CAD-prone insulin-resistant
humans [3, 5–9]. Defective intravascular NO can
occur through several mechanisms. These mecha-

nisms include impaired eNOS protein expression,
uncoupling of NOS activity (leading to enhanced
production of superoxide) and/or trapping of NO
by reactive oxygen species (ROS), but are not 
mutually exclusive and may happen simultane-
ously in humans. 

On the other hand, stimulation of inducible
nitric oxide synthase (iNOS) and NO overproduc-
tion also plays a role in insulin resistance [3, 10, 11]
and characterises atherosclerosis [12, 13], heart
failure [14] and cardiogenic shock [15], suggesting
a Yin-Yang effect of NO in the cardiovascular
homeostasis. Imbalance in normal cellular condi-
tions disturbs the physiological regulation of the
three isoforms of NOS, which results in profound
disturbances leading to endothelial dysfunction,
insulin resistance, atherosclerosis, and myocardial
infarction. It further represents an underlying fea-
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ture of acute and chronic heart failure, as well as
cardiogenic shock, suggesting a key role of this
fragile balance throughout the CAD-spectrum.

Here, we will review the evidence for this

novel concept, and thereby provide a framework
for developing potential novel therapeutic strate-
gies to prevent [3] and treat CAD.

Nitric oxide and the current application of Han’s concept

Nitric oxide and reactive oxygen species
Nitric oxide is produced by one of the three

distinct isoforms of the enzyme nitric oxide syn-
thase (NOS – EC 1.14.13.39) during the oxidation
of the amino acid substrate L-arginine to L-cit-
rulline [16]. Endothelial NOS (eNOS or NOS III-
chromosome 7) is classically found in the vascula-
ture and also in good quantity in the skeletal mus-
cle tissue, targeted by caveolin-1 to plasmalemmal
caveolae [17] and at low levels to (cardio-)myocyte
mitochondria [18]. Its regulation depends mainly
of the calcium-calmodulin interaction, which in-
duces a low, intermittent pattern of synthesis. Its
activity is classically increased by exercise and de-
creased by aging. Neuronal NOS (nNOS or NOS
I – chromosome 12), first purified from rat and
porcine cerebellum [19–21], is the most frequent
isoform found in skeletal muscle tissue, co-
localised with the dystrophin-associated protein
a1-syntrophin along the sarcolemma of type 2 fast-
twitch fibres [22–24]. Whereas there is no doubt
that nNOS plays a crucial role in sympathetic ac-
tivity, its role in normal cardiac physiology is un-
clear and still debated [25]. Under pathological
conditions however it may contribute to coronary
blood flow [26] and could also be a determinant for
basal contractility in the mammalian myocardium
[27]. Its regulation is close to the previous en-
dothelial NOS. Inducible NOS (iNOS or NOS II
– chromosome 17) [17, 24, 28–30] can be induced
in macrophages and in many other cells, such as
endothelial cells, cardiomyocytes or skeletal my-
ocytes, where it is present at very low concentra-
tions, connected to the membrane through the
protein caveolin-3. In contrast to the two other
isoforms, calmodulin binds to iNOS with high
affinity even at resting Ca2+ levels, which produces
a high, continuous pattern of synthesis. Inflamma-
tion and aging elevate iNOS protein expression,
whereas exercise training attenuates its expression.
Cofactors required include NADPH, biopterin,
flavin adenine dinucleotide and flavin mononu-
cleotide.

Reactive oxygen species (ROS) are highly re-
active molecules that include free radicals, such as
superoxide (O2–) and hydroxyl (·OH–), as well as
compounds such as hydrogen peroxide (H2O2).
The fate of free radical production is dependent
upon the cellular redox status and the activity 
of several enzymes. In cardiovascular pathophy-
siology the mitochondrial electron transport 
chain, the xanthine oxidase, lipo-oxygenase, non-
phagocytic NADPH oxidases, NO synthase itself

(mainly iNOS), haem-oxygenase and the cyto-
chrome P450 mono-oxygenases seem to produce
the most, when not all, ROS [31]. 

Local conditions: the “Yin-Yang” effect
At physiological concentrations, both NO and

ROS exert beneficial effects and can function as
second messengers. NO produced in low concen-
tration acts as a messenger and cytoprotective fac-
tor, via direct interactions with transition metals
and other free radicals [32]. ROS may regulate en-
zymatic function and participate in signal trans-
duction being essential for normal cell prolifera-
tion and growth [33].

Alternatively, under pathophysiological conditions,
when the circumstances allow the formation of
substantial amounts of NO and modify the cellu-
lar microenvironment (pro-oxidant molecules
generated > tissue antioxidant reserve), ROS and
NO react avidly. Consequently, the half-life of the
bioactive NO is reduced [34] and “reactive nitro-
gen species”, particularly dinitrogen trioxide and
peroxynitrite (ONOO–), will be generated, caus-
ing significant damage to cellular components
(proteins, membranes, nucleic acid), leading to
chromosomal alterations, protein nitration, lipid
peroxidation, subsequent cellular dysfunction and
cellular death.  

Inflammation, aging, hyperglycaemia, hyper-
lipidaemia, imbalance in obligate cofactors of
NOS or hypoxia (with subsequent reperfusion) are
examples of conditions modifying the cellular
NO-microenvironment supporting the genera-
tion of reactive nitrogen species and, thus, making
up a functional decrease in NO bioavailability [3].
These examples occur as a consequence of various
possible mechanisms; for instance, under con-
ditions of reduced availability of L-arginine or
tetrahydrobiopterin, the NOS will preferentially
produce superoxide anion from oxygen, a mecha-
nism known as NOS “uncoupling” [35–37]. Alter-
natively, in eNOS deficiency, iNOS (but not
nNOS) will try to compensate for this lack of NO,
replacing the “lamb” by a “wolf” [38]. This latter
example demonstrates an important aspect of NO
physiology: the notion that the local amount of
NO and its subcellular localisation are crucial in
determining the effect. As an example for this
novel concept, by tightly regulating the rate at
which molecular oxygen enters the respiratory
chain, NO controls mitochondrial respiration.
Physiologically produced NO acts as protective
molecule by making the cell “hibernate”: it inhibits
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aerobic mitochondrial metabolism, thus reducing
oxygen consumption and preventing the onset of
apoptosis. In pathological production of both NO
and ROS however, reactive nitrogen species bind

irreversibly to multiple components of the mito-
chondrial respiratory chain, terminating cell res-
piration and precipitating cell necrosis [39].

The “Yin-Yang” effect and the genesis of insulin resistance

In humans, the incidence of metabolic syn-
drome, a set of metabolic insulin resistance and
traditional major cardiovascular risk factors, has
risen dramatically in the Western world [3, 40–43].
Over the past decade, studies in humans have
contributed importantly to generating the new
concept that a defect in NO bioavailability may
play a central role in the pathogenesis of this syn-
drome [3, 7, 44, 45].

In lean subjects, insulin stimulates blood flow

and decreases vascular resistance in skeletal mus-
cle [3, 6, 44, 46–49]. Stimulation of muscle blood
flow, and subsequent glucose delivery, is mediated
by NO, as this effect is abolished by the stereo-
specific inhibitor of NOS, NG-monomethyl-L-
arginine (L-NMMA), and by inhibition of tetrahy-
drobiopterin synthesis [6, 50, 51]. By promoting
substrate delivery to skeletal muscle tissue, NO-
mediated stimulation of muscle blood flow by
insulin is thought to play a role in the regulation
of muscle glucose uptake. 

In insulin-resistant humans, endothelial NO bio-
availability (decreased NO synthesis and/or in-
creased consumption by ROS) is impaired, which
thereby leads to metabolic insulin resistance. The
evidence is as follows. Endothelium-dependent
vasodilatation is defective in insulin-resistant sub-
jects [44], a defect that is directly related to meta-
bolic insulin resistance [6, 7, 44, 52, 53]. Essential
hypertension, an insulin-resistant state, is charac-
terised by defective endothelial NO synthesis, and
is associated with eNOS gene polymorphism
[54–57]. Furthermore, arterial hypertension could

Figure 1

Metabolic phenotype
of mice with com-
plete disruption of
the endothelial iso-
form of NO synthase
(eNOS–/– mice).
Adapted from 
Cook et al. [2]

Disease NOS Polymorphism Association Population Reference

Arterial eNOS E298D mutation in exon 7 Carriers of the mutation showed higher Japan 55
hypertension rate of essential hypertension

Carriers of the mutation showed higher Japan 56
rate of essential hypertension

Carriers of the mutation showed higher Japan 80
rate of preeclampsia

Carriers of the mutation showed higher Scotland 81
rate of pregnancy-induced hypertension

Carriers of the mutation showed higher Japan 83
rate of essential hypertension

iNOS NOS2A bi-allelic tertra- Carriers of the mutation showed higher Australia 93
nucleotide repeat rate of essential hypertension

nNOS Microsatellite polymorphism No difference between the groups Japan 85

Diabetes eNOS E298D mutation in exon 7 associated with decreased endothelial United 
responses (endothelial-dependent Kingdom
brachial artery blood flow) compare 
to controls after a diet-challenge of 
n-3 fatty acid-diet. ) 

iNOS Linkage of the human NOS2 gene Denmark 87
to IDDM

Carriers of the allele had twice the risk India 88
of developing retinopathy

Carriers of the allele had twice the risk Australia 89
of developing complications such as 
microalbuminuria, overt nephropathy, 
retinopathy and clinical neuropathy.

nNOS unknown

Atherosclerosis eNOS T786C in the 5’-Flanking Independent risk factor for severe  Italy 74
region artery stenosis

Table 1

NOS Polymorphism
and association with
insulin resistance
and CAD.
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be related to elevated plasma concentrations of
endogenous NOS inhibitors such as asymmetric
and symmetric dimethyl arginine [58–60]. Finally,
insulin resistance is associated with metabolic
abnormalities which could down-regulate eNOS
expression, such as oxidized low density lipopro-
tein (LDL) [61–63].

Whereas these first human studies wove the
conceptual framework of this new theory, animal
studies allowed major breakthroughs in our cur-
rent understanding. Consistent with the concept
of an important role of NO in the regulation of
insulin sensitivity, NOS inhibitors reduce insulin-
stimulated muscle glucose uptake in rats in vivo
[64]. Moreover, eNOS is expressed in the skeletal
muscle [65], and NO donors stimulate glucose
transport in isolated rat muscle preparations in
vitro [66–68]. Studies in specific gene knockout
mice permit further understanding of the specific
role played by NOS isoforms and their interre-
lationship in insulin resistance. Mice lacking the 
gene coding for eNOS (eNOS–/–) display a phenotype
mimicking the human metabolic syndrome:
eNOS–/– mice are hypertensive [2, 4, 69, 70] and

are insulin resistant, as evidenced by fasting hyper-
insulinaemia and glucose infusion rates during
euglycaemic clamp studies that are 30–40% lower
than in wild-type mice [2, 4]. In these mice, in-
sulin resistance is related specifically to impaired
NO synthesis, because in equally hypertensive 
1-kidney/1-clip mice (a model of renovascular 
hypertension) insulin-stimulated glucose uptake is
normal [4]. The eNOS knockout mice provide the
first direct evidence that a defect of insulin stimu-
lation of muscle blood flow contributes to insulin
resistance. Insulin stimulation of muscle blood
flow is about 40% smaller in eNOS–/– than in 
wild-type mice, and insulin stimulation of muscle
blood flow and muscle glucose uptake is strongly
related. It is possible that the impairment of insulin
stimulation of muscle blood flow in eNOS–/– mice
may be related in part to decreased skeletal muscle
capillary density. In addition to arterial hyperten-
sion and insulin resistance, eNOS–/– mice show
dyslipidaemia, and increased plasma concentra-
tions of leptin, uric acid and fibrinogen, intrinsic
components of the human syndrome X [2] 
(figure 1). 

Disease NOS Polymorphism Association Population Reference

Coronary artery eNOS VNTR in intron 4 (a/b) Carriers of the mutation showed a higher Australia 57
disease (CAD) smoking-dependent risk of CAD

Carriers of the mutation showed more Finland 95
severe coronary artery narrowing and 
increasing risk of myocardial infarction 
after this prospective autopsy serie

VNTR in intron 4 (a/b), Carriers of the G-allele of G10T poly- Korea 94
E298D mutation in exon 7 morphism showed a higher plasma NOx 
and G10T polymorphism and a higher independent risk of CAD
in intron 23

E298D mutation in exon 7 Carriers of the mutation showed a higher England 75
independent risk of CAD

Carriers of the mutation showed a higher Japan 79
independent risk of coronary spasm after 
intracoronary injection of Ach

Carriers of the mutation showed a higher Australia 78
independent risk of coronary artery disease

Carriers of the mutation showed a higher Japan 77
independent risk of myocardial infarction

T786C in the 5’-Flanking Carriers of the mutation showed a higher Japan 82
region independent risk of coronary spasm after 

intracoronary injection of Ach

Others E298D mutation in exon 7 Carriers of either of the mutations showed 73
and 786 T->C higher post-PTCA restenosis rate

VNTR in intron 4 (a/b) Amelioration of coronary blood flow Sweden 90
by pravastin in ba genotype but not in bb 
genotype 

iNOS “+” allele is associated with glucose Australia 91
intolerance, obesity and unstable angina 
pectoris

Micellenaous eNOS E298D mutation in exon 7 Carriers of the mutation showed impaired Germany 96
response to L-NMMA. Authors conclude 
that this mutation is asociated with 
impaired NO production.

T786C in the 5’-Flanking T786C: C allele is associated with Japan 82
region promoter activity that is less than half 

of the T allele

VNTR in intron 4 (a/b) 4a/4b associated with altered plasma Australia 97
nitric oxide levels

Table 1

Continue.
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Extrapolation of these findings in mice to hu-
mans was not straightforward since eNOS gene
deficiency had not been reported in humans thus
far. There was evidence, however, that cardiovas-
cular disease states such as hypertension, coronary
artery disease, and myocardial infarction, were
associated with functional [71, 72] eNOS gene
polymorphism [54, 55, 57, 73–97] (table 1) and 
impaired NO synthesis [57, 78]. We therefore
considered a revisited hypothesis of the so-called
“two hit” model of gene dysfunction advanced by
Knudson [98] postulating that, in our mice, an 
environmental factor could trigger a pathological
phenotype in genetically altered mice (partially
eNOS deficient mice – eNOS+/–). When fed a 
normal diet, eNOS+/– are normotensive and have
normal insulin sensitivity. However, when fed a
high-fat diet, eNOS+/– mice develop exaggerated
arterial hypertension, and insulin resistance, as ev-
idenced by a 40% lower insulin-stimulated glucose
uptake than control mice [2, 10], a defect which may
be related, at least in part, to impaired insulin stim-
ulation of muscle blood flow and substrate deliv-
ery. Mice lacking the inducible isoform of the NO 
synthase provide evidence that large amounts of
NO produced by iNOS induction may have detri-
mental effects on insulin sensitivity. Under normal
conditions, rodent and human tissues express very
low levels of iNOS, and there is no evidence that
iNOS plays a role in the regulation of glucose of
glucose metabolism. However, in several patho-
logical states cytokines such as tumour necrosis

factor-a and interleukin-6 are augmented. In mice,
high-fat diet induces iNOS expression in skeletal
muscle and fat tissue together with insulin resis-
tance, and iNOS knockout mice are protected
from high-fat diet-induced insulin resistance [11,
99]. Alternatively, mice over-expressing iNOS dis-
play arterial hypertension and insulin resistance. 

In summary, there is substantial evidence
showing that the small amounts of NO produced
by eNOS regulate both vascular and metabolic
homeostasis. A defective eNOS-driven NO syn-
thesis causes insulin resistance in experimental 
animals, and characterises insulin-resistant states
in humans. On the other hand, there is also large
body of evidence that the large amounts of NO
produced by iNOS induction may have detrimen-
tal effects on insulin-stimulated glucose uptake,
suggesting a Yin-Yang effect of NO in the regu-
lation of metabolic homeostasis (figure 2). As
demonstrated by heterozygous eNOS mice, we
speculate that in humans the different mechanisms
interplay through “gene-gene” and/or “gene-en-
vironment” interaction, raising the possibility of
the “two hits” law. A speculative example of this
theory is illustrated by the 1173 C-> T iNOS pro-
moter polymorphism, which is highly expressed in
African populations and is thought to be a natural
protection against severe malaria [100]. When
challenged with “foreign” environments, such as a
“Western” diet, it could on the other hand pro-
mote insulin resistance in the black population.

The “Yin” and the “Yang” of atherosclerosis

Far from only regulating insulin sensitivity
and most of the “major cardiovascular risk factors”
endothelium-derived NO is also the most potent
vasodilator known and is a critical modulator of
blood flow, platelet aggregation, oxidative modifi-
cation of LDL-cholesterol, proliferation of vascu-
lar smooth muscle cell, and leucocyte adherence
[2, 4, 101–106]. Consistently, it makes sense to be-
lieve that a defect in endothelium-derived NO
plays a role in atherosclerosis, not only by favour-
ing the “medium”, but also by more directly affect-
ing the component of the vascular endothelium as
well as its function.

Accordingly, there is a growing body of evi-
dence suggesting that alterations in the synthesis
of NO may promote atherosclerosis. Long-term
inhibition of endothelial NOS by administration
of L-NAME to rats does induce coronary inflam-
mation and subsequent arteriosclerosis [107, 108].
Similarly, ApoE-deficient mice, an atherosclerosis
prone model of mice, were treated with L-NAME
for 8 weeks and had a significant increase in the
atherosclerotic plaque/surface area in the aorta
[109]. Knockout mice demonstrated that both
neuronal [110] and endothelial NO synthase have

intrinsic vasculoprotective effects [111, 112]. Con-
sistent with this new aspect, eNOS gene polymor-
phisms have been demonstrated in patients with
atherosclerosis (see table 1) and asymmetric di-
methyl arginine (ADMA), a competitive endoge-
nous inhibitor of NOS, is increased in atheroscle-
rosis plaques and could contribute to atheroscle-
rosis in patients with chronic renal failure [113].
Alternatively, stimulation of eNOS by statins slows
down the progression of atherosclerosis and has
even been associated with plaque regression, one
so-called “pleiotropic” effect of statins [114–116].

A reduction in NO bioavailability (NO trap-
ping) is another important mechanism for en-
dothelial dysfunction and atherogenesis. Free 
radical oxygen species such as superoxide anion
can rapidly react with and inactivate nitric oxide, 
enhancing per se proatherogenic mechanisms
(leukocyte adherence, impaired vasorelaxation,
platelet aggregation) [117]. Evidence for this the-
ory lies in the fact that end-product of reactive 
nitrogen species, such as 3-nitrotyrosine, has 
been detected in atherosclerotic plaques in vivo
[118–120], and that antioxidant compounds such
as, vitamin C, vitamin E, coenzyme Q,  diphenyl-
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phenylenediamine, butylated hydroxytoluene, pro-
bucol, or its analogues and taurin [121] can reverse
endothelial function and/or the development of
atherosclerosis in animal models [122].

Finally and as demonstrated for insulin sensi-
tivity, iNOS stimulation is associated with oxida-
tive stress in the vessel wall and iNOS knockout
mice are protected from atherosclerosis. After 6
months of high-fat feeding, apoE/iNOS-double
knockout mice have an aortic lesion area reduced
by 40% compared with apoE-knockout mice,
which is associated with lower plasma levels of
lipoperoxides, a marker for oxidative stress [123].

In summary, the small amounts of NO pro-

duced by eNOS are stimulated by endothelial cell
surface receptors (for example, by acetylcholine) 
or by physical phenomena, such as shear stress, 
and act as a potent protective shield against oxida-
tive stress. Defective eNOS-driven NO synthesis
causes atherosclerosis in experimental animals,
and characterises CAD-prone humans. Con-
versely, iNOS induction is found very precociously
in the atherosclerostic plaque and iNOS-driven
NO overproduction induces nitrative stresses thus
participating in the development of atherosclero-
sis and also suggesting a “Yin-Yang” effect of NO
in atherogenesis. 

Outcome after myocardial infarction: is NO a factor?

Whereas the balance between NO and ROS
constitutes a key factor in the development of ath-
erosclerosis, it may also be of primary importance
in the outcome of its subsequent complications,
namely myocardial infarction and heart failure.
The outcome after myocardial infarction depends
of three major determinants: infarct size, arrhyth-
mia and development of cardiogenic shock. In
models of cardiac ischaemia-reperfusion, mice
with eNOS knockout suffer significantly larger
infarcts than wild-types littermates [124], whereas
its overexpression [125, 126] or its stimulation by
statins lead to significant attenuation in myocar-
dial reperfusion injury [127–129]. Inversely, iNOS
knockout mice show absence of late ischaemic pre-
conditioning effect, a powerful endogenous car-
dioprotective mechanism corresponding to the
clinical finding of an improved outcome in human
patients experiencing angina before myocardial in-
farction [130]. When wild-type mice were precon-
ditioned, the size of the infarcts was decreased by
67% compared with sham-preconditioned con-
trols, whereas the infarct size remained unchanged
in iNOS knockout mice.

In the setting of coronary artery occlusion, in-
farct size depends on occlusion time and the area 
at risk, is inversely proportional to collateral sup-
ply (arteriogenesis) [131] and susceptibility (pre-
conditioning, apoptosis) of the cardiomyocyte to
ischaemia and reperfusion injury. There is a grow-
ing body of evidence showing that NO is impor-
tant for each of these factors when area at risk and
time are kept constant. Arteriogenesis, a process
for adapting the pre-existing circuit of vessels into
functional collateral conduits, is tightly regulated
by nitric oxide a topic recently reviewed in details
[34]. Consistently, HMG-CoA reductase has been
consistently shown to promote collateral growth
in response to ischaemia [132, 133], which is abol-
ished in eNOS knockout mice [134]. As previously
discussed, the role of NO in cellular death is tightly
regulated by its local quantity. NO can act as a cy-
toprotective molecule by inducing cell “hiberna-

tion” or can be directly cytotoxic, precipitating cell
apoptosis [135] and necrosis. Albeit complex, it is
suggested once more that NO produced by iNOS
is involved in directly causing cell death under
pathological situations, such as ischaemia-reperfu-
sion, whereas eNOS-driven NO is responsible for
the cytoprotective effects. Inducible nitric oxide
synthase (iNOS) is expressed in the myocardium
after myocardial infarction. Increased NO produc-
tion from iNOS expression not only increase in-
farct size, but also causes myocardial dysfunction
(stunning) and results in higher mortality after
myocardial infarction, as demonstrated by the
protective effect of iNOS deficiency [136].

During and after myocardial infarction, the
leading cause of death for patients reaching the
hospital alive is due to development of cardiogenic
shock [137]. The odd paradigm of this syndrome
is that it paradoxically happens when average LV
ejection fraction (EF) is only moderately depressed
(30–40%). It is often associated with a systemic in-
flammatory response syndrome (SIRS), which re-
sponds minimally to conventional “pressors” and
when overcome only leads to mild heart failure
[138]. However, new evidence suggests, that the
genesis of this paradigm can be explained by an
important expression of iNOS, with susbsequent
formation of substantial amounts of NO. Contrary
to the fact that at physiological levels NO acts as a
positive inotrope, at higher concentrations, such as
the ones found in myocardial infarction or conges-
tive heart failure, NO appears to have a more
pronounced negative inotropic effect, depressing
myocardial contractility [139–142]. Accordingly,
inhibition of NO synthase by competitive in-
hibitors, as well as knocking out the iNOS gene,
appear to have favourable anti-stunning, effects
and better survival rate in animal models [136,
143–145]. Accordingly, intervention studies in
humans with the nonspecific NOS inhibitor NG-
monomethyl-L-arginine (L-NMMA) demon-
strate an improved survival with a 2-fold reduction
in 30-day mortality [146–149].
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In summary, myocardial infarction is associ-
ated with a state of severe oxidative stress, which
together with production of substantial amounts of
NO by stimulation of iNOS, leads to sustained 
vasoplegia and formation of reactive nitrogen
species. Animal studies show that eNOS-driven
NO seems to be cytoprotective (by promoting the
collateral supply and decreasing the cellular sus-
ceptibility to apoptosis), as well as positive in-

otrope, whereas iNOS stimulation appears delete-
rious. Mice overexpressing iNOS in heart develop
a higher incidence of sudden death than littermates
[150], while on the contrary iNOS knockout mice
suffer smaller myocardial infarction. In humans,
this imbalance between bioavailable NO and ROS
generation is thought to contribute, or to directly
cause cardiogenic shock when the global endoge-
nous antioxidant protection is swamped.

The future of NO in coronary artery disease

Figure 2 represents a concise synopsis of our
current views. The last two decades have witnessed
a burst in understanding the physiological and
pathophysiological role of NO/ROS-equilibrium
throughout the CAD-spectrum, which clearly sug-
gests that modulation of NO bioavailability con-
stitutes a remarkable opportunity to develop new
tools for fighting CAD. 

Today’s Han’s clinical challenge should be to
determine when to give a selective inhibitor when
there is a suspicion of iNOS overactivity and when

to decide to give an appropriate NO-donor. Hope-
fully, NO-“modulators” and new NO-donors
(such as nitroaspirins) [3, 151] would offer this dual
activity and may represent the future keystone for
the treatment of the CAD-spectrum.  
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Figure 2

Scheme by which
pathological nitric
oxide homeostasis
can cause metabolic
syndrome X. ADMA
indicates, asymmet-
ric dimethyl arginine
(or similar endoge-
nous methylated
arginines). Redrawn
and adapted from
Cook et al. [3]
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