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For many years asthma has been regarded as
an inflammatory disease of the airway mucosa
leading to bronchial hyperreactivity. Recent stud-
ies showed marked abnormalities in airway smooth
muscle behaviour in patients with asthma. The
pathogenesis of asthma seems to consist of airway
inflammation combined with airway smooth mus-

cle remodelling. The latter pathology is linked to
a lack of the ant-proliferative transcription factor
C/EBP-a in this specific cell type. 
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Asthma is a chronic inflammatory disease of
the airways and its incidence is increasing world
wide without any known reason [1–7]. Up to the
mid- nineties there was an increase of asthma 
incidence also in Switzerland, which seems to have
reached a plateau over the last ten years. With 
respect to geographic variation and definition
asthma affects 8–18% of children and about 8% of
adults. Asthma is in most cases a life long disease,
which often requires continuous therapy and
therefore contributes significantly to the overall
health care budget [8, 9]. 

Asthma is characterised by chronic airway and
mucosa inflammation, tissue infiltration with
eosinophils, lymphocytes and mast cells [10, 11].
In addition, the adherence of the epithelial cell
layer seems to be disturbed [12–14]. This pathol-
ogy of the epithelium in asthma airways has been
suggested to disrupt the interaction between the
epithelial cell layer and the underlying connective

tissue [10–15]. As a consequence there is increased
airway remodelling reflected in the thickening 
of the basement membrane and neo-vascularisa-
tion [10–15]. The cellular communication and 
interaction between bronchial epithelial cells and
fibroblast like cells (myo-fibroblasts) are the focus
of current research. The thickness of the connec-
tive tissue sheet underlying the basement mem-
brane is also increased with infiltrated myofibro-
blasts of unknown origin and enhanced deposition
of extracellular matrix, a pathology that is often 
described as sub-epithelial fibrosis [12–17]. In 
contrast to asthma fibrotic processes in chronic 
obstructive pulmonary disease (COPD) include 
fibrosis of the bronchioli [16, 17]. There is increas-
ing evidence that smooth muscle hyperplasia plays
an important role in asthma [23–38]. The major
pathological differences of the bronchial wall,
comparing asthmatic to non-asthmatic tissue, is
depicted in figure 1.
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Introduction

Asthma is associated with inflammation of the
airway mucosa [11, 16, 19]. A significant number
of asthma patients also suffer from allergic rhino-
conjunctivitis [39–46]. Therefore the concept of
one airway one disease was favoured [43]. The air-
way inflammation consists of mucosal thickening
with infiltration of inflammatory cells including
eosinophils and lymphocytes. Th2 cells contribute

to the aggravated inflammation in asthma since
they release cytokines, which are involved in the
activation of other inflammatory cells such as mast
cells [47–49]. Mast cells have also been implicated
in airway inflammation in asthma. Many groups
have investigated their role in inflammation and
tissue remodelling [50–54]. In this context it is im-
portant to note that mast cells have been shown to
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interact with airway smooth muscle cells and mod-
ulate their function [55]. Two recent reviews by
Norris [56] and Marrone et al. [57] summarise the
contribution of mast cells to asthma in detail. 

Major factors linked to mast cell activation in
asthma are IgE, IL-4, and IL-5, which are all well
known to be up-regulated in asthma patients. IgE
together with IL-4 have long been known to be 
up-regulated in asthma patients and in their first
degree relatives, but there is no study until today
that could establish a clear genetic link of one of
the factors to the inheritance of asthma. Further-
more, IgE inhibition by antibodies resulted in a
marked down-regulation of the inflammatory
symptoms but did not cure asthma and the symp-
toms re-appeared after cessation of anti-IgE ther-
apy [58, 59]. Anti-IL-5 antibodies markedly down-
regulated eosinophila in asthma but could not
reduce the symptoms [60].

In view of asthma as an inflammatory disease
of the lung the role of the Th1/Th2 ratio has been
investigated intensively. Most studies however,

revealed that the shift towards Th2 cells in the lung
and in circulating blood was rather associated with
allergy than with asthma [61–69]. The early dom-
inance of the Th2 cell type in asthma has been also
demonstrated in childhood asthma [61, 62]. Addi-
tional studies investigated the consequences of
Th2 cytokine dependent cellular signalling and its
role in the inflammatory processes of asthma
[65–68]. Interestingly Th2 cells interact directly
with airway smooth muscle cells and respond to
pro-inflammatory cytokines released by this
bronchial cell type [66]. This fact suggests that
Th2 recruitment could be caused by activated
asthmatic airway smooth muscle cells. A similar in-
teraction has been described for Th2 cells that in-
teract with dendritic antigen presenting cells and
both cell types activate each other in the presence
of antigens [69]. In summary, the cause and the role
of the Th1/Th2 cell imbalance in asthma as well
as in atopy has to be re-defined and is likely to be
a sign of allergic inflammation.

Figure 1

Histology of the non-asthmatic (left panel) 
and the asthmatic (right panel) airway wall. 
In the non-asthmatic airway the bundles 
of smooth muscle cells is thin and consists of 
a few cells only, while in the asthmatic airway
wall the number of muscle bundles as well as
the number of smooth muscle cells per bundle
increases markedly. The basement membrane 
in the non-asthmatic airway is a think layer 
separating the epithelial cell layer from a thin
layer of connective tissue formed by extra-
cellular matrix and fibroblast like cells (myo-
fibroblasts). In contrast in the asthmatic airway
the basement membrane is significantly thick-
ened as is the mass of the connective tissue
layer.

In order to control the inflammatory aspect of
asthma the standard treatment includes gluco-
corticoids, which are among the most potent anti-
inflammatory drugs available. Glucocorticoids act
via their intracellular receptor, the glucocorticoid
receptor, which is located in the cytosol and upon
ligand binding is activated, forms a dimer and mi-
grates into the nucleus where it acts as a transcrip-
tion factor [70, 71]. The glucocorticoid receptor
acts most often as an inhibitor of gene transcrip-
tion but the exact conditions for this action remain
to be defined [72]. In addition, the activated glu-
cocorticoid receptor can form complexes with

other transcription factors including IkB, C/EBPs,
Stats, and AP-1 [73]. Thereby glucocorticoids may
affect genes that do not contain a glucocorticoid
receptor binding DNA sequence in their regula-
tory (promoter) region. A schema of the signalling
pathway is provided in figure 2. 

Under glucocorticoid therapy the inflamma-
tion of the mucosa is significantly decreased and
asthma symptoms are reduced. Airway hyper-
responsiveness is also significantly reduced with
inhaled glucocorticoids. Therefore it is believed
that airway hyper-responsiveness is a direct con-
sequence of mucosal inflammation. However, also
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glucocorticoids are not capable of curing asthma
and symptoms most often re-occur after cessation
of treatment. From these observations it can be
speculated that mucosal inflammation cannot be
the only cause of asthma. 

In addition to their anti-inflammatory action
glucocorticoids are capable to block cell prolifera-
tion. This is of special interest since this might
offer a possibility to control the increased mass of
airway smooth muscle cell bundles in asthma as
shown in figure 1. In an animal model it had been
shown that the anti-proliferative effect of gluco-
corticoids involves the formation of a complex
with the transcription factor C/EBP-a (figure 2),
which we were able to confirm in human lung cells
[74]. C/EBP-a belongs to a family of transcription
factors that, like the glucocorticoid receptor, has
been preserved during evolution, and both the glu-
cocorticoid receptor and the C/EBP-isoproteins
are central regulators for cell proliferation. Knock-
out animal models have been tested for both the
glucocorticoid receptor and C/EBP-a, but the –/–

homozygous animals for either of the two factors
did not survive birth longer than a few hours [75,
76]. We think that natural hormones (steroids)
together with the transcription factors C/EBPs
and peroxisome proliferator-activated receptor
(PPAR) regulate cell homeostasis in the human
body [77, 78]. Fibroblast and smooth muscle cell
proliferation in the human lung is mainly con-
trolled by the ratio of C/EBP-a to C/EBP-b. We
reported recently that bronchial smooth muscle
cells obtained from asthma patients lack the ex-

pression of C/EBP-a and therefore glucocorti-
coids cannot inhibit their proliferation [79]. This
might explain why bronchial smooth muscle cells
from asthma patients grow faster in culture than
cells from COPD patients or controls [29]. The
lack of C/EBP-a which was documented in the
smooth muscle cells of all asthma patients of our
cohort should not be confused with steroid resist-
ant asthma. A mutation of the glucocorticoid re-
ceptor is usually the basis of steroid resistant
asthma, which occurs in a minority of asthma pa-
tients [73, 75].

There is increasing evidence that the combi-
nation of glucocorticoids with long-acting b2-ago-
nists controls asthma symptoms better than an in-
crease of the glucocorticoid dosage [for review see
80–82]. This clinically documented benefit of the
combination of glucocorticoids with long acting
b2-agonists opposes the initially feared “pro-in-
flammatory action” of b2-agonists [83, 84]. It was
previously thought that the use of long acting b2-
agonists initially improved clinical symptoms, fol-
lowed by non-compliance of patients to inhale
steroids. The latter increased again the underlying
inflammation of the bronchial mucosa. We postu-
lated earlier that the clinically significant benefi-
cial effect of the combination of glucocorticoids
with long acting b2-agonists is based on their mo-
lecular biological effect. When both classes of
drugs are combined, they synchronise the activa-
tion of the two transcription factors, glucocorti-
coid receptor and C/EBP-a [85]. 

We demonstrated earlier that b2-agonists acti-
vate the glucocorticoid receptor in a ligand inde-
pendent – yet to be explained – manner in human
lung fibroblasts and smooth muscle cells [86]. This
finding has recently been confirmed in patients
after inhalation of either a glucocorticoid or a b2-
agonist alone or in combination, as shown by im-
muno-histochemistry in epithelial cells [87]. How-

Figure 2

The interaction of the glucocorticoid and 
b2-agonist signalling pathway and its conse-
quences for the anti-inflammatory and the 
anti-proliferative effect of the two drugs. As
C/EBP-a is missing in airway smooth muscle
cells of asthma patients, the anti-proliferative
effect of especially glucocorticoids cannot 
be effective. However, the anti-inflammatory
action of glucocorticoids, mediated via the 
glucocorticoid receptor dimer and the GRE-
promoter element as well as via the interaction 
of the GR with other transcription factors, 
is fully functional.
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ever, the synchronisation of the two transcription
factors might not be the only cellular signalling
pathway that is modified by the combined classes
of drugs [88]. The new concept of the interaction
of glucocorticoids and b2-agonists regarding their

effect on inflammation and proliferation is shown
in figure 2. In conclusion, the combination of glu-
cocorticoids and b2-agonists shows a beneficial ef-
fect in asthma treatment, which can be explained
via their molecular biological interaction.

The increased mass of smooth muscle cell
bundles in the airway of asthma patients (figure 1)
is an important feature, which has long been un-
derestimated. Even in young asthma patients and
in patients with mild asthma the smooth muscle
cell mass is increased as recently shown by endo-
bronchial biopsies obtained via bronchoscopy
[22–28, 36, 89, 90]. This increased mass of muscle
is believed to contribute to bronchial hyper-reac-
tivity. After being able to culture for the first time
bronchial smooth muscle cells of asthma patients
it became evident that the smooth muscle cells of
these patients behave abnormal [29, 79]. Even after
long-term culture the smooth muscle cells of
asthma patients proliferated at a faster rate than
their controls, including COPD patients [29, 79]. 

Therefore inflammatory mediators present in
the body can be excluded as a cause for this pathol-
ogy. However, it cannot be excluded that chronic
stimuli such as allergens or viruses might interfere
with the C/EBP-a expression We have shown ear-
lier that Chlamydia pneumoniae, which is known to
induce asthma exacerbations, affects the above de-
scribed signalling pathway by “high checking” the
glucocorticoid receptor and NFkB signalling
pathway [91]. Preliminary data suggest that several
respiratory viruses directly alter the activity of var-
ious C/EBP-isoproteins (unpublished data). Fur-
thermore, our group demonstrated that smooth
muscle cells of asthma patients produce more con-
nective tissue growth factor (CTGF), which could
be related to the increased expression of TGF-b
the increased synthesis of extracellular matrix [92,
93] and the increased synthesis of some specific ex-
tracellular matrix components [28] that contribute
to airway wall thickening. In this context it is im-
portant to note that the composition of the extra-
cellular matrix is a key regulator of airway smooth
muscle cell proliferation [28, 31, 94, 95].

As described above, the ratio of the pro-
proliferative C/EBP-b to the anti-proliferative
C/EBP-a controls natural cell homeostasis. The
increased proliferation of the airway smooth mus-
cle is due to the lack of C/EBP-a. As described
above, C/EBP-a forms a complex with the gluco-
corticoid receptor and is involved in the control 
of cell proliferation and differentiation [74, 85].
Therefore the normal anti-proliferative action 
of C/EBP-a is missing in smooth muscle cells of
asthma patients [79]. Re-introduction of C/EBP-a
by transfection experiments restored the sensitivity
of the cells for the anti-proliferative effect of glu-
cocorticoids [79]. The family of the C/EBP tran-

scription factors consists of six members (-a, -b, 
-g, -d, -e, -z) in humans and they all can interact with
each other and bind to the same DNA 
promoter sequence, CCAAT [96]. Furthermore, at
least some C/EBPs can bind to the cAMP response
element (CRE), thereby affecting the expression of
much more genes [97]. In other cell types C/EBPs
have been identified as central regulators of cell dif-
ferentiation [98–100]. We speculate that the lack of
C/EBP-a in the smooth muscle cells of asthma 
patients leads to a dysbalance with the pro-prolif-
erative C/EBP-b [101], which explains their faster
proliferation rate [29]. Interestingly, overexpres-
sion of C/EBP-b in lung epithelial cells has recently
been reported in COPD patients [86]. In contrast
to C/EBP-a enhanced expression of C/EBP-b and
furthermore its activation is clearly linked to pro-
liferation and de-differentiation of several cell types
[100, 101]. The recent publication of Didon et al.
[102] suggests that this mechanism might play a
role in the pathogenesis of small airway bronchioli-
tis with fibroblast proliferation and collagen depo-
sition in the small airways. The role of C/EBPs in
asthma has been discussed in details earlier [103].

Furthermore, the lack of C/EBP-a and its 
role in cell differentiation may explain the often-
described trans-differentiation of fibroblast or
smooth muscle cells into so called myo-fibroblasts
observed in asthma [104]. If the lack of C/EBP-a
in smooth muscle cells of asthma patients leaves
the cells with an “over-activity” of the remaining
C/EBP-b the report of Hu et al. [88] showing that
C/EBP-b regulates the expression of smooth mus-
cle cell actin becomes important; the expression of
smooth muscle cell actin is often used to differen-
tiate between smooth muscle cells and myofibro-
blasts [105]. 

Further indications that C/EBP-isoproteins
control the differentiation of fibroblast like cells
into more specific differentiated cell types have
been provided for C/EBP-b and the differentia-
tion of mouse fibroblasts into adipocytes [106], and
for C/EBP-d and the transdifferentiation of my-
ofibroblasts in the kidney [107]. The role of the
different C/EBP-isoforms on the differentiation of
smooth muscle cells and in asthma has therefore to
be studied in more detail. The function of C/EBPs
is also linked to that of the transcription factor per-
oxisome proliferation receptor activator, PPAR,
which forms complexes with the glucocorticoid 
receptor and C/EBP-isoforms [77, 108]. This 
signalling pathway and its impact on asthma and
COPD is under investigation.

The role of airway smooth muscle cells in asthma
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