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The tumour suppressor gene PTEN is, next to
p53, the second most frequently mutated gene in
human cancers. The genes TSC1 and TSC2 are
mutated in the severe human syndrome called
Tuberous Sclerosis. Patients with this disease have
large benign tumours composed of large cells in
the brain. The genetic dissection of pathways con-
trolling the growth of cells, organs, and the entire
organism in Drosophila has contributed to the un-
derstanding of the signalling pathways that are
controlled by these two tumour suppressors. To-
gether with studies on nutrient regulation of
growth and ageing in the nematode Caenorhabditis

elegans, evidence from these model organisms 
has moved the Insulin/IGF (IIS) and the Target
Rapamycin (TOR) signalling pathway onto the
centre stage of cellular growth control and made
them attractive novel targets for cancer therapy. 
In this review, I will outline the contributions of
model organism genetics to the understanding of
these disease relevant pathways and highlight the
evolutionary conservation of nutrient-dependent
growth regulation.
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Differences in size are often the most distinc-
tive features between species, yet we still know lit-
tle about the genetic basis of size regulation [1].
Over the past 20 years, developmental genetics in
model organisms such as Drosophila and the nem-
atode C. elegans has provided insight into the ge-
netic networks that control the setting up of the
main body axes, the patterning of limbs, and the
guidance of axons. However, little is known about
the mechanisms that underlie the control of cell,
organ, or body size. How do the pairs of arms and
legs end-up the same size? What controls that the
arms in humans are always shorter than the legs?
Organs must somehow be able to measure their
final size, but how? These fascinating questions are
still largely unresolved but developmental biolo-
gists have now turned to them and the first results
begin to emerge. 

Understanding cell growth is also important to
understand the formation of tumours. Cell prolif-
eration has often been equated with cell growth
and thus large efforts in the past 20 years have gone
into the elucidation of cell cycle progression. This
research has lead to a detailed understanding of the
regulatory networks associated with the progres-
sion through the cell cycle [2]. Obviously, for an
organism to grow, cells do not only have to divide,
they also have to grow: they have to engage in

macromolecular synthesis. Macromolecular syn-
thesis, which in most cells consists primarily of the
synthesis of proteins, has to be coordinated with
the cell cycle to ensure that the size of a particular
cell type stays roughly constant. Almost 40 years
ago Killander and Zetterberg observed that small
cells took on average more time to undergo divi-
sion than large cells. They suggested that cells pass
an internal size check point before starting to di-
vide [3]. Similar experiments in yeast also pointed
to a strong influence of cell growth on cell prolif-
eration [4, 5]. We were reminded of these results
by experiments addressing the connection be-
tween cell growth and cell cycle progression in
Drosophila imaginal discs [6, 7]. Neufeld and Edgar
labelled individual cells in growing imaginal discs
and determined, after a fixed time interval, the
clonal growth of the progeny of the labelled cell by
measuring the area occupied by the cell clone and
by counting the number of cells in the clone. These
results were compared with those obtained by in-
ducing, at the time of marking the individual cell,
expression of the cell cycle accelerator E2F or the
cell cycle inhibitor Rb. The authors observed that
the growth of the clones, measured by the clone
area, stayed constant. E2F expressing clones pos-
sessed more, but smaller cells, whereas Rb express-
ing clones contained fewer, but larger cells. These
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results suggested that, within the limits of this ex-
periment, progression through the cell cycle does
not induce growth but that growth is regulated in-
dependently. What are the regulatory networks that

control cell growth during development? System-
atic genetic screens and candidate gene approaches
have led to the identification of the principle mod-
ulators of growth during Drosophila development.

Genetic approaches to identify genes involved in growth control

To identify genes involved in growth regula-
tion in Drosophila, the simplest genetic approach is
to search for mutations that alter the body size of
flies. One such mutation is chico, meaning small
boy in Spanish (figure 1). Flies homozygous for
chico develop more slowly, are only half the size of
wild-type flies, and females are sterile [8]. The size
reduction is caused by a reduction in cell number
and a reduction in the size of each individual cell.
The chico gene is involved in the regulation of
growth at the level of a single cell and at the level
of the organism. This suggested that there is a class
of genes in the genome that is dedicated to the reg-
ulation of cell growth independently of patterning
and differentiation. The chico gene encodes the
Drosophila homologue of the Insulin Receptor
Substrate (IRS) proteins in vertebrates. Mammals
contain four different IRS proteins (IRS1–4). As
the name indicates, these proteins bind to the ac-
tivated insulin and Insulin-like Growth Factor

(IGF) receptors and become phosphorylated on
tyrosine residues. As described below, IRS pro-
teins are important adaptors that link these two
receptors to downstream signalling pathways. To-
gether with the previous observation that partial
loss-of-function mutations in the Drosophila in-
sulin receptor gene, Inr, also reduces body size,
these results suggest that the insulin signalling
pathway plays a critical role in growth regulation
in Drosophila [9]. 

It is unlikely that the search for mutations re-
ducing body size will identify all genes involved in
cellular and organismal growth, since loss-of-func-
tion mutations in most of these genes are expected
to be lethal. Screens devised to detect mutations
affecting growth in clones of cells in which ran-
domly induced mutations have been made ho-
mozygous by mitotic recombination, have helped
to obtain a more complete picture of the genes in-
volved in growth control. In one variant of these
screens, genetically modified male flies are fed 
the mutagenic substance ethylmethanesulphonate
(EMS) and mated to special strains of females.
Owing to a tissue-specific recombination system
that is active only in the eye and head progenitor
cells, a portion (one chromosome arm) of the pa-
ternal genome carrying newly induced mutations
is made homozygous [10]. In this way, mosaic flies
are generated that are homozygous for newly in-
duced mutations on one chromosome arm in the
head but heterozygous for the same mutations in
the rest of the body. Since each progeny fly is de-
rived from a single sperm containing a unique set
of mutations, the phenotype of these recessive mu-
tations is displayed in individual F1 flies. Some
mutations occur in genes whose function is essen-
tial for the growth or differentiation of these cells.
Such mutations cause cell lethality and flies with-
out a head die in the pupal case. Mutations in genes
that either promote or inhibit growth, however,
will result in flies whose heads are too small 
(mutation in a growth promoting gene) or too
large (mutation in a growth inhibiting gene). Only
flies with such phenotypes are backcrossed to the
maternal strain and lines are established. We refer
to this screen as the pinhead/bighead screen. An 
example of a pinhead and a bighead mutation is
shown in figure 2. One advantage of this type of
screen is the large number of flies that can be an-
alyzed. Since EMS treatment generates at least one
loss-of-function mutation per haploid genome,
multiple coverage of the Drosophila genome con-
taining approximately 15000 genes is readily 

Figure 1

Mutations in the
Drosophila gene
chico encoding the
homologue of IRS1–4
cause a proportional
reduction in body
size. The two flies on
the left are homozy-
gous for chico. Their
body size is reduced
by 50% compared
with the two het-
erozygous flies on
the right. The small
size is caused by a
reduction in the
number and the size
of the cells. 

Figure 2

Mutations in genes involved in growth regulation are identified in the pinhead/big-
head screen. The fly in the middle is wild-type and displays a normal head size. The
fly on the left is a genetic mosaic. It is homozygous for a growth inhibiting mutation
in the head and heterozygous for the same mutation in the rest of the body. As a con-
sequence, the size of the head is reduced (pinhead), yet bristles and eyes are differen-
tiated normally. The head of the fly on the right is homozygous for a mutation in the
tumour suppressor gene PTEN. Because of the lack of this growth inhibitor, head size
is increased. Mutant flies with these phenotypes are selected, the mutated genes are
mapped and molecularly characterised. 
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obtained. This provides the unique opportunity 
to identify all genes in the genome that modulate
growth and not patterning in a cell- or tissue-
autonomous manner. Having screened approxi-
mately 300 000 flies for mutations on the four
major arms of the autosomes we have reached a 
20-fold coverage of the genome and identified ap-
proximately 50 genes whose products are involved
in promoting or inhibiting cellular growth. The
genes most frequently identified in this screen 
encode proteins that constitute the backbone of
two linked signalling pathways, the insulin/IGF
and the Target of Rapamycin (TOR) pathway.
This indicates that these two pathways play a cen-
tral role in the control of cell growth in Drosophila
(figure 3)

Figure 3

Diagram of the insulin/IGF signalling pathway. Indicated are the key elements of this
pathway that have been identified and characterised genetically and biochemically.
Connections indicated in red represent direct physical interactions. See text for detail.

Insulin/IGF signalling (IIS) in mammals

Because of its central role in glucose homeo-
stasis, the signalling pathway controlled by the
insulin receptor is probably one of the most in-
tensely investigated cellular pathway. A large body
of literature covers the role of various signalling
components in development, physiology, and dis-
eases in mammals. In the following section I will
outline the salient features of the IIS pathway that
have emerged from biochemical studies in tissue
culture cells and knock-out studies in mice. 

The main ligands that activate this signalling
pathway are insulin produced by the pancreatic b-
cells in the islets of Langerhans and the insulin-like
growth factors 1 and 2 (IGF-1/2), mainly produced
by the liver. The primary role of insulin is to main-
tain glucose homeostasis and thus it plays a central
role in diabetes mellitus [11]. IGF-1/2 regulates
organismal growth in response to growth hor-
mone [12]. In addition, IGF-1 also exerts a neuro-
protective function in the brain [13]. The mam-
malian insulin (IR) and IGF-1 receptors (IGFR)
belong to the family of receptor tyrosine kinases
and are activated by their corresponding peptide
ligands, insulin and IGF-1/2, respectively. Ligand-
binding induces dimerisation of the receptor and
activates the cytoplasmic kinase domain resulting
in autophosphorylation on tyrosine residues.
Phosphotyrosine residues preceded by an arginine
and a proline residue at position –3 and –2 (NPxY)
in the juxtamembrane domain of the receptors are
bound by the Phosphotyrosine Binding (PTB) do-
main of adaptor proteins of the Insulin Receptor
Substrate (IRS) family. In addition to the PTB do-

main, these proteins contain an NH2-terminal 
PH (pleckstrin homology) domain and several
phosphotyrosine motifs that serve as docking sites
for SH2 (Src-Homology 2) domain containing
proteins. SH2 containing proteins link the
insulin/IGF signalling network to two major
signalling pathways: The PI3K/Akt pathway via
the SH2 containing regulatory subunit of PI3K,
p85 (see below), and the Ras/MAPK pathway via
the SH2 adaptors Grb2 and SHC [14].

Knockout experiments in mice helped to elu-
cidate the role of the two receptors and the IRS
proteins. Both IR and IGFR are required for em-
bryonic and postnatal growth [15–17]. Whereas
mice lacking IR function die shortly after birth due
to severe defects in glucose homeostasis, mice lack-
ing IGFR function are reduced in size and die at
birth because of respiratory failure. Loss of both
receptors increases the severity of the growth phe-
notype [18]. The functions of IRS-1 and IRS-2 ap-
pear to be largely complementary. Loss of IRS-1
results in growth retardation and insulin resistance
in peripheral tissues [19, 20]. IRS-2 knock-out
mice have only a small reduction in body weight
but display insulin resistance in the periphery and
a reduced b-cell mass [21, 22]. 

The main branch of signalling downstream of
the IR/IGF-1R involves the lipid kinase phos-
phatidylinositol-3-OH-kinase (PI3K) [23]. Its
regulatory subunit (p85) binds via its SH2 domain
to phosphotyrosine motifs in IRS proteins,
thereby recruiting the catalytic subunit (p110) to
the plasma membrane. At the plasma membrane,
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p110 phosphorylates its substrate, phosphatidyli-
nositol-(4,5)-bisphosphate (PIP2), and thereby
generates phosphatidylinositol-(3,4,5)-trisphos-
phate (PIP3). PIP3 acts as a second messenger in
mediating the cellular responses to the activation
of the IR and IGF-1R receptors. Its generation
from PIP2 by PI3K is counteracted by the lipid
phosphatase PTEN (phosphatase and tensin ho-
mologue on chromosome 10) that dephosphory-
lates the D3 position of the inositol ring [24]. The
loss of PTEN in immortalised embryonic fibro-
blasts or embryonic stem cells results in a two 
to three-fold increase in PIP3 levels [25, 26]. 
Interestingly, PTEN is a tumour suppressor that
is frequently mutated in a wide variety of human
cancers [27]. 

Elevated levels of PIP3 recruit the PH-domain
containing protein kinase Akt (also called PKB) to
the plasma membrane and permit its further acti-
vation by the phosphoinositide-dependent kinase
1 (PDK1) [28]. Amongst the growing list of sub-
strates phosphorylated by Akt are the metabolic
enzymes GSK3 (glycogen synthase kinase 3) and
6-phosphofructo-2-kinase, proteins involved in
cell survival such as BAD, transcription factors of
the FOXO family FKHR, FKHRL1, and AFX,
and the tumour suppressor protein Tuberous scle-
rosis 2 (TSC2) [29]. It has been very difficult to ad-
dress the relative importance of these different
substrates for the various in vivo functions of IIS.
Mouse knock-out mutations in the genes coding
for the three mammalian isoforms Akt1–3 show
that Akt1 mutant mice are reduced in size, Akt2

mutants are normal in size but hyperglycaemic,
and Akt3 mutant are phenotypically normal [30].
Although compensatory upregulation of the
remaining isoforms is observed there is a certain
degree of functional specialisation in the three
isoforms in a way similar to the IRS isoforms. IRS-
1 is dedicated to growth, whereas IRS-2 is required
for the regulation of glucose homeostasis [19, 21]. 

Akt kinases are not the only output of IIS.
Insulin or IGF-1/2 stimulation also results in the
activation of ribosomal protein S6 kinase (S6K)
and the phosphorylation of the elongation factor
4E binding proteins (4EBP) [31]. Phosphorylation
of the ribosomal protein S6 by S6K is thought to
increase translation of mRNAs containing oligo-
pyrimidine tracks in their 5’ leaders [32]. These
messages encode components of the translation
machinery. Phosphorylation of 4EBP prevents its
association with the translation initiation factor 4E
thus freeing it to form translation initiation com-
plexes. S6K activation and 4EBP phosphorylation
in response to insulin involves the activity of the
Target of Rapamycin kinase (TOR) since treat-
ment with its inhibitor, Rapamycin, blocks these
changes [31]. As in the case of its family member
Akt, S6K also requires phosphorylation by PDK1
for its further TOR dependent activation. In sum-
mary, the cellular responses to insulin/IGF-1/2
signalling are highly complex. They include acti-
vation of the Ras and the PI3K signalling pathway,
transcriptional regulation by phosphorylation of
FOXO transcription factors, and modulation of
translation via TOR. 

The architecture of the insulin signalling pathway in Drosophila 

and C. elegans

In spite of the large body of literature on the
responses of mammalian cells to insulin and IGF-
1/2 stimulation, genetic dissection of this sig-
nalling pathway in model organisms has con-
tributed in at least three different ways to our un-
derstanding of IIS. First, genetic screens have
identified novel essential components in the path-
way. Second, the analysis of the function of the var-
ious signalling branches under physiological con-
dition has provided insight into their relative con-
tribution to cell growth and cell physiology. Third,
studying IIS in model organisms has pointed to the
evolutionary ancient role of this pathway in nutri-
ent sensing and the regulation of lifespan. I will
first outline the salient features of the IIS in 
C. elegans and in Drosophila and then address the
different physiological functions of this pathway. 

Although the overall architecture of the
insulin signalling pathway in Drosophila and in 
C. elegans is simpler than in vertebrates, these or-
ganisms contain a large number of genes encoding
insulin-like peptides. The C. elegans genome har-
bors more than 30 distantly related insulin-like

genes. Whether all of these encode ligands for the
single insulin receptor is however unclear [33]. In
Drosophila, there are seven insulin-like peptide
(dilp) genes that are expressed in a highly dynamic
pattern [34]. Three of the seven genes are ex-
pressed in two paired clusters of 7 neurosecretory
cells in the brain [35]. These cells project axon ter-
minals to the corpora cardiaca, a component of the
major endocrine gland, and to the aorta, from
where Dilps are released in to the insect blood, the
haemolymph. Ablation of these cells results in a
strong reduction in body size. Dilp expression and
release from these cells is regulated by nutrients
and haemolymph glucose levels suggesting that
these cells are functionally equivalent to the b-cells
of the mammalian pancreas [36]. Moreover, a 
hormone related to glucagon called adipokinetic
hormone is produced by cells in the corpora car-
diaca and its release is controlled by an ATP-
dependent potassium channel and a sulphonylurea
receptor that are homologous to those controlling
the release of glucagon in a cells in the 
pancreas [37, 38]. This suggests that the endocrine
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regulation of glucose homeostasis in vertebrates
and in invertebrates relies on the same pair of 
hormones and that this insect model may be used
to study some aspects of diabetes.

The single insulin-like receptors in Drosophila
and C. elegans connect to a signalling cascade that,
with the exception of two Akt homologues in 
C. elegans, consists of single orthologues of the
mammalian signalling components. This makes
the genetic dissection of this pathway in these sim-
ple organisms readily accessible. In C. elegans, in-
sulin signalling mediates the starvation-induced
developmental arrest at the stage of a long-lived
dauer larva. Loss-of-function mutations in the
genes encoding the insulin receptor or PI3K cause
a constitutive dauer phenotype. This phenotype is
completely suppressed by mutations in the daf-16
gene. Daf-16 encodes the C. elegans FOXO homo-
logue. This was the first evidence that FOXO tran-
scription factors are essential downstream targets
of the insulin signalling pathway [39]. Akt, acti-
vated by high insulin levels, phosphorylates
FOXO transcription factors and promotes their
binding to 14–3–3 proteins, thereby anchoring
them in the cytoplasm and rendering them inac-
tive [40, 41]. In the absence of Akt activity, FOXO
is dephosphorylated, enters the nucleus, and acti-
vates target genes many of which are involved in
the protection against cellular stress. In C. elegans,
flies, and mammals, FOXO transcription factors
are sensors for various cellular stress conditions
[42, 43]. Intriguingly, cellular growth phenotypes
associated with insulin pathway mutants in
Drosophila are conspicuously absent in C. elegans.
Although C. elegans TOR mutants have been iden-
tified they show no obvious connection to dauer
formation or insulin signalling, although it has
been reported that TOR also affects longevity in
nematodes [44]. 

The molecular link between insulin and TOR
signalling has been pioneered in Drosophila. First,
TOR mutants have been identified in the screen
for growth mutations described above [45, 46].
Second, the Drosophila homologues of the tumour
suppressor proteins TSC1 and TSC2 were shown
to couple insulin signalling to the TOR pathway
[47]. Tuberous Sclerosis is a hereditary syndrome
in humans associated with benign tumours that
contain large cells in the brain. It is associated with
mutations in two genes, TSC1 and TSC2, whose
products form a complex [48]. Mutations in the
Drosophila homologues where found in screens for
mutations that cause a cell overgrowth phenotype
[49–52]. Genetic interaction studies indicated a
tight but complex connection to insulin signalling.
The lethality associated with loss of insulin recep-
tor function in Drosophila is rescued dominantly by
mutations in TSC2/1 suggesting that the TSC
complex is an essential downstream component of
insulin signalling. On the other hand, cells doubly
mutant for TSC and PTEN are almost twice the
size of cells having lost either TSC or PTEN func-
tion. This suggests an additive function of these

two tumour suppressors [49]. In addition to the ge-
netic evidence for a placement of TSC1/2 in the
insulin signalling pathway, biochemical studies in
vertebrates and in Drosophila showed that TSC2 is
phosphorylated by Akt and that this phosphoryla-
tion decreases the stability of TSC2 or its complex
formation [53–55]. Furthermore, loss of TSC
robustly activates S6K suggesting that the TSC
complex controls the TOR/SK6 branch of the
pathway. How TSC function is repressed by the
upstream insulin pathway is still controversial. Al-
though direct phosphorylation and destabilisation
of TSC by Akt has been demonstrated in mammals
and in Drosophila, rescue experiments in Drosophila
show that a mutant form of TSC2 lacking all con-
sensus Akt phosphorylation sites is able to rescue
the null mutant phenotype [56]. Thus, TSC inac-
tivation by Akt may be particularly relevant in the
context of unnaturally high Akt activity levels
caused by the loss of PTEN or the oncogenic 
activation of Akt and may thus contribute to the
oncogenic potential of Akt. 

Although the upstream regulation of TSC is
still not entirely clear, the small GTP-binding pro-
tein Rheb (Ras-homologue expressed in brain) has
been shown to be the direct downstream target of
the GAP (GTPase-activating-Protein) domain of
TSC2. Loss of Rheb function in Drosophila reduces
cellular growth in a way reminiscent of mutations
in chico and other components in the insulin path-
way [57–60]. Furthermore, the lethality associated
with loss of TSC1 function is rescued by reducing
Rheb function. Rheb function is required for TOR
and S6K activation [59]. Although Rheb was first
identified in vertebrates as a small G-protein
closely related to Ras, its function remained elu-
sive until it was placed in the TSC/TOR pathway
by genetic means in Drosophila. This triggered a
flurry of studies in mammalian cells corroborating
the findings from Drosophila that Rheb is indeed a
critical upstream activator of TOR in all mam-
malian cells [61–64]. The question of how Rheb
regulates TOR has not yet been resolved. Al-
though phosphorylation of 4EBP and activation of
S6K are the best-known outputs of TOR, it is
likely that other effectors also exist. Indeed, it has
recently been demonstrated that, like in yeast,
TOR exists in two separate protein complexes,
only one of which is sensitive to Rapamycin
[65–67]. The Rapamycin insensitive complex in
yeast regulates the actin cytoskeleton and is not in-
volved in growth. It is interesting to note that Rheb
mutant cell clones surrounded by wild-type cells
possess an abnormally elongated shape raising the
interesting possibility that Rheb may also be in-
volved in the regulation of the cytoarchitecture of
the cell [68]. 

In yeast, nutrient deprivation sets in motion a
complex genetic programme involving the altered
expression of amino acid transporters and the
regeneration of biosynthetic building blocks by
degrading macromolecular components by a
process called autophagy [69]. All these programs
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are dependent on TOR function. A genetic link
between TOR and autophagy has also been estab-
lished in Drosophila [70, 71]. This process is inde-

pendent of S6K activation and therefore opens a
third branch point downstream of TOR. 

Role of the IIS network in the control of cell size and cell number

The size of an organ and an organism depends
on the number of cells and on the size of each in-
dividual cell. Mutations in the insulin pathway in
Drosophila alter both cell size and cell number. Flies
homozygous for chico are smaller because they pos-
sess 30% fewer cells and because the size of each
individual cell is reduced by approximately 10% in
the case of epithelial cells in the wing or up to 50%
in the case of the highly specialized photoreceptor
cells in the eye [8]. Conversely, cell number and
cell size is increased by elevated insulin signalling
or by the loss of the negative regulators PTEN or
TSC1/2. Changes in cell size and cell number have
also been observed in response to altered activity
levels of the IIS pathway in mammals. In particu-
lar, loss of PTEN function in mice results in in-
creased cell proliferation and cell size in neural
stem cell populations. In postmitotic differentiated
neuronal cells, PTEN loss causes an autonomous
increase in cell size [72]. This increase in cell size
is dependent on TOR function since it is sup-
pressed by Rapamycin treatment. 

In Drosophila, cell size and cell number appear
to be controlled partly by two separate branches of
the insulin signalling network. Cell size but not cell

number is reduced in mutants lacking S6K [73].
Conversely, the reduction in cell number observed
in chico mutants is dependent on the Drosophila
FOXO transcription factor, dFOXO [74]. Intrigu-
ingly, although there is only a single dFOXO gene
in Drosophila, loss-of-function mutations in this
gene are viable under standard culture conditions
[74, 75]. Thus the dFOXO branch of the pathway
does not contribute to the regulation of final organ
or body size under culture condition that permit
normal levels of insulin signalling. Under these
conditions, dFOXO appears to be fully phospho-
rylated by Akt and is retained in the cytoplasm [76]. 

The universal role of IIS in controlling cell size
and cell number raises the question whether the
IIS is indeed a central element in determining
species specific cell, organ, and body size or
whether it is merely a universal modulator of this
genetic growth programme. The fact that normal
body size is attained in flies lacking dFOXO, one
of the central regulators in IIS, does in fact suggest
that IIS plays a regulatory role. As we will see,
insulin signalling plays a central role in adjusting
growth under limited nutrient conditions. 

Insulin signalling – a conserved mechanism to adjust growth rates 
and lifespan to environmental conditions

The ability to survive periods of low nutrients
is a central function that was selected for in single
cell organisms and in metazoa. Therefore sig-
nalling pathways that relay nutrient information to
cellular metabolism must have evolved early and
are highly conserved. Several lines of evidence
suggest that the IIS and TOR signalling network
primarily serves this function. In yeast, plants, and
in multicellular organisms TOR activity regulates
cellular metabolism in response to nutrients [77].
As outlined above, TOR regulates the major cel-
lular anabolic and catabolic pathways including
translation and autophagy. In contrast to higher
organisms, yeast cells lack clear homologues of the
IIS pathway such as PI3K, PTEN, and Akt. This
pathway appears to have evolved with the need to
communicate and coordinate growth in response
to the nutrient status in multicellular organisms.
IIS signalling is tightly linked to nutrients in ver-
tebrates and invertebrates. In Drosophila, starva-
tion produces small flies with fewer and smaller
cells and causes sterility in females. These star-

vation-induced phenotypes are very similar to 
the phenotype observed by reducing insulin sig-
nalling. Indeed, starvation reduces the expression
of two of the three insulin-like peptides in the main
neurosecretory cells thereby establishing a direct
link between nutrient availability and insulin
signalling in Drosophila [35]. 

In C. elegans, insulin signalling mediates star-
vation-induced dauer formation and longevity
thus providing us with another important and uni-
versal connection: the link between nutrient avail-
ability and lifespan. In all organisms studied thus
far, from yeast to primates, a reduction in the
amount of calorie intake by approximately 50%
significantly extends lifespan (30% in mammals)
[78]. In C. elegans, partial loss-of-function muta-
tions in genes encoding insulin signalling compo-
nents do not enter the dauer stage but develop to
adulthood. The lifespan of these adults is up to
three-fold higher than in the wild type [39]. Like
in the case of the dauer formation, extended life-
span is entirely dependent on the Daf-16 FOXO
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transcription factor. Given the universality of the
effect of caloric restriction on lifespan it was not
surprising that the connection between reduced
IIS in C. elegans and lifespan extension also holds
for other organisms. In Drosophila, chico and Inr
mutant flies live longer [79, 80]. Furthermore,
lifespan is extended in mice heterozygous for IGF-
1R or in mice lacking IGF-R1 function in adipose
tissues [81, 82]. Reduced insulin signalling does
not only reduce growth but also activates cellular

stress protective programmes that contribute to
the lifespan extension. Studies in Drosophila have
shown that caloric restriction extends lifespan not
by slowing down the ageing process but by
markedly delaying the onset of the ageing process
associated with an increased mortality rate [83].
There is obviously a great excitement in the
prospect of identifying amongst FOXO target
genes the downstream effectors that contribute to
the extension of lifespan. 

IIS and cancer

The central role of IIS and TOR as modula-
tors of cellular growth and the fact that the two tu-
mour suppressors PTEN and TSC1/2 are essen-
tial to control this pathway, highlights the impor-
tance of components in this pathway as potential
therapeutic targets in cancer therapy. The fact that
growth of cells is impaired in the same way and to
a similar extent by mutation in the genes coding
for the insulin receptor, PI3K, Akt, Rheb and TOR
suggests that each of these proteins is a key regu-
lator of cellular growth and thus a potential target
for therapeutic intervention. Apart from ongoing
programmes in various pharmaceutical and
biotech companies to develop inhibitors that block
the catalytic activity of PI3K or Akt, genetic exper-
iments in Drosophila suggest that targeting the in-
teraction between the PH domain of Akt and PIP3
at the membrane may be a sensible alternative. In
Drosophila, loss of PTEN function, a condition
found in many tumours, causes lethality presum-
ably because of increased levels of PIP3. This

PTEN associated lethality is rescued by a specific
mutation in dAkt that causes an amino acid substi-
tution in the PH domain and reduces the affinity
for PIP3 [84]. The most advanced strategy in tar-
geting the IIS for cancer therapy is the inhibition
of TOR activity by Rapamycin. This natural an-
tibiotic has been in clinical use as an immunosup-
pressant after organ transplantation without the
knowledge of its molecular target. Genetic exper-
iments in yeast showed that Rapamycin inhibits
TOR [85, 86]. Because of the genetic and bio-
chemical evidence that TOR is a central compo-
nent of the IIS pathway and a key regulator of
cellular growth, Rapamycin has been tested for its
effectiveness as an anti-cancer agent. In animal
models it has proven effective particularly in
PTEN deficient tumours. Clinical trials for the use
of Rapamycin in tumour therapy and in restenosis
in heart valves to prevent proliferation of endothe-
lial cells are well underway [87, 88].

Outlook

Recent progress in understanding the function
and regulation of IIS has come from surprisingly
separate fields and biological questions. The dif-
ferent research programmes range from the char-
acterisation of IIS as a clinically relevant pathway
in diabetes and growth disorders, to studying the
control of cellular growth in yeast and organ size
in Drosophila and studying ageing in C. elegans.
Results from each of these programmes have con-
tributed to our present understanding of IIS in a
unique way. It is expected that future progress in
the understanding of this disease relevant pathway
will continue to come from an integrated approach
involving model system genetics and vertebrate
models. It is likely that in the not too distant fu-
ture this knowledge will provide new therapies not
only for cancer, but also for type 2 diabetes. Fur-
thermore, it may also provide insight into how
lifespan can be extended. Not so much to reach
older age, but to postpone the onset of age-related
diseases such as cancer and neurodegenerative
disorder. 
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