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Summary

Haemato-oncology has made significant progress in re-
cent years, particularly through the development of in-
novative immunotherapeutic approaches such as CAR T
cell (chimeric antigen receptor T cell) and tumour-infiltrat-
ing lymphocyte therapies. Both methods use the patient’s
own immune system to treat cancer, but in different ways.
CAR T cell therapy is a form of immunotherapy in which
the patient’'s own T cells are genetically modified. CAR
T cell therapies have proven to be particularly effective
in haematological B-cell neoplasms, such as B-cell acute
lymphoblastic leukaemia (B-ALL) and B-cell lymphomas,
as well as in multiple myeloma. Tumour-infiltrating lympho-
cyte therapy, on the other hand, exploits the natural ability
of T cells to recognise tumour-associated antigens of tu-
mour cells with the T cell receptor. Tumour tissue is taken
from the patient then tumour-infiltrating lymphocytes are
isolated from it. These tumour-infiltrating lymphocytes are
expanded ex vivo to increase their number and activity.
This review discusses the principles of these innovative
therapies. Both therapies represent significant advances
in personalised cancer treatment and offer new hope for
our cancer patients.

Introduction

Cancer immunotherapy has significantly improved the out-
come of patients. In particular, the introduction of immune
checkpoint inhibitors has transformed the treatment of pa-
tients with solid cancers [1, 2]. However, only a limited
number of patients benefit from immune checkpoint inhi-
bition [3]. Cell therapies including genetically engineered
T cells expressing a chimeric antigen receptor (CAR) have
been used to treat cancer patients [4]. While such CAR T
cell therapies have been successfully used mainly to treat

ABBREVIATIONS

B-ALL: acute B-cell lymphoblastic leukaemia
CAR: chimeric antigen receptor

DLBCL: diffuse large B-cell lymphoma

scFv: single-chain variable fragment

TIL: tumour-infiltrating lymphocyte

patients with haematological B cell neoplasia, naturally oc-
curring tumour-infiltrating lymphocytes (TILs) have been
used for the treatment of solid cancers resistant to immune
checkpoint inhibitors [5]. Here, we give an overview of
these two emerging cell therapy approaches (figure 1) and
an outlook on current developments.

CART cell therapy

Cellular cancer therapies have been used to treat cancer
since the introduction of allogeneic stem cell transplanta-
tion by Don Thomas in the 1970s [6]. In the late 1980s, T
cells were genetically modified for the first time, equipping
them with a synthetic T cell receptor containing an intra-
cellular activation domain, the CD3( of the T cell receptor,
and an extracellular binding domain, usually a single-chain
variable fragment (scFv) of an antibody directed against a
surface molecule on the cancer cell [7] (figure 2). These
so-called chimeric antigen receptors (CARs) were further
developed, showing a good effect in mouse models but al-
so in patients with B-cell neoplasia [4]. Further develop-
ment led to the so-called second-generation CARs, which
also contained a co-stimulatory component in the intra-
cellular domain [4]. The intracellular domain of CD28 or
4-1BB (CD137) was primarily used for this purpose (fig-
ure 2). This enabled not only recognition of the target anti-
gen but also proliferation and persistence of these cells in
vivo. More recent developments include other co-stimula-
tory domains or synthetic proteins that lead to an increase
in specificity or efficiency as well as the possibility of bet-
ter control of their proliferation. In contrast to antibodies
targeting a tumour surface antigen such as the anti-CD20
antibody rituximab, CAR T cells can persist and lead to
long-term control by the immune system.

Haematological diseases

The treatment of B cell malignancies with cellular im-
munotherapies has become the standard of care for several
indications [4, 8]. Treatment is currently approved when
initial treatment has failed or in refractory cases (table 1).
In particular, CD19-positive B cell malignancies have been
successfully treated with CD19-specific CAR T cells [4,
8]. CAR T cell therapy was able to achieve durable remis-
sions in patients after multiple prior lines of therapy and
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Figure 1: lllustration of tumour-infiltrating lymphocyte (TIL) therapy (left) and CAR T cell therapy. In tumour-infiltrating lymphocyte therapy, T
cells are isolated from the tumour and expanded to >50 x 109 cells with IL-2, CD3 stimulation and allogeneic feeders. After lymphodepletion
with cyclophosphamide and fludarabine, the CD3-positive T cells are administered to the patient together with IL-2. CAR T cell therapy uses T
cells obtained by apheresis. The T cells are then genetically manipulated (usually with a lenti- or retroviral vector) so that they stably express a
CAR. They are then returned to the patient who has undergone lymphodepletion.

Figure 2: Demonstration of the genetic modification of T cells during CAR T cell production. Chimeric antigen receptors (CARs) are synthetic
proteins consisting of an intracellular part with different signalling domains and an antigen-binding domain that is commonly derived from an
antibody and expressed as a short-chain variable fragment (ScFv). CAR constructs are delivered to T cells after a leukapheresis and retrans-
fused in the lymphodepleted patient. TCR: T cell receptor. Created with BioRender.com.
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in some cases highly chemotherapy-refractory disease. Re-
cently, several studies have also shown an advantage of
CAR T cell therapy in patients with relapsed/refractory dif-
fuse large B-cell lymphoma compared to the standard of
care with chemotherapy followed by autologous stem cell
transplantation (diffuse large B-cell lymphoma) [4, 8]. For
example, in the ZUMA-7 study, axicabtagene-ciloleucel
(Axi-cel) was tested in 359 patients compared to standard
treatment [9]. In addition to the CD19-targeted CAR T cell
therapies, CAR T cells against the BCMA antigen have al-
so been established for the treatment of multiple myeloma
[10, 11]. Other targets on myeloma cells such as SLAMF-7
or G protein-coupled receptor, class C, group 5, member D
(GPRC5D) are currently being investigated [12].

Solid cancers

Several targets for solid tumours are currently under in-
vestigation. Early trials for HER2-positive cancers were
terminated due to severe toxicity on target tissues outside
the tumour (so-called on-target/off-tumour effects) [4, 8].
Major hurdles for CAR T cell therapy in solid malignan-
cies include defining the correct tumour antigen with spe-
cific, high-level expression in the tumour, difficulties in
trafficking T cells into the tumour microenvironment and
depletion of CAR T cells due to an immunosuppressive
tumour microenvironment [4, 8]. Nevertheless, some suc-
cessful studies have already been conducted. For exam-
ple, a promising response to claudin 18.2-targeted CAR T
cells has been shown in patients with advanced gastric or
pancreatic cancer [13]. An interesting approach was pur-
sued by Mackensen and colleagues. In addition to the use
of claudin 6-directed CAR T cells, a combination with
an RNA vaccine, which induces additional activation of
the CAR T cells with enhancement of a memory function,
was pursued. The study showed promising results in gas-
trointestinal and gynaecological malignancies [14]. In re-
cent months, several studies on the treatment of glioblas-
toma with CAR T cells have also been published [15, 16].
One by Bagley et al. used intrathecally administered CAR
T cells able to recognise two antigens on glioblastoma
cells, namely EGFR and IL13Ralpha2 [16]. The other by
Marcela Maus’ group used locally administered CAR T
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cells that recognise both the tumour-specific variant of
EGFRVIII and the wild-type variant of EGFR. Promising
results were also achieved with anti-GD2 CAR T cells
in paediatric gliomas, with complete remissions being in-
duced [17]. So far, however, the long-term results are very
sobering; they show that the principle also works in solid
tumours but that further work is needed to achieve longer-
term tumour control or eradication. Recently, the first ge-
netically engineered cell product for solid tumours has
been approved by the FDA; however it is not a CAR T cell
therapy but a T cell receptor T cell therapy targeting the
tumour antigen MAGE-A4. Afamitresgene autoleucel was
successfully tested in HLA-A*02:01-, 02-, 03- and 06-pos-
itive patients with metastatic synovial sarcoma [18].

Various additional measures can potentially increase the
efficiency of CAR T cells against solid tumours. For ex-
ample, to increase the specificity of the CAR construct, ge-
netic systems have been developed that can integrate two
or more tumour-transmitted signals [4, 8]. The synNOTCH
system, for example, uses the Notch signalling system to
mediate a two-step activation of CAR T cells [19]. The
binding of a first antigen induces the expression of the ac-
tivating CAR, which leads to the activation of the immune
cell. This two-step CAR T cell activation can significantly
increase the specificity of such a CAR T cell product. The
local release of cytokines that promote anti-tumour immu-
nity could improve the activation and efficacy of CAR T
cells [8]. For example, secretion of IL-12 could enhance
CD19-targeted CAR T cell therapy [20].

CART cell therapy for patients with autoimmune dis-
ease

Recently, several reports have been published describing a
role for CAR T cell therapy in patients with autoimmune
disease [21-27]. For example, patients with treatment-re-
fractory systemic lupus erythematosus (SLE) treated with
CD19-directed CAR T cells experienced significant im-
provement [21-24]. Also, CD19-targeted CAR T cell ther-
apies were used to treat patients with treatment-refractory
anti-synthetase syndrome [25, 26, 28] or patients with mul-
tiple sclerosis and myasthenia gravis [27, 29].

Table 1:

EMA-approved CAR T therapies for B cell malignancies and multiple myeloma (as of September 2024).

Product Kymriah Yescarta Tecartus Breyanzi Abecma Carvykti

Active sub- Tisagenlecleucel Axicabtagene-ciloleucel |Brexucabtagene au- Lisocabtagene maraleu- |ldecabtagene-vicleucel | Ciltacabtagenum au-
stance toleucel cel toleucelum
Manufacturer Novartis Kyte/Gilead Kyte/Gilead BMS/Celgene BMS/Celgene Janssen

Approval (EMA) | 2018 2018 2020 2022 2021 2022

Target CD19 CD19 CD19 CD19 BCMA BCMA
Costimulatory | 4-1BB CD28 CD28 4-1BB 4-1BB 4-1BB

signal

Indication(s)

r/r B-ALL (age <25, 3™
line); r/r DLBC (3" line);
r/r FL (3" line)

r/r DLBCL, HGBCL (2"
line*); PMBCL (3™ line);
r/r FL (4™ line)

r/r MCL (3 line; previ-
ous lines included BTK
inhibitor); r/r B-ALL (age
226, 31 line)

r/r DLBCL, PMBCL, HG-
BCL (2 line*); FL grade
3B (2" line*)

r/r MM (3 line**)

r/r MM (2" line***)

B-ALL: acute B-cell lymphoblastic leukaemia; DLBCL.: diffuse large B-cell ymphoma; FL: follicular lymphoma; HGBCL.: high-grade B-cell ymphoma; MCL: mantle cell lymphoma;

MM: multiple myeloma; PMBCL: primary mediastinal B-cell lymphoma; r/r: relapsed/refractory.

* 2" line if refractory or early relapse (within 12 months after first-line chemoimmunotherapy); 3 line if later.

**After at least 2 lines including an immunomodulator, proteasome inhibitor and anti-CD38 antibody.

*** After 1 line including an immunomodulator, proteasome inhibitor and refractory to lenalidomide.
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Side effects of CAR T cell therapy

CAR T cell therapy is considered a promising cancer treat-
ment but is associated with various side effects, some of
which can be life-threatening [30]. One of the most com-
mon side effects is cytokine release syndrome (CRS),
which can cause fever, low blood pressure and organ dys-
function. In addition, immune effector cell-associated neu-
rotoxicity syndrome (ICANS) can occur, a reversible but
potentially life-threatening complication that can manifest
with confusion, seizures and other neurological symptoms
[31]. In phase III trials of second-line therapy for patients
with diffuse large B-cell lymphoma, second-generation
CAR T cells showed that up to 90% of patients experi-
enced cytokine release syndrome and 60% neurological
side effects [32]. However, most of these side effects were
not severe and were manageable. Mild cytokine release
syndrome is treated with supportive measures such as an-
tipyretics and hydration. More severe cytokine release syn-
drome requires the use of IL-6R blocking antibodies and
immunosuppressants such as corticosteroids [33]. In se-
vere cases, patients may need to be transferred to the ICU
for circulatory monitoring and possibly oxygen or respira-
tory support. While IL-6 blockade is often effective in cy-
tokine release syndrome, it does not help in immune effec-
tor cell-associated neurotoxicity syndrome and may even
worsen the clinical picture. In addition to supportive mea-
sures, corticosteroids are used here, possibly in combina-
tion with anakinra. Improvements in CAR design could
potentially reduce these sometimes life-threatening side ef-
fects. It is known that CARs with a CD28 co-stimulatory
domain (e.g. axi-cel) proliferate faster and release higher
cytokine concentrations, which can lead to earlier and
more-severe cytokine release syndrome and immune ef-
fector cell-associated neurotoxicity syndrome compared to
4-1BB-containing CARs (e.g. tisa-cel) [31]. Initial studies
suggest that changes in the signalling domain of the CD3(
chain may improve the side effect profile. Medium-term
complications include cytopenias, infections and disease
relapse. In the latter case, the therapeutic options are very
limited and the prognosis is very poor. An increased risk of
secondary malignancies has been reported but further stud-
ies, in particular to better understand the association, are
warranted. Further challenges are the numerous resources
and logistics that such a therapy requires. As a result, the
costs are also very high.

Tumour-infiltrating lymphocytes

The use of cellular therapy with tumour-infiltrating lym-
phocytes has been practiced for several decades, but only
in specialised clinics [34-36]. The first patients were treat-
ed in the late 1980s [35]. In tumour-infiltrating lymphocyte
therapy, T cells are isolated from a sample of the primary
tumour or a metastasis [37]. By using IL-2, T cells are acti-
vated and multiplied. The treatment works in some patients
because tumour-specific T cell clones are present in the re-
sected lesion. These tumour-specific T cells have a T cell
receptor that recognises an antigen expressed by the tu-
mour. After lymphodepletion with cyclophosphamide and
fludarabine, the tumour-infiltrating lymphocyte product is
administered together with IL-2 [37]. Recently, a ran-
domised phase III study conducted in the Netherlands and
Denmark in patients with metastatic melanoma was pub-
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lished [S]. Here it was shown that after failure of a standard
immunotherapy with immune checkpoint inhibition
against PD-1, patients responded better to tumour-infil-
trating lymphocyte therapy than to a second-line immune
checkpoint inhibition with antibodies directed against CT-
LA-4. In addition, a commercial product, lifileucel, was re-
cently approved by the FDA in the USA for the treatment
of melanoma patients. We have recently conducted the
BaseTIL study, in which we treated 9 patients with ad-
vanced and heavily pre-treated melanoma [38]. In addition
to melanoma patients, in principle all patients with T cells
containing T cell receptors that recognise a tumour antigen
(often so-called neoantigens, which arise through new mu-
tations in cancer cells) can be treated. Patients with non-
small cell lung cancer (NSCLC) have also been successful-
ly treated with tumour-infiltrating lymphocytes [39]. Oth-
er immunogenic tumour entities such as cervical carcino-
ma can also potentially be treated with tumour-infiltrating
lymphocyte therapy. We have recently opened a trial for
patients with NSCLC at the University Hospital in Basel
(NCTO06455917).

Tumour-infiltrating lymphocyte therapies can of course al-
so be improved. For example, the T cells that recognise
tumour antigens can be separated from the other T cells
in the tumour. Thus, potentially much larger numbers of
T cells attacking the tumour can be isolated and amplified
[37, 40]. In order to obtain a more functional phenotype
of the T cells, other cytokines or stimulating antibodies
can also be added for in vitro expansion [40]. Tumour-in-
filtrating lymphocyte therapy can also be combined with
other substances. For example, tumour-infiltrating lym-
phocyte therapy has already been combined with immune
checkpoint inhibitors in various studies. In some cases, a
good response to this combination therapy was observed
in patients with NSCLC [41]. Other forms of IL-2 can
also be used. There are newer IL-2 preparations that can
specifically stimulate the cytotoxic T cells rather than the
regulatory T cells [42]. We are currently conducting the
BaseTIL-03M study in Basel, which is testing a combina-
tion of such a new IL-2 preparation together with tumour-
infiltrating lymphocyte therapy in melanoma patients
(NCTO05869539).

Side effects of tumour-infiltrating lymphocyte therapy

Cytopenias following lymphodepleting chemotherapy and
thus infections and bleeding complications are the most
common side effects of tumour-infiltrating lymphocyte
therapy [5]. Interleukin-2 therapy can also cause cytokine
release syndrome, depending on the dose and intensity of
IL-2 administration. In addition to cytokine release syn-
drome, IL-2 treatment can also lead to vascular leak syn-
drome, sometimes with pulmonary oedema [37]. It is
therefore important to consider the use of vasoactive sub-
stances at an early stage. As tumour-infiltrating lympho-
cyte therapy is a classic immunotherapy, immune-mediat-
ed side effects with various organ toxicities can also occur,
as with immune checkpoint inhibitor therapy [40]. These
often have to be treated with steroids, depending on which
organs are involved.
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Outlook

Emerging cellular therapies, such as CAR T cell therapy
and tumour-infiltrating lymphocyte therapy, have signifi-
cantly improved prognosis for certain patients. CAR T cell
therapies are now routinely used for haematological can-
cers, primarily B-cell lymphomas, and efforts are under-
way to expand CAR T cell treatments to additional tumour
types. Moreover, CAR T cell therapies may soon offer new
treatment options for selected patients with refractory au-
toimmune diseases and a multitude of studies are ongoing
[14]. Tumour-infiltrating lymphocyte therapy also holds
promise for inducing long-term remissions in patients with
immunogenic tumours. With the recent approval of a com-
mercial tumour-infiltrating lymphocyte product for treat-
ing melanoma in the United States, this treatment has be-
come accessible to a wider patient population. Trials are
currently evaluating its effectiveness for other tumour
types, and advancements in expanding tumour-specific T
cells are expected to enhance its efficacy.

The availability of these cellular therapies will place new
demands on treatment centres, as more patients are expect-
ed to seek these specialised options. While the costs of
these therapies, including associated treatments and poten-
tial complications, remain high, future logistical improve-
ments may help manage expenses. For example, some cen-
tres are already producing tumour-infiltrating lymphocyte
therapies in their own cleanroom facilities, which may
reduce production costs over time. Additionally, certain
preparatory and therapeutic steps may transition to outpa-
tient settings, making these therapies more accessible.
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