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Nitric oxide (NO) is a biologically active and
unstable agent formed from L-arginine amino acid
via a reaction catalysed by nitric oxide synthetase
(NOs) [1]. NO may enter a reaction with superox-
ide anion (O2) and this may lead to the formation of
peroxynitrite (ONOO). This newly formed mole-
cule oxidizes sulfhydryl groups and forms hydroxyl
radicals [2]. Since nitric oxide is a biologically active
agent, it takes part in several biological functions.
Therefore, release and inhibition of nitric oxide
vary depending on different factors. Inhibition of
nitric oxide by superoxide and peroxynitrite [3] and
nitric oxide’s causing zinc release from presynaptic
nerve ends [4] are examples of this variation.

It is reported that nitric oxide is released at
various levels during the development of such
parasitic infections as Toxoplasma gondii and Try-
panosoma cruzi, depending on the course of the in-
fection [5, 6]. Parallel to this, it is also stated that
nitric oxide is released in response to the infection
during the course of Toxoplasma gondii [7].

Melatonin, secreted from pineal gland, also
has an active role in clearing hydroxyl and peroxyl
radicals. Besides, melatonin stimulates several ox-
idative enzymes like glutathione peroxidase, glu-
tathione reductase and superoxide dysmutase [8].
It is also reported in some studies that melatonin
inhibits iNOS activity and reduces nitrite levels
[9–11].

It has also been reported that zinc, which is a
trace element important for normal function of the
body, plays an antioxidant role in the protection of
cells and that there is a significant correlation be-
tween plasma zinc levels and lipid peroxides [12].
It has also been put forward in other studies that
zinc suppresses iNOS expression in keratinocytes
stimulated by TNF-a and INF-g [13] and that a
zinc-deficient diet causes high iNOS expression in
the intestines after subcutaneous IL-1 a injection
[14]. 

When all this information is evaluated to-
gether it seems that there is no study investigating

Principles: This study aims at investigating how
zinc deficiency and pinealectomy affect nitric
oxide levels in rats infected by Toxoplasma gondii.

Methods: The study was conducted on a total
of 50 adult, male rats of Spraque-Dawley species.
The study groups were as follows: General, intact
control group (Group I, n = 10), infected control
group (Group II, n = 10), infected and zinc-defi-
cient group (Group III, n = 10), infected and
pinealectomized group (Group IV, n = 10), in-
fected, zinc-deficient and pinealectomized group
(Group V, n = 10). After the experiment the rats
were decapitated and levels of zinc, melatonin and
total nitrite were identified in the blood samples
collected. 

Results: The total nitrite levels in groups IV
and V were more than those in all other groups 

(p <0.01). The total nitrite levels in Group II were
also higher than those in Groups I and III (p <0.01).
Plasma zinc levels in the zinc-deficient group and
zinc-deficient and pinealectomized group were
lower than those in all other groups, while mela-
tonin levels were lower in infected pinealec-
tomized group (Group IV) and infected, zinc-de-
ficient and pinealectomized group (Group V) than
all others (p <0.01).

Conclusions: The present study shows that
plasma nitric oxide levels increase during Toxo-
plasma gondii infection, but this increase becomes
more apparent in the presence of melatonin defi-
ciency and is inhibited by zinc deficiency.
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Introduction



the relations among Toxoplasma gondii, melatonin,
zinc and nitric oxide. The aim of the present study
was to find out how zinc and melatonin deficiency

affect, either individually or in combination,
plasma nitric oxide levels in rats infected with Toxo-
plasma gondii. 
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Material and methods

This study was carried out at the Selcuk University
Experimental Medicine Research and Application Center
(SUDAM). All experiments were subject to approval by
the SUDAM Ethics Committee. Male, adult Spraque-
Dawley rats (weighing 210–260 g) were used in the study.
Rats were housed in plastic non-galvanised cages and fed
with standard pellet food and tap water (except for zinc-
deficient rats). The animals were kept in 12 h light /12 h
dark cycle (light from 07:00 to 19:00) at constant temper-
ature and humidity (21oC and 50%, respectively)

A total of 50 rats was divided into five groups as 10
rats for each group. 

T. gondii infection: Experimental animals (except for
those in the normal control group) were infected with RH
strain of toxoplasma gondii parasite by intraperitoneal in-
jection in 0.5 ml serum physiologic so that 10–12 parasites
would be seen in the area by light microscope. 

Group I (Intact controls, n = 10): These rats were non-
infected, non-pinealectomized and fed with normal diet
which including 97 mg zinc in each kg of diet for 4 weeks.

Group II (Infected controls, n = 10): These rats were in-
fected and fed with normal diet for 4 weeks.

Group III (Zinc deficient and infected rats, n = 10): These
rats were infected with T. gondii and fed with zinc deficient
pellets that included 0.65 ppm Zn in each gram of food
and bi-distilled water for 4 weeks in orfer to prevent un-
controlled zinc intake [15, 16].

Group IV (Melatonin deficient and infected, n = 10):
These rats were infected with T. gondii one week after
pinealectomy. Pinealectomy was done as described by
Kuszak and Rodin [17] under general anesthesia (Rompun
and Ketamin Hydrochlorur) and fed normal rat diet, in-
cluding 97 mg Zn in each kg of diet for 4 weeks.

Group V (Zinc and Melatonin deficient infected, n = 10):
Animals in this goup were infected one week after
pinealectomy and fed on a zinc-deficient diet and given bi-
distilled water for 4 weeks. 

After the 4-week experimental period all animals
were sacrificed between 9.00–10.00 am and blood samples
were collected to determine plasma zinc, melatonin, and
NO levels.

Assays

Zinc measurement: Blood samples were centrifuged
and the plasma was kept at –20 oC until analysis. Zinc was
determined by atomic absorption spectrophotometers
(Shimatsu ASC-600).

Melatonin measurement: Blood samples were cen-
trifuged for 10 minutes at 2700 rpm at 4 oC. Plasma mela-
tonin analyses were made by RIA (Melatonin J-125 RIS,
catalogue no: MEL 180). This method reliably detects
melatonin concentrations as low as 2 pg/ml. Cross reac-
tivity for melatonin is 100 percent. 

NO measurement: Serum nitric oxide levels were
measured as total nitrite with the spectrophotometric
Greiss reaction. This procedure was partly adapted from
the method described by Davidge et al. [18]. It was shown
that total nitrite is an index of endogenous nitric oxide pro-
duction [19, 20].

Statistics

The statistical analysis was performed using SPSS
statistical program. The results are expressed as mean ±
standard deviation. Kruskall-Wallis variance analysis was
used for comparison between groups and Mann Whitney
U test was applied to those with p <0.05. The level of sta-
tistical significance was set at p <0.01.

Results

Plasma zinc, melatonin and total nitrite levels
of the groups are presented in Table I. Plasma zinc
levels were significantly lower in the infected, zinc-
deficient group (Group III) and the infected,
pinealectomized, zinc-deficient group (Group V)
than all other groups (p <0.01). There was no sig-
nificant difference between Groups III and V in

terms of zinc levels. Plasma zinc levels of the in-
fected, pinealectomized group (Group IV) were
lower than those of the intact controls (Group I)
and infected controls (Group II) (p <0.01). Zinc
levels in Groups I and II were not different.

Plasma melatonin levels were lower in the in-
fected, pinealectomized group (Group IV) and the

Gruplar zinc (µg/dl) melatonin nitrite
(pg/ml) (µmol/L)

Group I (Control, n = 10) 124.7 ± 10.9a 17.5 ± 9.9a 16.3 ± 3d

Group II (Infected Control, n = 10) 120.2 ± 11.0a 18.1 ± 6.8a 33.6 ± 6.5b

Group III (Infected and Zinc Deficient, n = 10) 45.5 ± 9.5c 10.0 ± 3.4b 27.00 ± 6.5c

GroupIV (Infected and Pinealectomized, n = 10) 72.3 ± 8.0b 3.8 ± 1.5c 50.00 ± 11.7a

Group V (Infected and Zinc Deficient 45.0 ± 9.2c 2.9 ± 1.8c 51.10 ± 14.9a

and Pinealectomized, n = 10)

* Different letters in the same column show statistical significance (p <0.01).
Zinc: (a>b,c), (b>c)
Melatonin: (a>b, c) (b>c)
Nitrite: (a>b,c,d ), (b>c,d), (c>d)

Table 1

Plasma zinc,
melatonin and nitrite
levels of the control
and study groups.



infected, pinealectomized, zinc-deficient group
(Group V) than all other groups (p <0.01). There
was no significant difference between melatonin
levels of Groups IV and V. Plasma melatonin lev-
els in the infected, zinc-deficient group (Group III)
were lower than those in intact controls (Group I)
and infected controls (Group II), but there was no
difference between melatonin levels of the two.

As for total nitrite levels, these were higher in

the infected pinealectomized group (Group IV)
and the infected, pinealectomized and zinc-defi-
cient group (Group V) than all others (p <0.01).
Total nitrite levels of Groups IV and V were not
different. Total nitrite levels were higher in the in-
fected control group (Group II) than Groups I and
III (p <0.01) and in the infected, zinc-deficient
group (Group III) than Group I (p <0.01). 
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Discussion

When the findings obtained at the end of the
experiment are evaluated with particular regard to
nitric oxide (NO), it is seen that total nitrite levels
in the infected controls (Group II) were higher
than in the intact control group where no applica-
tion was made (Group I) as well as in the infected,
zinc-deficient group (Group III). This finding
demonstrates that Toxoplasma gondii infection
causes an increase in nitric oxide levels. Results of
studies investigating how nitric oxide levels are af-
fected in T. gondii infection are inconsistent [5, 6].
It was reported in a study that nitric oxide levels
decreased in T. gondii infection [6]. Similarly,
Seabra et al. [21] mentioned a partial inhibition in
nitric oxide produced by active macrophages in
Toxoplasma gondii infection. It is claimed in the con-
cerned study that the decrease in nitric oxide re-
sulted from the deactivation of macrophages. The
increased levels of nitric oxide in T. gondii infec-
tion, arrived at in our study, are inconsistent with
the findings of the mentioned researchers. How-
ever, Brunet [22] stated that nitric oxide levels in-
crease in Toxoplasma infection and this increase is
accepted as a physiological result of the immune
response to Toxoplasma infection. The protective
role of the increase in nitric oxide levels is noted in
taking Toxoplasma infection under control, partic-
ularly in the chronic phase of the infection [23]. It
is reported that the increase in nitric oxide against
intra-cellular infection is necessary to control the
host in toxoplasmosis [24]. Similarly, many re-
searchers reported an increase in nitric oxide lev-
els in T. gondii infection [7, 25–27]. Results ob-
tained by the above-mentioned researchers are
parallel to the increased nitric oxide levels we ob-
tained in the infected control group. 

Nitric oxide levels in the infected and zinc-de-
ficient group (Group III) were higher than those
in the control group, but lower than all other in-
fected groups in our study. Our medline search did
not reveal any study that addressed zinc, nitric
oxide and toxoplasma infection together. However,
there were studies investigating the relations be-
tween zinc and nitric oxide irrespective of infec-
tion and the results of these studies pointed to a
positive relation between zinc and nitric oxide [28,
29]. In fact it is possible that there is a mutual in-
teraction between zinc and nitric oxide. An im-
portant reason that creates this possibility is that

while there is a decrease in nitric oxide activity as
a result of zinc deficiency [30], nitric oxide leads to
zinc release from presynaptic nerve endings and
the zinc that is released affects nitric oxide activity
[4]. As a result, the finding we obtained shows that
a zinc-deficient diet inhibited the nitric oxide pro-
duction that is induced by T. gondii infection. It was
shown that deficiency of zinc, an important trace
element, in the diet caused reductions in body
weight [31]. Likewise, we compared weight
changes of experimental animals in the part of this
study that has not been published yet. Here we ob-
served that zinc deficiency led to a significant
weight loss in animals. Weight loss brought about
by zinc deficiency in animals will affect the im-
mune system negatively.

There was a significant increase in nitric oxide
levels in the infected, pinealectomized group
(Group IV). Likewise it was reported in studies
investigating the relation between melatonin and
nitric oxide that nitric oxide production was in-
hibited depending on melatonin administration 
at physiological concentrations [32] and that this
effect caused by melatonin was seen not only in 
in vivo studies but also in in vitro studies [33]. It is
stated that this fall in nitric oxide levels affected by
melatonin application results from the inhibition
of iNOS expression [9, 34–36]. These results ob-
tained by other researchers are supportive of the
results we obtained. In addition, nitric oxide levels
in this group (Group IV) were significantly higher
than those in the infected control group (Group II)
and infected, zinc-deficient group (Group III).
These results demonstrate that the increase in ni-
tric oxide levels seen in T. gondii infection is fur-
ther intensified by melatonin deficiency. 

Nitric oxide levels of the infected, pinealec-
tomized and zinc-deficient group (Group V) were
higher than those in Groups I, II and III, but not
different than those in Group IV. These findings
suggest that zinc deficiency cannot inhibit the in-
creased nitric oxide production caused by pine-
alectomy in addition to infection. Zinc deficiency
in the diet leads to a decrease in T cells, particu-
larly in TH1 functions and thereby in the produc-
tion of IFN-gamma and IL-2, products of TH1.
Thus, it unfavourably influences cell-mediated
immunity and lytic activity of NK cells [37]. Mela-
tonin, the major neuro-hormone secreted by the



pineal gland, affects cellular immunity both di-
rectly and indirectly [38]. Following pinealectomy,
significant decreases are found in plasma zinc,
zinc-dependent hormone thymuline, IL-2, IFN-
gamma, T cell count and NK cytotoxic cell activ-
ity and these are corrected with pharmacological
doses of melatonin administration [39, 40]. Mela-
tonin also controls secretion of gamma interferon,
which plays a key role in immune system activity,
and IL-2, which is secreted from TH1 lympho-
cytes [40]. It seems that zinc is an essential media-
tor in all effects that melatonin exercises on the im-
mune system [41].

When the findings of the study are assessed as
a whole, it is seen that T. gondii infection and mela-

tonin deficiency together with T. gondii infection
lead to an increase in nitric oxide production, but
pinealectomy applied parallel to the infection is
more effective in this increase. Another important
finding of our study is that increased nitric oxide
production in T. gondii infection is inhibited by a
zinc-deficient diet. 
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Erratum

In the following article the name of the second
author J. Al Maiwenn has not been correctly
printed:

Sendi P, Maiwenn J Al, Battegay M. Optimis-
ing the performance of an outpatient setting. Swiss
Med Wkly 2004;134:44–9.

The name should be printed as Maiwenn J Al.
(instead of J. Al Maiwenn). We apologize for the
mistake.
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