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Summary
STUDY AIMS: Although non-toxigenic Vibrio cholerae lack
the ctxAB genes encoding cholera toxin, they can cause
diarrhoeal disease and outbreaks in humans. In Switzer-
land, V. cholerae is a notifiable pathogen and all clinical
isolates are analysed at the National Reference Labora-
tory for Enteropathogenic Bacteria and Listeria. Up to 20
infections are reported annually. In this study, we investi-
gated the population structure and genetic characteristics
of non-toxigenic V. cholerae isolates collected over five
years.

METHODS: V. cholerae isolates were serotyped and non-
toxigenic isolates identified using a ctxA-specific PCR.
Following Illumina whole-genome sequencing, genome
assemblies were screened for virulence and antibiotic re-
sistance genes. Phylogenetic analyses were performed in
the context of 965 publicly available V. cholerae genomes.

RESULTS: Out of 33 V. cholerae infections reported be-
tween January 2017 and January 2022 in Switzerland, 31
were caused by ctxA-negative isolates. These non-toxi-
genic isolates originated from gastrointestinal (n = 29) or
extraintestinal (n = 2) sites. They were phylogenetically di-
verse and belonged to 29 distinct sequence types. Two
isolates were allocated to the lineage L3b, a ctxAB-nega-
tive but tcpA-positive clade previously associated with re-
gional outbreaks. The remaining 29 isolates were placed
in lineage L4, which is associated with environmental
strains. Genes or mutations associated with reduced sus-
ceptibility to the first-line antibiotics fluoroquinolones and
tetracyclines were identified in 11 and 3 isolates, respec-
tively. One isolate was predicted to be multidrug resistant.

CONCLUSIONS: V. cholerae infections in Switzerland are
rare and predominantly caused by lowly virulent
ctxAB-negative and tcpA-negative strains. As V. cholerae
is not endemic in Switzerland, cases are assumed to be
acquired predominantly during travel. This assumption
was supported by the phylogenetic diversity of the
analysed isolates.

Introduction

Vibrio cholerae causes the severe diarrhoeal disease
cholera and has been responsible for seven major pan-
demics in the past two centuries. Although improved sani-
tation and hygiene have reduced the threat of cholera [1], it
is still endemic in some countries and causes 95,000 deaths
per year globally [2]. The WHO has reported an increase in
cholera cases since 2021, mainly in Africa and the Eastern
Mediterranean [3].

In routine diagnostics, V. cholerae isolates are usually ini-
tially characterised by serotyping, with pandemic V.
cholerae belonging to O-antigen types O1 or O139. For
epidemiological surveillance, serotype O1 isolates are fur-
ther differentiated into biotypes El Tor and classical.
Whole-genome sequencing (WGS) enables more accurate
tracking of cholera outbreaks and transmission routes [4,
5]. Based on their genetic phylogeny, V. cholerae strains
were divided into 9 major lineages (L1–L9) [6, 7]. Lineage
L1 is assumed to have caused the first six pandemics and
comprises serotype O1 classical isolates. Lineage L2 is
responsible for the ongoing 7th pandemic and comprises
serotype O1 El Tor and O139 isolates. Lineages L3, L5, L6
and L8 (serotype O1 El Tor) cause sporadic cholera cas-
es in confined geographical regions [6, 7]. The L4 and L7
lineages comprise environmental isolates that rarely cause
human disease [6]. Lineage L9 was recently described as
intermediate between L1 and L4 [7].

The key virulence factors of pandemic V. cholerae strains
are the cholera toxin and the toxin-coregulated pilus
(TCP). The cholera toxin is a heat-labile enterotoxin and
triggers the characteristic rice water stool in infected pa-
tients [8]. It is encoded by the ctxA and ctxB genes, which
are located on the mobile prophage CTX. TCP plays a crit-
ical role in the colonisation of the host intestine and addi-
tionally acts as a CTXφ phage receptor [9]. It is encoded by
the tcp gene cluster located on Vibrio Pathogenicity Island
I (VPI-1) [10]. V. cholerae isolates often contain addition-
al genomic regions enriched with virulence genes such as
Vibrio Pathogenicity Island II (VPI-2) and Vibrio Seventh
Pandemic Island I and II (VSP-1 and VSP-2).

While cholera outbreaks are mainly the result of poor hy-
giene conditions involving transmission via the faecal-oral
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route, V. cholerae is also a natural inhabitant of aquatic
ecosystems. Although most environmental V. cholerae iso-
lates lack the ctxAB genes, they can cause mild human
infections upon exposure to water or the consumption of
seafood [11, 12]. Among ctxAB-negative (non-toxigenic)
V. cholerae, tcpA-positive strains are associated with an
increased risk of human infection and have occasionally
been linked to local regional outbreaks, including a recent
seafood-borne diarrhoea outbreak in China [13–19].

Besides causing mild disease, non-toxigenic V. cholerae
are a concern for public health as they may transfer antibi-
otic resistance to toxigenic strains [20] or acquire CTXφ
and transform into highly virulent toxigenic strains [13,
21, 22]. To date, few studies have taken a phylogenomic
approach to investigating non-toxigenic V. cholerae. Al-
though V. cholerae is not endemic in Switzerland, human
infections are reported each year [23]. In this study, we
genetically characterised all non-toxigenic V. cholerae iso-
lates from human patients in Switzerland received between
January 2017 and January 2022 at the National Reference
Laboratory for Enteropathogenic Bacteria and Listeria
(NENT).

Materials and methods

Patients

Cholera is a notifiable disease in Switzerland and all clin-
ical V. cholerae isolates from inpatients and outpatients
must be sent to the National Reference Laboratory for En-
teropathogenic Bacteria and Listeria. Metadata available
for this cross-sectional study included the patients’ age,
sex and place of residence. There were no data on the
patients’ travel history or symptoms. Institutional review
board approval or informed consent was not required as
this analysis was conducted as part of the tasks and duties
of the NENT. A study protocol was not registered or pub-
lished.

Bacterial isolates

Pure cultures were obtained on thiosulphate citrate bile
salts sucrose (TCBS) agar. Colonies growing in yellow, flat
to slightly convex colonies with a diameter of 2–3 mm on
TCBS agar were considered V. cholerae candidates. Us-
ing ISO17025-accredited methods, these were further test-
ed for the ctxA gene by PCR and O-antigen-serotyped with
antisera (Denka Seiken Co.) against O1 El Tor Inaba, O1
El Tor Ogawa and O139.

Isolates with negative agglutination test results were con-
sidered as non-O1 non-O139 V. cholerae. The ctxA PCR
reaction was performed according to “CDC Chapter 7:
Detection of Cholera Toxin” (pp 62–88) with CTX2 and
CTX3 as primers. The temperature programme was adapt-
ed as follows: initial denaturation at 94 °C for 15 minutes,
30 cycles of denaturation at 94 °C for 30 seconds, anneal-
ing at 60 °C for 30 seconds and elongation at 72 °C for 30
seconds. The final elongation was done at 72 °C for 7 min-
utes.

Whole-genome sequencing and genomic analyses

Genomic DNA was extracted using the DNeasy blood and
tissue kit (Qiagen). Sequencing libraries were prepared

with the Nextera DNA flex library preparation kit (Illumi-
na) and sequenced on the Illumina MiniSeq platform (2 
× 150 bp). Paired-end Illumina reads were trimmed with 
fastp v0.22.0 [24] and assembled using SPAdes v3.14.1 
[25] implemented in the pipeline shovill 1.0.9 
(https://github.com/tseemann/shovill). For quality control, 
assemblies were passed to CheckM v1.2.2 [26] using the 
lineage_wf workflow. For comparison, we downloaded 
965 publicly available assemblies of global V. cholerae iso-
lates from the National Center for Biotechnology Informa-
tion (NCBI) (table S1, available for download as a separate 
file at https://doi.org/10.57187/s.3437). The downloaded 
genomes reflect the collection described by Wang et al. in 
2020 [7] except for three assemblies that were flagged as 
low quality by NCBI.

Core genome alignments were generated with parsnp 1.5.6 
[27,28]. For analyses including global isolates the 
“xtrafast” option was used. The generated alignments were 
used for construction of phylogenetic trees using IQ-Tree 
v2.2.0.3 with the generalised time-reversible (GTR) model 
and gamma distribution with 1000 bootstraps [29]. Trees 
were visualised using iTOL V5 [30] and annotated using 
Inkscape 1.2 [31]. SNP distances were determined from 
the core genome alignment using snp-dists v0.8.2 
(https://github.com/tseemann/snp-dists). Lineages were 
defined based on phylogenetic clustering with isolates of 
known lineage affiliations. Multi-locus sequence types 
(MLST) were determined using the PubMLST suite and 
novel alleles and profiles submitted [32].

In silico O-antigen serotypes were determined with 
VicPred [33] to complement the laboratory-based results. 
Assemblies were annotated using Prokka v1.13 [34]. Vir-
ulence genes were detected using ABRicate V1.0.1 
(https://github.com/tseemann/abricate) in combination 
with VFDB set B [35] (minimum coverage 70%; identity 
70%). Using VicPred [33], we examined for the presence 
of virulence-associated islands (VPI-1, VPI-2, VSP-1 and 
VSP-2). A virulence island was considered present when 
at least 80% of the genes were identified and partly present 
when 50– 80% of the genes were identified. Genes as-
sociated with antibiotic resistance were identified using 
AMRfinder 3.11.2 [36] and ABRicate in combination with 
the ResFinder database (minimum coverage 50%, identity 
90%) [37]. The presence of two mutations associated with 
fluoroquinolone resistance (gyrA S83I and parC 
S85L)[38] was manually investigated using CLC Main 
Workbench 22.0.2. Unless stated otherwise, default para-
meters were used for all analyses.

Results

Non-toxigenic V. cholerae isolates from Switzerland 
belong to the L3b and L4 lineages

Between January 2017 and January 2022, a total of 33 V. 
cholerae isolates were received at the NENT, of which 31 
tested PCR-negative for ctxA. The 31 non-toxigenic iso-
lates originated from human faeces (n = 28), urine (n = 
1; isolate N18-0491), blood (n = 1; isolate N22-0171) and 
an unknown clinical sample (n = 1). The annual num-
ber of reported infections varied from 6 to 19 between 
2017 and 2019 but dropped to one infection in 2020 (table 
S1) when international travel was restricted due to the
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COVID-19 pandemic. Although the patients’ travel history
was not available, these data suggest that most cases were
travel-acquired. Agglutination tests identified one isolate
(N18-1211) as O1 El Tor Inaba, two isolates (N18-1982
and N18-1603) as O1 El Tor Ogawa and 28 isolates as non-
O1/non-O139.

Whole-genome sequencing revealed substantial diversity,
with all non-O1 isolates (n = 28) differing by at least
7215 pairwise SNPs in a core genome alignment. The
two most closely related isolates (O1 isolates N18-1211
and N18-1982) differed by 1271 SNPs, suggesting that
all isolates are epidemiologically unrelated. Multi-locus
sequence typing assigned the isolates to 29 different se-
quence types (STs), of which 16 were novel. Only two
STs occurred more than once: ST579 (comprising two O1
isolates) and ST1378 (comprising both O5 isolates) (table
S1).

To determine lineage affiliations, a phylogenetic analysis
was performed in the context of 965 additional V. cholerae
isolates from global collections (figure 1). Of the 31 Swiss
isolates, all non-O1 isolates (n = 28) and one O1 El Tor iso-
late belonged to lineage L4, a heterogeneous lineage lack-
ing ctxAB and tcpA and associated with environmental and
lowly virulent clinical isolates [6]. The remaining two iso-

lates (N18-1211 and N18-1982, both O1 ST579) grouped
in the L3b lineage. L3b is a subclade of L3 recently asso-
ciated with a diarrhoeal epidemic of non-toxigenic strains
in China [7] and otherwise comprised isolates from Asia
or Latin America. The closest phylogenetic neighbours
of N18-1211 and N18-1982 were collected in Russia and
Turkmenistan (see figure S1 in the appendix). In silico
serotyping with VicPred confirmed the O1 El Tor type of
three isolates (figure 2). The most frequent predicted O-
antigen type was O8 (n = 6). Other predicted types includ-
ed O3, O4, O5, O7, O14, O37 and O49.

No indications of a recent CTX prophage loss

All global and Swiss V. cholerae genomes were screened
for the presence of virulence genes. Importantly, all Swiss
isolates belonged to branches consisting predominantly or
exclusively of ctxAB-negative isolates (figure 1), suggest-
ing that the absence of ctxAB was unlikely to be due to
a potential (partial) loss of the CTX prophage during pa-
tient colonisation or subculturing in the laboratory. The tc-
pA gene (encoding a toxin-coregulated pilus subunit) was
identified in three isolates: in both L3b isolates (N18-1211
and N18-1982) and one L4 isolate (N19-2973). Further,
the two L3b isolates were the only isolates carrying the

Figure 1: Maximum-likelihood phylogenetic tree of 31 Swiss and 965 global V. cholerae isolates. Swiss isolates are indicated by red lines. The
presence of ctxA (green), ctxB (blue) and tcpA (purple) is labelled (inner ring). The outer ring denotes lineage affiliations (L1–L9). The tree is
based on 32,851 polymorphic sites identified in a multi-alignment-derived 0.45 Mbp core genome. The scale bar indicates the number of sub-
stitutions per site in the core genome alignment. The tree was visualised using iTOL.
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CTX prophage-associated genes zot (an enterotoxin af-
fecting intestinal tight junctions [39]) and ace (an entero-
toxin causing fluid secretion in rabbit ileal loops [40])
(figure 2), suggesting the presence of a putative CTXφ
precursor, as previously reported for L3b isolates [7]. The
haemolysin gene hlyA was identified in all 31 isolates. The
rtxA (cytotoxin) and nanH (neuraminidase) genes were
found in 25 and 17 of the Swiss isolates, respectively. The
toxA gene, which has been associated with environmental
strains [41], was identified in five L4 isolates. The two L3b
isolates contained the complete VPI-1 island (comprising
tcpA). Other virulence pathogenicity islands or fragments
thereof were identified in five L4 isolates, including the
bloodstream isolate N22-0171, which carried fragments of
VSP-2.

Several isolates contain genes associated with tetracy-
cline and quinolone resistance

All Swiss isolates were screened for genes and mutations
associated with decreased antibiotic susceptibility with a
focus on the three first-line antibiotics doxycycline (a tetra-
cycline), ciprofloxacin (a quinolone) and azithromycin (a
macrolide). The two screening approaches used (AM-
Rfinder and ResFinder) yielded identical results, except for
one resistance gene (varG) that was not included in the
ResFinder database. Three isolates harboured tet genes in-
dicating potential tetracycline resistance (figure 2). Fur-
ther, six isolates contained qnrVC4 or qnrVC5, which are
associated with ciprofloxacin resistance when occurring
in combination with target mutations in gyrA and parC
[38], as observed in one of the six isolates (N17-0919).

An additional five isolates had mutations in quinolone-
resistance determining regions of parC or gyrA but did
not carry qnrVC genes. Isolate N19-1763 was identified
as a potential multidrug-resistant strain, harbouring genes
or mutations associated with resistance against aminogly-
cosides, beta-lactams, macrolides, phenicols, quinolones,
sulphonamides, tetracycline and trimethoprim.

Discussion

Although saline aquatic environments – the natural habitat
of V. cholerae – are absent in Switzerland, up to 20 infec-
tions caused by mostly ctxA-negative strains are reported
annually. Because infections with non-toxigenic strains are
usually mild and patients may not seek healthcare, the ac-
tual number of infections is likely higher. We assume that
most cases are associated with travel abroad. This is sup-
ported by our investigation of 31 isolates, which demon-
strated high genetic diversity suggesting distinct origins. In
addition, the number of reported infections dropped to on-
ly one infection in 2020 when international travel was re-
stricted. Notably, although V. cholerae occurs in the North
Sea, a study of 836 V. cholerae infections in the UK could
link >99% of the (mostly non-toxigenic) cases with avail-
able metadata to travel abroad [42, 43]. However conta-
minated imported seafood cannot be excluded as a poten-
tial infection source. Prevalence studies in Switzerland and
neighbouring countries found non-toxigenic V. cholerae in
0.6% to 6.3% of the examined seafood products [44–47].

In line with other studies on non-toxigenic V. cholerae
in Europe [48, 49], our isolates were phylogenetically di-
verse. Half of the isolates belonged to previously unknown

Figure 2: Maximum-likelihood phylogenetic tree and genetic characteristics of 31 Swiss non-toxigenic V. cholerae isolates. Lineage affiliations
are indicated by the yellow (L4) or red (L3b) background. In silico-predicted O-antigen serotypes and the presence of virulence islands (filled
square: complete presence; half-filled: partial presence [>50% of the genes]), virulence genes and antimicrobial resistance determinants are
shown. The tree is based on 177,987 polymorphic sites identified in a multi-alignment-derived 2.8 Mbp core genome and was visualised using
iTOL. The scale bar indicates the number of substitutions per site in the core genome alignment. AGly: aminoglycosides; Bla: beta-lactams;
Flq: fluoroquinolones; MLS: macrolide-lincosamide-streptogramin; O1-EO: O1 EL Tor Ogawa; O1-EI: O1 El Tor Inaba; Phe: phenicols; PM:
polymyxines; Sul: sulphonamides; Tet: tetracyclines; Tmt: trimethoprim.
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sequence types, suggesting that the diversity of non-toxi-
genic strainsis largely unexplored. Further, these results in-
dicate diverse infection sources. This contrasts with a re-
cent genomic analysis of non-toxigenic V. cholerae from
patients in China, which found that most of the 104 investi-
gated ctxAB-negative isolates belonged to few phylogenet-
ic SNP clusters and were epidemiologically linked [7, 13].
The source of this outbreak could be traced to aquatic food
products. Whereas most of these outbreak-associated iso-
lates were tcpA-positive and belonged to lineages L3b and
L9, most Swiss isolates investigated here belonged to the
environment-associated lineage L4. Among the Swiss iso-
lates, the tcpA gene was only detected in one L4 and two
L3b isolates, which did not belong to the Chinese outbreak
clusters.

In recent decades, drug-resistant V. cholerae have
emerged,with resistance patterns fluctuating with changing
epidemiology and antibiotic use [20, 50–54]. Although an-
tibiotics are not indicated for mild cholera infections, an-
timicrobial resistance genes have also been acquired by
non-toxigenic strains [7, 55–57], possibly driven by inad-
equate treatment of patients or the increasing use of an-
tibiotics in aquaculture [58, 59]. In our study, 10% of the
isolates carried determinants associated with reduced sus-
ceptibility to both tetracycline and fluoroquinolone, two
important first-line antibiotics. Information on the patients’
treatment upon disease diagnosis was unavailable, nor was
their travel history, limiting the interpretation of our find-
ings.

In conclusion, our study provides insights into the preva-
lence and characteristics of non-toxigenic V. cholerae in
Switzerland. Rising sea temperatures, intensified aquacul-
ture production and global trade may lead to an increasing
prevalence of V. cholerae infections in the future [60–62].
Continuous monitoring of the pathogen and antimicrobial
resistance rates is important for informing public health
management.

Data availability

Assemblies and read data were deposited in the NCBI
repository under BioProject accession number PRJ-
NA997795. Individual accession numbers are listed in
table S1 (available for download as a separate file at
https://doi.org/10.57187/s.3437).
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Appendix

Figure S1: Maximum-likelihood phylogenetic tree of 122 L3b isolates. The country of isolation is indicated (outer ring). The tree is based on
39,702 polymorphic sites identified in a multi-alignment-derived 3.1 Mbp core genome and was visualised using iTOL. The scale bar indicates
the number of substitutions per site in the core genome alignment.
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