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Use of statistical methods in medical research
began more than 150 years ago. Florence Nightin-
gale worked to improve the methods of construct-
ing mortality tables. She was a fellow of the Royal
Statistical Society and an honorary member of the
American Statistical Association. John Snow ap-
plied simple statistical methods about the same
time to support his theory that contaminated water
was the source of a London cholera epidemic in
1854.

Statistics is now an integral part of most med-
ical research projects. Major journals reporting
research employ either a statistical adviser or use
referees with statistical expertise when needed.
These safeguards usually detect and sometimes
make possible rectification of statistical deficien-
cies, but this is little more than a fire fighting ex-
ercise that can be avoided if authors seek statisti-
cal help both before the start of a research project
and when interpreting data.

Both medical science and statistics have devel-
oped to a stage where there are a dwindling num-
ber of people with expertise in both areas, although
most undergraduate medical courses include some
training in elementary statistics and a few medical

research workers are skilled users of quite sophis-
ticated statistical techniques – usually ones rele-
vant to their particular field of interest (eg, meth-
ods for analysing survival data). However, the
statistical abilities of many doing clinical trials or
laboratory experiments run to little more than
carrying out simple procedures like a t-test, a
Mann-Whitney test or a chi-squared test or per-
haps a simple analysis of variance to produce the
all-too-often-misunderstood P-values; they may
also compute and quote standard deviations, stan-
dard errors, confidence intervals, correlation co-
efficients or fit a regression line. 

In an appropriate context such calculations are
useful, but they represent only the tip of a statisti-
cal iceberg. Sadly, inappropriate use of even sim-
ple methods sometimes occurs because the user
has not understood the meaning or relevance of
concepts like P-values, significance differences,
confidence intervals. Useful as these tools often are
at the preliminary stage of data analysis an armoury
of more sophisticated statistical concepts must
often be called upon to extract maximum relevant
information from data.

Misuse or misunderstanding of even simple

The role of statistics in medical research starts
at the planning stage of a clinical trial or labora-
tory experiment to establish the design and size of
an experiment that will ensure a good prospect of
detecting effects of clinical or scientific interest.
Statistics is again used during the analysis of data
(sample data) to make inferences valid in a wider
population. 

In simple situations computation of simple
quantities such as P-values, confidence intervals,
standard deviations, standard errors or application
of some standard parametric or nonparametric
tests may suffice. Despite their wide use even these
simple notions are sometimes misunderstood or
misinterpreted by research workers in other disci-
plines who have only a limited knowledge of sta-
tistics.

More sophisticated research projects often

need advanced statistical methods including the
formulation and testing of mathematical models to
make relevant inferences from observed data. Such
advanced methods should only be applied with a
clear understanding both of their purposes and the
implication of any conclusions based upon their
use.

Close collaboration between statisticians,
whether professionals in that field or medical re-
search workers with a sound statistical back-
ground, and other members of a research team is
needed to ensure a seamless integration of the sta-
tistical elements into the reporting and discussion
of research outcomes. Some suggestions are made
as to how that collaboration is best achieved.
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concepts is often accompanied by evidence that
statistical advice has not been sought at the plan-
ning stage. A consequence may be that resources
are wasted either because the trial or experiment is
too small to have any hope of determining whether
or not a potentially important treatment response
occurs, or alternatively waste may result from car-
rying out a larger trial than is needed to resolve the
point at issue. Statisticians can give useful guidance
on optimum size and design. 

I use a simple example in the next two sections
to illustrate some of the strengths and limitations
of simple statistical concepts and discuss some
common misconceptions. The role of more ad-
vanced statistical concepts in medical research is
considered briefly in the penultimate section and
in the final section some comments are made on
collaboration between statisticians and medical re-
search workers. 

Basic statistical concepts

Statistics has two roles in laboratory experiments
and clinical trials
– The first is at the planning stage to ensure

sound experimental design and optimal use of
resources. Adequate statistical analysis of ex-
perimental data is usually only possible if the
design is statistically sound. 

– The second is in the analysis of results. Asser-
tions based on experimental data need to be
backed by a relevant statistical analysis. Even
for pilot or for retrospective studies some
statistical analysis is usually needed.

Papers are often submitted that give inade-
quate statistical analyses or present results of these
in an inappropriate way. This may be due to poor
collaboration between research teams and statisti-
cians resulting in either (i) a statistician perform-
ing inadequate or even inappropriate analyses be-
cause he or she is not clear about the questions the
research is designed to answer or (ii) the statistical
content of the paper is potentially confusing or
even misleading because the authors do not fully
understand some of the statistical techniques being
used.

The review by Murray [1] covers many aspects
of the role of statistics in research methodology
and useful guidelines for presenting statistical in-
formation are given by the same author in [2]. 

The technicalities of carrying out any but the
simplest statistical analyses are mainly a matter for
a trained statistician and computations may be
catered for by good statistical software, but under-
standing the meaning of statistical aspects of
reported results is important both for those con-
ducting research and for readers of published
reports.

Cynics sometimes claim statistics can prove
anything. In fact, statistics can prove nothing. At a
basic level it provides rational measures to reflect
the degree of uncertainty associated with data-
based assertions. At a more sophisticated level it
provides indicators for how well data conform to
some specified mathematical model, eg, tests
goodness of fit to the model, and when appropri-
ate provides estimates of certain constants or pa-
rameters in a model. 

A simple hypothetical example explains some
basic concepts. Suppose some standard surgical
procedure gives rise to a post-operative complica-
tion in less than 10% of all cases and it is suggested
that a procedural modification might reduce the
incidence rate of complications. A simple clinical
trial might be proposed in circumstances where a
large number of cases may be expected over a rea-
sonable time period, eg, about 1000 cases per year.
Calling the standard procedure A and the modi-
fied procedure B, random allocation of patients to
procedures is appropriate to avoid bias. Suppose
that 914 patients are involved and the randomisa-
tion procedure results in 435 being subjected to
procedure A and 479 to procedure B. Here, before
the trial starts a statistician is assumed to have only
a minor role of recommending randomisation, but
as explained in the next section statisticians may
also have to advise on the appropriate size (eg,
number of units or cases) needed to ensure that
useful inferences can be made. The statistician
might also suggest possible alternative designs
involving, say, matching of patients to avoid the
potential influence on the complication rate of
factors other than the procedure used. 

Suppose that the hypothetical trial comparing
procedures A and B gave the results in Table 1.

From these data we calculate the rate of com-
plications for procedure A as a percentage, ie,
(36/435)�100 = 8.28%, and similarly that for pro-
cedure B is 5.01%. On this evidence, intuition sug-
gests that the long-term rate is probably lower for
procedure B. But is the observed decrease of more
than 3% a reasonable reflection of what might be
expected in all conceivable cases that are similar to
the 914 recorded?

In statistical jargon the patients (units) in the
trial form a sample and the totality of all conceiv-
able ‘similar’ patients likely to be subjected to one
or other of these procedures form a population.
Using sample information to draw conclusions rel-
evant to a population is described as making statis-
tical inferences. 

A random sample may broadly reflect the sit-
uation in the population, but there is always vari-
ation from sample to sample (referred to as sam-
pling variation). For example, if the above study
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were followed up with another involving a further
815 patients we might get the results in Table 2.

The complication rates based on Table 2 for
procedures A, B respectively are 7.65% and 5.61%,
the difference now just over 2%. Such differences
between the calculated percentages based on the
data in Table 1 (first sample) and those in Table 2
(second sample) would, or should not, surprise us
when we are dealing with human beings, whose
characteristics as Everitt [3] has pointed out, are
those succinctly described by Efron [4]: “there
could be no worse experimental animals on earth
than human beings: they complain, they go on va-
cations, they take things they are not supposed to
take, they live incredibly complicated lives, and,
sometimes, they do not take there medicine.”

Suppose now we have only the information in
Table 1. Given this, statistics cannot prove that the
difference between complication rates for the two
procedures will be just over 3% or any other value.
It can give us indicators that reflect the plausibil-
ity of values that may be of interest. Two such in-
dicators are a P-value and a 95% confidence inter-
val, although we do not always get or want both of
these, or we may instead be given or prefer some
other closely related quantity. 

There are some common misconceptions
about the meaning of P-values and confidence in-
tervals and also a tendency sometimes to attribute
to their calculated values a degree of precision that
is not justified. This lack of precision arises because
statisticians usually have to make further assump-
tions that are only approximately true in order to
calculate the relevant measures. These may in-
clude an assumption that observations are nor-
mally distributed, and that adequate randomisa-
tion procedures have been carried out, or that ob-
servations are independent of one another. Some
or all of these assumptions may not be strictly true
or even hopelessly false. Statisticians understand
these matters and are aware of how and when
breakdowns in assumptions may have conse-
quences likely to be seriously misleading.

One may analyse the data in Table 1 to calcu-
late a P-value and 95% confidence interval for the
population rate difference between the two proce-
dures, assuming that the proportions observed in
samples are normally distributed. Alternatively, we
might drop the normality assumption, because that

assumption is known to be only approximately true
when dealing with proportions (which is what the
percentage rates here essentially are). How good
the approximation will be depends on both the
sample sizes and the actual percentages. 

An analysis assuming normality gave P = 0.047
and a 95% confidence interval for the percentage
rate difference (0.04%, 6.51%). An analysis with-
out a normality assumption gives P = 0.060 and a
95% confidence interval (–0.4%, 6.81%).

To explain the implications of differences be-
tween the calculated values for the two analyses,
one needs to be clear about what P-values and con-
fidence intervals mean. The P-value is relevant to
hypothesis testing, where a key concept is that of
a null hypothesis. In this example the null hypothe-
sis is that in the populations corresponding to each
procedure the complication rate is the same. What
the P-value tells us is the probability of getting a
difference (in either direction) as great or greater
than that observed, ie, of magnitude 8.28–5.01 =
3.27 or more when the null hypothesis of no pop-
ulation difference is true. It is not, as is sometimes
mistakenly assumed, the probability that the null
hypothesis is correct 

A widely used convention is to reject the null
hypothesis if the observed P ≤ 0.05. The reasoning
here is that if P ≤ 0.05 we have in just one sample
obtained a difference with the property that it or a
larger one can be expected in at most about one
sample in twenty (since 1/20 = 0.05) if the null hy-
pothesis were true. It then seems more reasonable
to accept a hypothesis that says the complication
rates differ between procedures. This may not be
true, but the odds are strongly in favour of it. In
statistical jargon we say there is a significant differ-
ence or that we reject the null hypothesis. If P >0.05
the convention is to continue to accept the null hy-
pothesis. This does not mean the null hypothesis
is true, but only that we do not feel we have enough
evidence to be confident about rejecting it.

The 95% confidence interval is in essence an
interval having the property that if we were to take
lots of samples from our population and apply the
rules for calculating that interval to the data from
each sample, then 95% of all such calculated in-
tervals would include the true fixed (but unknown)
population value. The population value is un-
known because if we knew it we wouldn’t be wast-
ing time estimating it!

P-values and confidence intervals are related.
If we took as the null hypothesis not that the dif-
ference is zero but instead that it is some chosen
numerical value lying anywhere within in the 95%
confidence interval calculated for our particular
sample, then the P-value calculated for that new
null hypothesis would exceed 0.05. If we took as
the null hypothesis any value for the difference
lying outside the confidence interval, then the 
P-value would be less than 0.05. In particular. if 
the confidence interval does not include zero,
when we take zero as the null hypothesis, we will
find P <0.05. 

Complication No complication Total

Procedure A 36 399 435 

Procedure B 24 455 479

Total 60 854 914

Table 1 
Numbers of patients
exhibiting or not 
exhibiting a post-op-
erative complication
after two surgical
procedures.

Complication No complication Total

Procedure A 31 374 405 

Procedure B 23 387 410

Total 54 761 815

Table 2
Numbers of patients
exhibiting or not
exhibiting a post-op-
erative complication
after two surgical
procedures in 
a new sample.
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In the case of the first analysis in the numeri-
cal example above the confidence interval (0.04%,
6.51%) does not include zero so we reject the null
hypothesis of zero difference. This is consistent
with the observed P = 0.047. For the second analy-
sis the confidence interval (–0.4%, 6.81%) in-
cludes zero so we do not reject the zero null hy-
pothesis, consistent with the calculated P = 0.060
found in that analysis. Thus, in this example the
convention of accepting P = 0.05 as a cut off mark
for deciding whether to accept or reject the null
hypothesis results in different decisions depending
on whether or not we make an assumption that
proportions are normally distributed! This con-
tradiction is alarming only to anyone with little
statistical experience. Trained statisticians know
that statistical analyses are often sensitive to the
assumptions made in conducting them, and they
regard P = 0.05 as no more than a convenient and
conventional yardstick for measuring the strength
of evidence for or against the null hypothesis. If P
is appreciably less than 0.05 when any reasonable
statistical assumptions are made the evidence
against the null hypothesis is strong and justifiable
modification of assumptions is not likely to push a
much lower P-value above 0.05. Similar arguments
with obvious changes in wording apply to P-values
appreciably greater than 0.05. It is only when
analyses give P-values close to 0.05 (say, between
approximately 0.04 and 0.06) that adding or drop-
ping reasonable assumptions or approximations
are likely to give P-values on opposite sides of 
P = 0.05. This means that if P is close to 0.05 some
flexibility of interpretation may be appropriate. 

In the above example in terms of confidence
intervals in the first analysis zero falls just outside
the 95% confidence interval, and in the second ex-
ample only just inside the interval, suggesting that
the analysis shows that zero has a fairly weak claim
(ie, seems not very likely) to be the true difference.

The confidence interval is generally a more
useful statistical concept than the P-value, al-
though, specially when the P-value is much less
than or much greater than 0.05 it is sometimes use-
ful to have both. The explanation for the awe as-
sociated with P = 0.05 dates back to the pre-com-
puter era when it was usually virtually impossible
to calculate exact P-values, and one could only
make a limited range of statements often specifi-
cally limited to whether P ≥ 0.10, or lay somewhere
between the discrete values P = 0.10, P = 0.05, 
P = 0.01 or else P <0.001. 

We have only discussed results for one analy-
sis that assumed normality and one that did not.
Taking the Table 1 data to another statistician or
using different statistical software is likely to pro-

duce slightly different P-values and confidence in-
tervals. For example, making normality assump-
tions but adding a correction which reflects the fact
that for proportions based on counts the normal
assumption is only approximate and tends to un-
derestimate P, gives P = 0.063, close to the value
given by the second analysis. Some computer soft-
ware packages make this adjustment automatically,
some allow it as an option, some ignore it. If in
doubt ask a statistician, something it is always wise
to do if it is not clearly explained what a computer
program does, or if you do not understand the
implications of what it does.

The above example shows how statistics can
provide useful guidelines in a simple situation,
while at the same time it warns of a lack of pre-
cision in the sense that all analyses rely to some ex-
tent on what assumptions can reasonably be made. 

In more complex situations a further danger is
that of over-analysis; calculating lots of P-values
and doing separate analyses of parts only of the
data, this last being particularly dangerous if the
parts are chosen after one has seen the data, when
it often leads to misleading claims. Some examples
are given in [1], pp. 779–81. 

From a clinician’s viewpoint there is another
consideration that outweighs any discussed so far.
This is the difference between statistical significance
and practical importance. This must be taken into
account at the planning stage of any research pro-
ject, for it is crucial to plan a laboratory experiment
or clinical trial so that there is a good chance of de-
tecting effects of practical importance if these exist,
but to do so without wasting resources. 

The size of a trial is vital to its prospects of de-
tecting differences of some pre-specified magni-
tude. Studies with only a small number of units (eg,
patients) will usually only detect large departures
from a value specified in a null hypothesis. Some
studies may be too small to detect any difference,
no matter what plausible null hypothesis is speci-
fied. If a new treatment is used for only two pa-
tients where one dies and one survives the sample
mortality rate is 50% but all one can say is that the
population rate is neither 0% or 100%, but it could
be anywhere in between. Large experiments en-
able us to make more precise estimates or tests. For
example, if in 1000 cases there are 500 deaths, the
sample mortality rate is still 50% but now a 95%
confidence interval for the population mortality
rate is 46.9% to 53.1%. For 10 000 cases with 50%
mortality observed the 95% confidence interval
reduces to 49.02 to 50.98%. The larger the sam-
ple size, the shorter the confidence interval and
hence the smaller the differences from a null hy-
pothesis that imply a significant difference. 
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In practice clinicians are often not interested
in extremely small differences. In the complica-
tions example in the previous section a surgical
unit might only be interested in switching from
procedure A to procedure B if there was strong ev-
idence that the rate reduction for complications
was at least 2%. Such a decision is not a statistical
matter but one based primarily on factors such as
good medical practice including ethical consider-
ations, pressure on facilities and patients’ welfare.
If the complication caused little patient discom-
fort, only marginally prolonged hospital inpatient
time, only slightly increased the workload on staff
and procedure B cost more to carry out, or oper-
ating times were longer, it might be decided that a
change from A to B for all cases would only be 
appropriate if at least a 2% long term reduction in
complication rate were achieved. 

In very broad terms the trial involving 914 pa-
tients discussed above showed, on the basis of a
confidence interval, that there is merely a good
chance that the reduction would be somewhere 
between about 0 and 6.5 per cent. It might be 2 per
cent or more, but the trial was not big enough to
establish with great confidence that there is that
reduction – it could well be either greater or less
than 2%. This is a somewhat indeterminate situa-
tion. 

In an ideal world if the true reduction were at
least 2% we would like our sample to indicate this,
but we would have no wish to detect decreases ap-
preciably less than 2%. We cannot achieve this
ideal. What we can do, if we have relevant infor-
mation about such factors as, in our example, the
approximate rates of complication, the randomisa-
tion procedures used, etc., is to work out the sam-
ple sizes needed to give us, say, an 80% chance of
detecting a difference of 2% if it really exists (and
an even greater chance of detecting larger differ-
ences). 

Statistical techniques for doing this are well es-
tablished, although the actual calculations require
a certain amount of expertise or availability of suit-
able computer programs. The 80% chance of de-
tection (more usually expressed as the correspon-
ding probability of 0.8) is called the power of the
test.

In statistical jargon one is said to make an error
of the first kind if the null hypothesis is rejected
when it is in fact true. If we adhere to the decision

to reject the null hypothesis when P ≤ 0.05 then the
probability of an error of the first kind is 0.05. If 
P >0.05 we accept the null hypothesis, even though
it may not be true. Accepting the null hypothesis
when it is not true is called an error of the second kind,
The probability that we make an error of the sec-
ond kind depends upon how much the true differ-
ence departs from that stated in the null hypothe-
sis. Errors of the second kind are closely related to
the concept of power and often appear in statisti-
cal literature where power is discussed. The rela-
tionship is 

Power = 1 – probability of an error of the second
kind.

In practice for ethical, clinical or other practi-
cal reasons such as availability of patients, cost, or
limited facilities, it may be difficult – even impos-
sible – to carry out a clinical trial with power as
high as 0.8. This is often the case when we are 
interested in low incidence numbers in large 
samples, as was the situation in the example based
on Table 1. 

Applying the appropriate power calculation to
that situation shows we would need about 2650 pa-
tients allotted to each procedure to have a power
0.80 (ie, an 80% chance) for detecting a popula-
tion 2% difference if it really existed. However, if
the true difference were 3% the power with sam-
ples that size would be 0.99 (99%). 

Compromises often have to be made because
of resource limitations, etc. In the above example
power calculations show there is a 75% chance of
detecting a 3% difference in complication rates
with samples of 1000 for each procedure. There
would then still be a 38% chance of detecting a
population difference of 2% 

Power calculations are sensitive in an example
like this to assumptions about the percentage of
complications, etc. Pilot studies with relatively
small samples often provide valuable information
for estimating the power associated with experi-
ments using larger samples. Power studies guide
researchers towards an ideal size for a clinical trial
and protect against waste of time and resources by
carrying out trials that have little chance of de-
tecting important differences because the trial is
too small, or at the other extreme wasting re-
sources by carrying out unnecessarily large exper-
iments.

Power

Brief comments on other simple aspects of statistics

In addition to those already introduced, most
research workers meet statistical terms and con-
cepts like normal distribution, binomial distribu-
tion, non-parametric methods, analysis of vari-
ance, long-tail distribution, exponential distribu-

tion, correlation, regression. Familiar tests include
the t-test, chi-squared test, Wilcoxon signed-rank
test, Wilcoxon rank-sum test and Mann-Whitney
test (the last two are different forms of the same
test), and perhaps others such as the log-rank test
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if survival data is of interest. Terms like standard
error, standard deviation, range. interquartile range
are also freely used but sometimes cause confusion 

The Normal distribution is central to much
statistical analysis of measurement data and there
are sound mathematical reasons why this is so – at
least as an approximation – providing we can make
certain assumptions. The normal distribution is
characterised by its mean and standard deviation.
These values for a population are generally un-
known in advance, but estimates of the population
mean and standard deviation can be made from a
sample. For an independent sample from a normal
distribution the sample mean and standard devia-
tion (the latter usually with a conventional small
modification) are estimates of their unknown pop-
ulation counterparts, estimates that improve as the
sample size increases. For samples of 30 or more,
if roughly half the observations are smaller than
the mean, and the scatter around the mean both
above and below it is roughly the same, and about
two thirds of the observations lie within one stan-
dard deviation from the mean and nearly all of the
observations are within 2 standard deviations of
the mean, and none are more than about three
standard deviations from the mean, then it is rea-
sonable to assume normality. These are only rough
guidelines. One must distinguish between the
standard deviation and what is often loosely called
the standard error but is more correctly described
as the standard error of the mean. The latter is a
measure of how accurately the sample mean esti-
mates the population mean. It is in fact the stan-
dard deviation divided by the square root of n, the
number of observations in the sample. 

Avoid using a notation like 4.53 ± 1.72 with-
out further explanation – in fact, it is better not to
use the notation at all – because some people use
this for the mean ± standard error of the mean, some
for mean ± standard deviation and some for mean
± 95% confidence interval for the population mean [2].
If the ± notation is used at all the last use, with an
explanation, should be the preferred one, but many
writers use one of the other meanings without ex-
planation. Incidentally, the assertion that the 95%
confidence interval for the population mean is
given by

sample mean ± 1.96 � (standard error of the
mean)
is only strictly valid for samples of size about 30 
or more from a normal distribution although a
mathematical theorem called the Central limit the-
orem allows some relaxation of the normality re-
quirement. For smaller samples the above formula
underestimates the confidence interval even for a
normal distribution. 

If data indicate an obvious departure from nor-
mality, means and standard deviations become less
appropriate. It is then usually better to use the me-
dian (the middle value when the data are arranged
in ascending order) rather than the mean to mea-
sure centrality or location and the interquartile
range rather than the standard deviation to mea-
sure spread. This range is the difference between

a value having one quarter of the ordered observa-
tions below it (first quartile) and a value with one
quarter above it (third quartile). A simpler descrip-
tion is to use the median and to indicate spread 
by quoting the least and the greatest sample value.
An increasingly popular data summary is the five
number summary, consisting of

[least value, first quartile, median, third quartile,
greatest value]

The binomial distribution is often, but not in-
variably, relevant when inferences about propor-
tions based on counts are made. For large counts
and proportions not too close to 0 or 1 (or the cor-
responding 0 and 100 per cent) the sample distri-
bution of proportions approaches a normal distri-
bution, an assumption made above for some of the
calculations in the complication-rate example.

When normality assumptions are clearly un-
reasonable resort is often made to nonparametric
methods. If data are a sample from a normal or near-
normal distribution nonparametric methods are
generally less efficient for hypothesis testing and
estimation than are tests based on an assumption
of normality, but they are often appreciably more
efficient and informative if a normality assumption
is not justified. These tests all require some as-
sumptions (though less restrictive than that of nor-
mality) for validity and advice of a statistician
should be sought. There are several introductory
books on nonparametric methods [5, 6] designed
for statistics students or for research workers who
have attended a basic course of some 20 lectures in
statistics.

Correlation is a well known concept when
studying relationships between measurements
when two or more quantities are measured on each
of a number of units. Correlation coefficients are
often calculated, but these are only a measure of
one particular kind of association, values of the co-
efficient just slightly below 1 in magnitude imply-
ing that in a scatter diagram the points will lie rea-
sonably close to a straight line (calculated as a re-
gression line) or at least that there is a one-way trend
in the relationship, ie, either a steadily increasing
or steadily decreasing trend, and not, for instance,
one that at first increases and then decreases. A
weakness of the correlation coefficient is that a
value near zero may imply no association or it may
equally well suggest an association that on a scatter
diagram would be associated with some curve other
than a straight line. It is also important to remember
that association need not imply cause and effect. 

For medical research workers with only a basic
knowledge of statistics there are several good
books that discuss in detail, using real-data exam-
ples, statistical methods especially relevant in med-
ical research. A widely used one is that by Altman
[7]. Other popular ones, with which I am less fa-
miliar, but which are generally well regarded both
by statisticians and clinicians, are those by Bland
[8] and by Campbell and Machin [9]. Such books
are invaluable if statistical help is needed but a suit-
ably qualified statistician is not readily available.



Statistics in medical research 528

Use of one or more of the concepts discussed
above is important and may be all that is needed
for assessing the validity of data-base assertions in
simple situations. Their widespread use in the
medical and surgical literature has been broadly
welcomed by medical scientists and statisticians.
However, modern developments towards more so-
phisticated trials and also in methods of data analy-
sis mean that these complex trials often require
more advanced statistical analyses.

For example, survival analysis studies are in-
creasingly important. Data for survival times are
usually not normally distributed. Typically, a few
patients have a short survival time after diagnosis
or treatment, perhaps only a matter of days, the
median survival time may be, say, 10 months, but
a few will survive 3, 4, 5, 6, 7 or more years. There
are often complications with survival studies due
to loss of contact with patients during the follow-
up period, and for practical reasons follow-up may
only be feasible for a limited period at the end of
which some patients still survive. Non-parametric
analysis, or sometimes analyses based on the expo-
nential distribution are then appropriate. There is
a vast literature on statistical analysis of survival
data taking into account such factors as to whether

patient drop-out may be treatment related,
whether all patients actually receive the treatment
intended at the start of the trial, what allowances
should be made if the follow-up study is discon-
tinued when some patients still survive, do factors
such as sex, age, obesity, etc., affect survival rates. 

Topics familiar to professional statisticians
such as logistic regression and Poisson regression,
both of which are special cases of what are called
generalised linear models are playing an increas-
ing role on clinical studies. Logistic regression is
relevant to studies when only two possible out-
comes are of interest, (eg, recovery or death; im-
provement or no improvement; side-effects pres-
ent or absent) and where the probabilities of these
outcomes may depend on a number of factors such
as age, obesity, blood-pressure, sex, time between
diagnosis and treatment, etc. 

A range of generalised linear models and sur-
vival analysis are just two of many topics that are
discussed with many illustrative examples of
medical applications that highlight some of the
complications by Everitt [3] in a book designed
primarily for clinicians with a strong grounding in
statistics

More advanced statistics

Collaboration

Most clinicians recognise the need for statisti-
cal expertise but this may not be readily available.
The ideal situation is either one where a research
team includes a medical scientist with advanced
training in and understanding of statistical meth-
ods likely to be relevant, or else one where 
the research is being carried out in an institution
with a statistical unit that includes specialists 
in applications of statistics in medicine. If either 
of these situations pertains there should be 
few problems of a statistical nature unless there 
are extraneous difficulties such as personality
clashes.

In many cases the ideal situations just outlined
do not hold. A research team may have to rely
either on limited statistical expertise among its
own members or seek advice from a professional
‘general practitioner’ statistician who has no spe-
cialised experience of or training in medical statis-
tics. In these situations the statistical input may be
satisfactory but at other times it will be less than
adequate. The latter may happen if researchers
with limited statistical expertise over-estimate
their statistical abilities or if the general-practi-
tioner statistician fails to understand fully the pur-
pose and aims of the experiment or trial, or cannot
fully appreciate the implications of any complica-
tions. Such problems often reflect communication
difficulties between the parties.

The best advice one can give to reduce mis-
takes resulting from statistical inadequacies is that
statisticians should make it their business to seek
clarification on aims, objectives, experimental
techniques and known complications and equally
that researchers should seek full clarification of any
statistical terminology or methodology they do not
understand from whoever is dealing with the
statistical aspects. Here explanation of principles is
usually more important than technical detail of
how things are calculated.

Modern statistical computer software provides
programs for applying many advanced statistical
techniques such as the many particular cases of
generalised linear models and the even more com-
plex generalised additive models, as well as coping
with complications such as drop-outs in follow-up
studies in survival data or unwanted correlations 
or the occasional aberrant observations. This is
something of a mixed blessing, for such programs
cannot replace a statistician, although they often
allow researchers to carry out many of the routine
and otherwise time-consuming computations in a
matter of seconds when these would take hours,
days weeks or even years if carried out by humans.
With a few exceptions most such programs do not
provide sufficient information on line or in hard-
copy manuals about what the program is doing to
ensure safe use unless the user has either a full un-
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derstanding of what is involved or else has access
to expert statistical advice. 

Where any but simple statistics in involved an
essential ingredient is close collaboration between
those (whether professional statisticians or not)
who are providing the statistical advice and the re-
searchers to assure a virtually seamless blending of
the statistical elements with other aspects of the re-
porting of the research. Human nature being what
it is, it is sometimes easier to say this than to
achieve it, but if you are not happy with the statis-
tical advice or help you have received during a
project look for some other source of statistical

input in future. Most statisticians want to be help-
ful. Like arrogant medics, arrogant statisticians are
a dying race.
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