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Summary 
Relevant pandemic-spread scenario simulations can pro-
vide guiding principles for containment and mitigation 
policies. We devised a compartmental model to predict 
the effectiveness of different mitigation strategies with a 
main focus on mass testing. The model consists of a set of 
simple differential equations considering the population 
size, reported and unreported infections, reported and 
unreported recoveries, and the number of COVID-19-in-
flicted deaths.  

We assumed that COVID-19 survivors are immune (e.g., 
mutations are not considered) and that the virus is primar-
ily passed on by asymptomatic and pre-symptomatic indi-
viduals. Moreover, the current version of the model does 
not account for age-dependent differences in the death 
rates, but considers higher mortality rates due to tempo-
rary shortage of intensive care units. The model parame-
ters have been chosen in a plausible range based on infor-
mation found in the literature, but it is easily adaptable, 
i.e., these values can be replaced by updated information 
any time. We compared infection rates, the total number 
of people getting infected and the number of deaths in 
different scenarios. Social distancing or mass testing can 
contain or drastically reduce the infections and the pre-
dicted number of deaths when compared with a situation 
without mitigation. We found that mass testing alone and 
subsequent isolation of detected cases can be an effective 
mitigation strategy, alone and in combination with social 

distancing. It is of high practical relevance that a relation-
ship between testing frequency and the effective repro-
duction number of the virus can be provided. However, 
unless one assumes that the virus can be globally defeated 
by reducing the number of infected persons to zero, test-
ing must be upheld, albeit at reduced intensity, to prevent 
subsequent waves of infection.  

The model suggests that testing strategies can be equally 
effective as social distancing, though at much lower eco-
nomic costs. We discuss how our mathematical model 
may help to devise an optimal mix of mitigation strategies 
against the COVID-19 pandemic. Moreover, we quantify 
the theoretical limit of contact tracing and by how much 
the effect of testing is enhanced, if applied to sub-popula-
tions with increased exposure risk or prevalence. 

Introduction 
The recent outbreak of COVID-19 in Wuhan, China has 
led to a pandemic with significant impacts on public health 
and economies across the globe. As the number of infected 
people increases in a community, public health policies 
move away from containment of the outbreak to mitigation 
strategies such as social distancing and isolation, with con-
siderable detrimental effects on public life and the econ-
omy. Although less restrictive mitigation strategies would 
be desirable, alternative choices are limited owing to a lack 
of resources and technologies. To better understand the po-
tential effects of a particular mitigation strategy, we must 
assess the underlying factors that impact the spread of the 
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outbreak, and for this mathematical models integrating the 
relevant underlying mechanisms are a good tool. 
Various biomathematical approaches have been proposed 
and pursued for epidemic-spread modelling. At the highest 
level, one can categorise them into agent based [1], net-
work [2, 3] and compartmental models [4]. The chosen 
model can then be closed using empirical/machine-learn-
ing, statistical or deterministic approaches [5]. Agent/net-
work based models may provide highly refined scenario 
analysis tools, but their black-box nature may not be ap-
propriate for large-scale mitigation scenario assessments. 
Compartmental models, on the other hand, can provide us 
with insightful and explicit solutions more relevant for 
drawing fundamental conclusions. These type of models 
may employ deterministic or stochastic methodologies to 
tackle the evolution of the epidemic within a susceptible 
population. The former category belongs to deterministic 
descriptions, which include susceptible-infectious-re-
moved (SIR), susceptible-infectious-susceptible (SIS) and 
susceptible-exposed-infectious-removed (SEIR) models 
[6]. A more complicated class of models incorporates the 
stochastic nature of the epidemic spread via the framework 
of, for example, Ito- or Levy-type processes [7–9]. Both 
deterministic and stochastic descriptions, at their funda-
mental level, rely on reaction mechanisms that characterise 
infections, recoveries and deaths within different sub-
groups of the population. 
Although recently there has been a massive effort in pan-
demic-spread investigations of COVID-19, for example 
using SEIR models [10–13], network models [14] and 
agent-based simulations [15, 16], no studies that investi-
gated the effect of mass testing are found in the literature. 
As recent efforts in, for example, China are channelled to-
wards mass testing in relatively large cities [17], it is nec-
essary to also provide theoretical foundations for mass test-
ing-based mitigation strategies. To achieve this, we sepa-
rated the category of detected cases from infected ones who 
remain undetected (e.g., by the sheer lack of test kits) and 
predicted their coupled dynamics. Note that detected here 
refers to persons being isolated, which comprises not only 
those who tested positive, but also those who have strong 
symptoms and thus stay in self-quarantine. It is also im-
portant to note that in the case of this specific virus, the 
asymptomatic and pre-symptomatic infected people con-
tribute significantly to the spread of the pandemic [18]. 
Therefore, early detection and containment of infected but 
asymptomatic individuals can be extremely relevant for the 
dynamic behaviour. Hence, we devised a set of reaction 
equations focusing on both detected and undetected cate-
gories. Moreover, the impact of the shortage of intensive 
care units during peaks of the pandemic were integrated in 
the outcome of the scenarios. The model coefficients were 

calibrated on the basis of existing data, and the model was 
employed to investigate two main mitigation approaches, 
one relying on social distancing and one on more frequent 
infection testing. Also, a combination of the two is studied, 
and we quantified by how much the testing efficiency is 
enhanced, if available resources are focused on subpopula-
tions with increased prevalence. Finally, theoretical limita-
tions of contact tracing, which relies on isolating contacts 
of symptomatic individuals, was studied. We argue that as 
contact tracing provides little means to prevent virus trans-
mission from asymptomatic cases, it cannot lead to the pan-
demic containment as a stand-alone approach. 

Materials and methods 
A model was proposed to compute the numbers of infected 
people whose infection had not (yet) been detected and the 
numbers of infected persons with a detected infection 
(𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑), respectively (fig. 1). 
Note that detected here refers to persons being isolated, 
which comprises not only those who tested positive, but 
also those who have strong symptoms and thus stay in self-
quarantine. It is further important to notice that in the case 
of SARS-CoV2, the undetected infected people are main 
contributors to the spread of the pandemic [18]. The exact 
definitions of detected and undetected, as well as those of 
all other variables and model parameters are found in table 
1. 
Furthermore, we computed the number of fatalities (𝑛𝑛𝑑𝑑) 
and the number of people who recovered after a detected 
or an undetected infection. Importantly, we assumed that 
these people would have developed protective immunity 
and we assumed that they cannot be infected again in the 
time frame considered. The initial susceptible population 
𝑛𝑛𝑠𝑠0 is naive (i.e., it lacks immunity against the infection) 
and 𝑛𝑛𝑠𝑠 is the number of persons who are susceptible at a 
given time 𝑡𝑡. In our model we assumed that the virus is 
mainly passed on by undetected asymptomatic and mildly 
symptomatic persons; the detected population with mild 
symptoms transmits at a much lower rate (because of self-
isolation, hygiene precautions in hospitals and/or quaran-
tine). Although our model does not explicitly consider age 
specific mortality, we did take into account that 40% of the 
hospitalised cases need intensive care, and that at the peak, 
the case fatality ratio increases two-fold because of pres-
sure in healthcare systems. The graph in figure 1 shows the 
dynamic dependencies. The COVID-19-specific parame-
ters had to be estimated from the available data; their val-
ues are listed below. It should be noted that the implemen-
tation of our model allows our current estimates to be up-
dated with more precise values, as new data come in. 
 

 



Original article  Swiss Med Wkly. 2021;151:w20487 

Swiss Medical Weekly · PDF of the online version · www.smw.ch  Page 3 of 20 

Published under the copyright license "Attribution - Non-Commercial - No Derivatives 4.0". No commercial reuse without permission. 

Table 1: Terminology and nomenclature of model parameters and variables. 

Terminology Meaning 

Susceptible Persons of the considered population who are susceptible and thus can potentially get infected 

Exposed Infected persons; cannot yet transmit the virus 

Asymptomatic Infected persons without symptoms; can transmit the virus 

Pre- and mild sympt. (no self isol.) Infected persons with no or mild symptoms; infectious, but not isolated 

Mild sympt. (self isol.) Infected persons with mild symptoms; infectious and isolated 

Strong symptomatic Infected persons with strong symptoms and thus hospitalised; isolated 

Deceased Persons who died 

Recovered Persons who recovered 

Detected Isolated either after positive testing or after falling ill 

Undetected Persons who are either exposed, asymptomatic or mildly symptomatic, but were never contained 

Extreme social distancing ℛeff = 0.7, if no other mitigation measures are applied; the infection rate is reduced by 71% 

Moderate social distancing ℛeff = 1.0, if no other mitigation measures are applied; the infection rate is reduced by 58% 

Mild social distancing ℛeff = 1.6, if no other mitigation measures are applied; the infection rate is reduced by 33% 

Variable  
𝑛𝑛𝑠𝑠 and 𝑛𝑛𝑠𝑠0 Numbers of susceptible and initially susceptible persons, respectively 

𝑛𝑛𝑒𝑒, 𝑛𝑛�𝑒𝑒 and 𝑛𝑛𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of exposed persons; not tested, tested and in total, respectively 

𝑛𝑛𝑖𝑖𝑖𝑖, 𝑛𝑛�𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of asymptomatic persons; not tested, tested and in total, respectively 

𝑛𝑛𝑖𝑖𝑖𝑖, 𝑛𝑛�𝑖𝑖𝑖𝑖 and 𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of persons with mild symptoms during first day; not tested, tested and in total, respectively 

𝑛𝑛𝑚𝑚𝑚𝑚, 𝑛𝑛�𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of persons with mild symptoms after first day; not tested, tested and in total, respectively 

𝑛𝑛𝑠𝑠𝑠𝑠, 𝑛𝑛�𝑠𝑠𝑠𝑠 and 𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of persons with strong symptoms; not tested, tested and in total, respectively 

𝑛𝑛𝑑𝑑, 𝑛𝑛�𝑑𝑑 and 𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of deceased persons; not tested, tested and in total, respectively 

𝑛𝑛𝑟𝑟𝑟𝑟, 𝑛𝑛�𝑟𝑟𝑟𝑟 and 𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of recovered persons who had no symptoms; not tested, tested and in total, respectively 

𝑛𝑛𝑟𝑟𝑟𝑟, 𝑛𝑛�𝑟𝑟𝑟𝑟 and 𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 Numbers of recovered persons who had symptoms; not tested, tested and in total, respectively 

𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Undetected infected persons: 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑖𝑖 

𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 Detected infected persons: 𝑛𝑛𝑚𝑚𝑚𝑚 + 𝑛𝑛𝑠𝑠𝑠𝑠 + 𝑛𝑛�𝑚𝑚𝑚𝑚 + 𝑛𝑛�𝑠𝑠𝑠𝑠 + 𝑛𝑛�𝑖𝑖𝑖𝑖 + 𝑛𝑛�𝑖𝑖𝑖𝑖 + 𝑛𝑛�𝑖𝑖𝑖𝑖 

Parameter  
𝛽𝛽 and 𝛽𝛽� (𝜏𝜏) Rate coefficient for infection and expected infectiousness 𝜏𝜏 days after infection, respectively 

𝑄𝑄 Relative infection rate by outside contact (travel) 

𝜖𝜖 Ratio between infection rate of self-quarantined and non-quarantined symptomatic cases 

𝛼𝛼𝑎𝑎 and 𝛼𝛼𝑠𝑠 Rate coefficient for latency of asymptomatic and symptomatic cases, respectively 

𝜃𝜃 Rate coefficient for mortality of hospitalised cases 

𝛾𝛾𝑎𝑎, 𝛾𝛾𝑚𝑚𝑚𝑚 and 𝛾𝛾𝑠𝑠𝑠𝑠 Rate coefficients for recovery 

𝜉𝜉𝑚𝑚𝑚𝑚 and 𝜉𝜉𝑠𝑠𝑠𝑠 Rate coefficients for successively stronger symptoms 

𝑘𝑘𝑒𝑒, 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑠𝑠 Rate coefficients accounting for testing 

ℛ0 Basic reproduction number without mitigation 

ℛeff Effective reproduction number with mitigation 

ℛeff
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and ℛeff

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Effective reproduction number of symptomatic and asymptomatic cases, respectively 

ℛeff
𝑤𝑤𝑤𝑤 Effective reproduction numbers subject to testing, respectively 

𝜅𝜅 Fraction of basic reproduction number related to symptomatic cases 

𝜁𝜁 Percentage of app users among smart-phone owners 

𝜃𝜃(𝑠𝑠𝑠𝑠𝑠𝑠) and 𝜃𝜃(0) Rate coefficient for mortality of hospitalized cases without and with intensive care units, respectively 

𝛾𝛾𝑠𝑠𝑠𝑠
(𝑠𝑠𝑠𝑠𝑠𝑠) and 𝛾𝛾𝑠𝑠𝑠𝑠

(0) Rate coefficient for recovery of hospitalized cases without and with intensive care units, respectively 

𝑁𝑁 Testing interval 

𝑁𝑁−1 Testing frequency 

𝜂𝜂 Fraction of false negative test results 

𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠)/2.5 Fraction of total population for which intensive care units are available 

Operator and function  
𝔼𝔼(⋅) Expectation 

𝒫𝒫𝒜𝒜 and Prob{𝒜𝒜} Probability of the event 𝒜𝒜 
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Initially, the entire population is susceptible and can get in-
fected. Infected persons first get exposed and are not infec-
tious until the latency time has passed. Then they are either 
asymptomatic or mildly symptomatic. Asymptomatic per-
sons eventually recover without symptoms, whereas the 
others develop symptoms approximately half a day after 
the end of the latency period. We assumed that persons 
with mild symptoms isolate themselves approximately 1 
day after onset of symptoms and then either recover or be-
come strong symptomatic, which requires hospitalisation. 
Hospitalised individuals either recover or die. Once 𝑛𝑛𝑠𝑠 be-
comes smaller, which happens quickly without any 
measures, the susceptible contact rate slows down by a fac-
tor of 𝑛𝑛𝑠𝑠/𝑛𝑛𝑠𝑠0. This mechanism of slowing spread of the ep-
idemic owing to a shrinking susceptible population is 
equivalent to herd immunity. It is crucial for the system 
dynamics that detected persons are isolated (either by self-
isolation at home, by hygienic isolation in a hospital setting 
or in other care facilities, or by organised isolation pro-
grammes for detected infected people, such as in hotel 
rooms) and thus participate at a much lower rate or not at 
all in spreading the disease. We assumed that these de-
tected infected people have a 10-fold lower likelihood of 
infecting others than undetected infected people. All this 

leads to a dynamic system, which is governed by a set of 
ordinary differential equations (equations (10)–(26)). The 
effect of testing is further discussed in the section on “Mass 
testing” below. Next we describe how the parameters can 
be estimated based on literature data. 

Parameter estimation 
Our generalised SEIR model became closed once we tuned 
the rate coefficients. These coefficients were mainly com-
puted based on data provided in recently published reports 
[12, 19]. Before giving the values for transfer rates between 
different compartments, let us analyse the basic reproduc-
tion number ℛ0 of this virus infection with 𝑄𝑄 = 0 and 
𝑛𝑛𝑠𝑠(𝑡𝑡) ≈ 𝑛𝑛𝑠𝑠0. Note that ℛ0 represents “the expected number 
of secondary cases produced, in a completely susceptible 
population, by a typical infective individual” [20]. If ℛ0 
becomes < 1, virus spread will decline, and if ℛ0 > 1, vi-
rus spread will increase. Derivation of ℛ0 based on the next 
generation method is explained in the section on “Basic 
and effective reproduction numbers” in the appendix. By 
inspecting equation (28), we observe that the disease-free 
equilibrium (DFE) corresponding to ℛ0 ≤ 1 can be 
achieved by reducing the infection rate 𝛽𝛽 via mitigation 

Figure 1: Graphical representation of the model. The graph showing the dependencies of the compartments describing the 
transmission dynamics among susceptible people. 
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policies such social distancing. Importantly, as shown 
later, ℛ0 can be reduced as well by introducing mass test-
ing, contact tracing, targeted testing and subsequent isola-
tion of detected infected individuals. 
Next, to clarify our choice of model coefficients, we dis-
cuss the rates which appear in infectious and non-infec-
tious compartments separately. Finally, the increase of 
mortality due to lack of intensive care units was modelled. 

Infectious 

We modelled the incubation time to be log-normally dis-
tributed with mean 5.84 days and standard deviation 2.98 
days [21, 22]. In accordance with [19], we took the latency 
time 𝑥𝑥𝑙𝑙 such that on average it becomes half a day shorter 
than the incubation time. As for the incubation time, we 
adopted a log-normal distribution for 𝑥𝑥𝑙𝑙 but with mean 
5.34 days and standard deviation 2.7249 days. We as-
sumed that 1/3 of the cases would not have noticeable 
symptoms and 2/3 become symptomatic half a day after 
latency [19]. This led to 𝛼𝛼𝑎𝑎 = 1

3
𝔼𝔼(1/𝑥𝑥𝑙𝑙) = 0.078 (1/day), 

where 𝔼𝔼(⋅) denotes the expectation which gave us the av-
erage latency rate. Because of the ratio of 1/3 to 2/3 be-
tween asymptomatic and symptomatic cases we got the 
transfer rate from being exposed to infectious symptomatic 
as 𝛼𝛼𝑠𝑠 = 2𝛼𝛼𝑎𝑎 = 0.156 (1/day). 
We supposed that it takes around 1 day from onset of 
symptoms to self-isolation [19]. Since it takes half a day 
time delay from becoming infectious to symptomatic, we 
got 𝜉𝜉𝑚𝑚𝑚𝑚 = 1/1.5 = 0.6667 (1/day). 
The average onset to discharge time of clinical cases is 
around 22 days [23]. We assumed that for mildly sympto-
matic cases the onset to recovery time would be half of this 
time, i.e., around 11 days. Therefore the average recovery 
time from end of the latency period becomes 11.5 days for 
mild-symptomatic cases. We set the same recovery time 
for asymptomatic cases which led to 𝛾𝛾𝑎𝑎 = 1/11.5 = 0.087 
(1/day).  
A range of values have been suggested for infectiousness 
of asymptomatic cases: 0.1 in [24], 2/3 in [19] and 1 in 
[23]. We assumed that the asymptomatic cases were 50% 
less infectious. Furthermore we considered the self-quar-
antined patients to be 90% less infectious, i.e., 𝜖𝜖 = 0.1 was 
adopted. To compute the infection rate 𝛽𝛽, we assumed 

ℛ0 = 2.4 [24, 25]. Following equation (28), the infection 
rate becomes 𝛽𝛽 = 0.6711 (1/day). Since the basic repro-
duction number is the most important single parameter of 
the system, we performed sensitivity studies by changing 
ℛ0 [26]. 

Non-infectious 

The mean delay time from appearance of symptoms to hos-
pitalisation has been reported to be around 11 days [23]. 
However, 80% of symptomatic cases would not require 
hospitalisation [27]. For those who develop strong symp-
toms, the delay from self-isolation to hospitalisation then 
becomes 11 − 1 = 10 days. Hence we got 𝜉𝜉𝑠𝑠𝑠𝑠 = 0.2 × 1/
10 = 0.02 (1/day) and 𝛾𝛾𝑚𝑚𝑚𝑚 = 0.8 × 1/10 = 0.08 (1/day). 
Note that the latter gives onset to recovery time of 11 days 
for mild cases, which is consistent with our earlier assump-
tion.  
The average hospital treatment time is 11 days [19, 23]. In 
the case of availability of intensive care units, we assumed 
that 20% of hospitalised cases die [27, 28]. Accordingly, 
we got 𝛾𝛾𝑠𝑠𝑠𝑠

(0) = 0.8 × 1/11 = 0.0727 (1/day) and 𝜃𝜃(0) =
0.2 × 1/11 = 0.0182 (1/day). 

Fatality increase 

We assumed that the case fatality ratio increases two-fold 
when there is saturation of the health system. This is justi-
fied by noting that the case fatality ratio has increased from 
approximately 5% in China [29] to roughly 10% in Wuhan 
while it was the epicentre of the outbreak [30]. By taking 
this factor into account, and assuming that the average time 
of hospital treatment remains 11 days, we could compute 
the death rate of hospitalised cases once saturation of in-
tensive care units is reached as 𝜃𝜃(𝑠𝑠𝑠𝑠𝑠𝑠) = 0.4 × 1/11 =
0.0364 (1/day). Note that one consistently obtains 𝛾𝛾𝑠𝑠𝑠𝑠

(𝑠𝑠𝑠𝑠𝑠𝑠) =
0.6 × 1/11 = 0.0546 (1/day). It was assumed that there 
are eight intensive care beds per 100,000 persons (UK av-
erage [19],) and that 40% of the hospitalised cases need 
such treatment. Note that the number of available intensive 
care beds varies by country. For example, in Switzerland 
the number is roughly estimated to be 15–17.5 beds per 
100,000; in other countries this may be much lower. Ac-
cordingly, saturation is reached once the number of hospi-
talised cases, i.e., 𝑛𝑛𝑠𝑠𝑠𝑠, exceeds 𝐶𝐶(sat) = 0.02% of the total 
population. 

The adjusted rate 
 

𝜃𝜃(𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡) =
𝑛𝑛𝑠𝑠0

𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
�min �𝐶𝐶(sat),

𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛𝑠𝑠0
� 𝜃𝜃(0) + max �0,

𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛𝑠𝑠0
− 𝐶𝐶(sat)�𝜃𝜃(sat)� (1) 

then quantifies the death rate of hospitalised cases as the weighted average of 𝜃𝜃(0) and 𝜃𝜃(sat); the consistently adjusted 
recovery rate became 

 𝛾𝛾𝑠𝑠𝑠𝑠(𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡) = 𝛾𝛾𝑠𝑠𝑠𝑠
(0) + 𝜃𝜃(0) − 𝜃𝜃(𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡). (2) 
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All estimates here are summarised in table 2; note that these values can easily be adapted, if more reliable data become 
available. 

Table 2: Estimates made for the model closure, social distancing, contact tracing and testing. 

Probability Conditional on Expression Base case value 

Pre- and mild sympt. (no self isol.) Asympt. 𝑆𝑆(𝑚𝑚) 2/3, [1/2, 2/3] 

Strong sympt. (hospit.) Mild sympt. (self isol.) 𝑆𝑆(𝑠𝑠) 1/5 

Deceased Hospit.; with icu 𝑀𝑀(0) 1/5 

Deceased Hospit.; no icu 𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠) 2/5 

Char. time scale (days)    
Pre- and mild sympt. (no self isol.) Exposed 𝑆𝑆(𝑚𝑚)𝛼𝛼𝑠𝑠−1 4.27 

Mild sympt. (self isol.) Pre- and mild sympt. (no self 
isol.) 

𝑡𝑡𝑖𝑖𝑖𝑖 = 𝜉𝜉𝑚𝑚𝑚𝑚−1 1.5 

Strong sympt. (hospit.) Mild sympt. (self isol.) 𝑡𝑡𝑚𝑚𝑚𝑚 = 𝑆𝑆(𝑠𝑠)𝜉𝜉𝑠𝑠𝑠𝑠−1 10 

Deceased Str. sympt. 𝑀𝑀(0,𝑠𝑠𝑠𝑠𝑠𝑠)/𝜃𝜃(0,𝑠𝑠𝑠𝑠𝑠𝑠)  11 

Recovered Asymptomatic 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑎𝑎−1 11.5 

Further parameters    
Basic reproduction number  ℛ0 2.4 

Infection rate reduction factor Mild sympt. (self isol.) 𝜖𝜖 0.1 

Rel. intensive care capacity  𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠)/2.5 0.00008 

Social distancing, contact tracing and testing    
Infection rate reduction factor Social distancing 𝜆𝜆 0 

Testing frequency (1/days) Testing 𝑁𝑁−1 0 

Testing process time (days) Testing 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 

Fraction of false negative test results Testing 𝜂𝜂 0.05, {0.5, 0.15, 0.25} 

Success rate of contact tracing Contact tracing 𝜁𝜁 [0.3, 1] 

Fraction of exposed people who develop no symptoms Contact tracing 𝑟𝑟1 [1/3, 1/2] 

Fraction of exposed people who develop no symptoms Contact tracing 𝑟𝑟2 [0.1, 0.5] 

The resulting parameter values for our base case are pro-
vided in table 3. 
 

Table 3: List of estimated parameters and initial values. 

Parameter Value 

𝛽𝛽 0.670 (1/day) 

𝜖𝜖  0.1 

𝛼𝛼𝑎𝑎  0.078 (1/day) 

𝛼𝛼𝑠𝑠  0.156 (1/day) 

𝛾𝛾𝑎𝑎  0.087 (1/day) 

𝜉𝜉𝑚𝑚𝑚𝑚  0.667 (1/day) 

𝛾𝛾𝑚𝑚𝑚𝑚  0.08 (1/day) 

𝜉𝜉𝑠𝑠𝑠𝑠  0.02 (1/day) 

𝛾𝛾𝑠𝑠𝑠𝑠
(0)  0.072 (1/day) 

𝜃𝜃(0)  0.0182(1/day) 

𝜃𝜃(𝑠𝑠𝑠𝑠𝑠𝑠)  0.0364 (1/day) 

Initial condition Value 

𝑛𝑛𝑠𝑠0  6,384,631,490 (world population outside of 
China) 

𝑛𝑛𝑒𝑒(0) 1000 

Note that our model allows any of these parameters to be easily re-
placed by more precise estimates, as more data become available. 
The initial values of all numbers except ne are set to zero. 

Mass testing 
We analysed how many tests are needed to bring the effec-
tive reproduction number ℛeff below 1 in the absence of 
other interventions. In practice, Slovakia, Vienna and the 
Swiss Canton Graubünden have recently assessed mass 
testing as a mitigation strategy. This showed that this is in 
principle possible and that the motivation to participate is 
quite important. In contrast to the approach described by us 
here, the former two campaigns have not employed repeti-
tive testing of the population over longer periods of time. 
Therefore, the logistic challenges, upholding the motiva-
tion of the participants and the effectiveness in a real-life 
setting remain to be tested. Nonetheless, the parameters of 
our model could be adjusted to account for the observed 
effects. Thereby, the tool could provide an even more real-
istic prediction of the expected effects. If repetitive testing 
can be maintained at the same rate until a major fraction of 
the population is vaccinated, a new outbreak of the pan-
demic (i.e., a sudden exponential rise in the incidence) can 
be avoided. Therefore, we studied how ℛeff varied once 
confirmed cases are isolated (in addition to self-quaran-
tined and hospitalised individuals). Of particular value is 
the relationship between ℛeff and the interval between tests 
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in the susceptible population (i.e., the frequency of testing 
needed for reducing ℛeff below 1). Thereby we can deter-
mine the key technical parameter of interest, i.e., the num-
ber of tests per 100,000 people who must be tested per day 
in order to achieve the desired ℛeff value; we chose ℛeff =
1 as the target value for our analyses (if not indicated oth-
erwise), which would suffice to keep the number of in-
fected people constant. 
To be realistic, we supposed that the processing time 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
of mass testing would be somewhere between half a day 
and two days. Furthermore, a fraction 𝜂𝜂 = 0.05 of false 
negative test results was taken into account [31]. It should 
be noted, however, that this is a rough estimate. The use of 
standards allows for very high reproducibility of virus 
RNA detection even between different laboratories [32]. 
The true rate of false negatives and false positives is cur-
rently not known. We assumed that a false negative rate of 
5% is a conservative estimate. The current virus RNA test-
ing capacities in continental Europe are up to 300 tests per 
100,000 people per day (e.g., in Switzerland 2020/21). If 
equipment and supplies are not limiting for testing, such as 
by using a quantitative polymerase chain reaction (qPCR) 
method, we estimated that up to around 1000 samples per 
machine can be analysed within a time frame of 8 hours. 
Mass testing (i.e., if > 500− 1,000 tests per 100,000 peo-
ple per day would be required) could be realisable by tak-
ing advantage of next-generation RNA extraction, reverse 
transcription and sequencing (combined with reverse tran-
scription and PCR) to detect virus RNA in infected people. 
For example, in [33] a massively parallel diagnostic assay 
is described for testing up to 19,200 patient samples per 
work flow. In principle, such very high-throughput ap-
proaches can be parallelised (and potentially optimised) to 
provide millions of tests per day. In reality, the logistics of 
collecting these millions of samples would be a major hur-
dle. Nevertheless, estimating these numbers in a quantita-
tive fashion is instructive and might help to modify the mit-
igation strategy. First, we wanted to assess how many tests 
were necessary to stop the virus spread (i.e., to reach 
ℛeff ≤ 1 if no other mitigation strategies were applied). 
Obviously, the hypothetical scenario that the whole sus-
ceptible population is screened by a test with perfect sensi-
tivity at once, would lead to the trivial disease-free state. 
However, this is an unrealistic scenario, not only because 
of a lack of test capacity, but also due to logistic and com-
pliance concerns, and false negative test results. Therefore, 
it is only realistic to assume that individuals would be 
tested according to different schedules. Let us consider a 
situation where each person is tested once every 𝑁𝑁 days. 
Note that this is equivalent to testing a random fraction of 
1/𝑁𝑁 of the susceptible population every day. Therefore we 

focussed on the set {1, . . . ,𝑁𝑁} of days. An individual is in-
fected at some random time 𝑥𝑥. To characterise 𝑥𝑥, we as-
sumed that the likelihood of getting infected does not vary 
much during these days, which is justified if testing is ap-
plied at an intensity such that ℛeff ≈ 1. Hence 𝑥𝑥 becomes 
uniformly distributed in the interval [1,𝑁𝑁]. The time delay 
between infection and detection would then be 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁 −
𝑥𝑥 + 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Finally, we sampled the latency time 𝑥𝑥𝑙𝑙 from a 
log-normal distribution with 5.34 ± 2.7249 (see the sec-
tion on “Parameter estimation” above). 
Intuitively, by conducting mass testing on individuals who 
are neither self-quarantined nor hospitalised, positive cases 
will be detected from exposed, asymptomatic and mild-
symptomatic compartments. To quantify each detection 
rate, it is essential to compare detection time versus the la-
tency period; therefore we consider the effect of testing on 
these three compartments individually: 

Exposed 

When an infected individual is tested during the latency pe-
riod, they would be detected from the exposed compart-
ment. This translates into an event set 𝒜𝒜: 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝑥𝑥𝑙𝑙. The 
rate of detecting individuals by testing from the exposed 
population is then 
          𝑘𝑘𝑒𝑒 = (1 − 𝜂𝜂)𝒫𝒫𝒜𝒜𝔼𝔼𝒜𝒜[𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑−1 ]                     (3) 

where 𝑃𝑃𝒜𝒜 and 𝔼𝔼𝒜𝒜  denote frequency of such events and con-
ditional expectation, respectively. 

Mildly symptomatic 

When testing is after the latency period, there are two types 
of infection development. According to our setting, two 
thirds of the infected individuals would develop symptoms 
that would lead them to self-isolate. Please note, that the 
fraction of infected individuals who remain asymptomatic 
may range between 33% and 50% [19, 24, 34]; see table 2. 
Therefore, we also tested scenarios where 60% or 50% of 
infected develop symptoms; see fig. 9 below.  These indi-
viduals may turn to testing centres in order to detect the 
virus and incentivise the decision for self-quarantine. They 
can be detected by testing and therefore sent into quaran-
tine within 1½ days after becoming infectious. The rele-
vant event set is ℬ: (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 𝑥𝑥𝑙𝑙) ∩ (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ (𝑥𝑥𝑙𝑙 + 3/2)), 
from which one obtains 

          𝑘𝑘𝑠𝑠 = 2
3

(1 − 𝜂𝜂)𝒫𝒫ℬ𝔼𝔼ℬ[𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑−1 ]  (4) 

for the test detection rate of mild-symptomatic persons. 

Asymptomatic 

This is arguably the most important group to consider, be-
cause they will not know that they are infected and they 
can make up as much as 50% of the entire group of the 
infected people. Importantly, they are very hard to identify 
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using the current mitigation strategies, including app-based 
contact tracing [24]. We discuss this in more detail, below. 
Testing may catch asymptomatic cases. These individuals 
will not have symptoms and would recover after 11.5 days. 
In the first 1½ days they share the same time-line as mildly 
symptomatic cases. Therefore, in this scenario two event 
sets ℬ: (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≥ 𝑥𝑥𝑙𝑙) ∩ (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ (𝑥𝑥𝑙𝑙 + 3/2)) and 𝒞𝒞: ((𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≥
(𝑥𝑥𝑙𝑙 + 3/2)) ∩ (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ (𝑥𝑥𝑙𝑙 + 11.5)) become relevant. We 
obtained the detection rate from the asymptomatic com-
partment from 

𝑘𝑘𝑎𝑎 = 1
3

(1 − 𝜂𝜂)𝒫𝒫ℬ𝔼𝔼ℬ[𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑−1 ] + (1 − 𝜂𝜂)𝒫𝒫𝒞𝒞𝔼𝔼𝒞𝒞[𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑−1 ].    (5) 

To construct a map from testing frequency 𝑁𝑁−1 to ℛ𝑒𝑒𝑒𝑒𝑒𝑒, 
we needed to find out how ℛ𝑒𝑒𝑒𝑒𝑒𝑒 varies with respect to the 
test detection rates 𝑘𝑘𝑒𝑒,𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑠𝑠. Hence, we defined ℛ𝑒𝑒𝑒𝑒𝑒𝑒

𝑤𝑤𝑤𝑤  
as the reproduction number subject to testing. In the section 
on “Basic and effective reproduction numbers” in the ap-
pendix, the effective reproduction number is computed for 
scenarios involving repetitive mass testing. It is important 
to emphasise that, in contrast to social distancing, the effect 
of testing on the reproduction number is not through reduc-
ing the infection rate (i.e., 𝑓𝑓 remains the same), but rather 
through transfer of infected individuals to quarantine, ei-
ther at home or in hotel rooms, or in care units with strict 
hygiene barriers, all of which would reduce the likelihood 
of transmission (i.e., changing 𝑉𝑉 to 𝑉𝑉�). 

Enhanced testing 
To achieve the discussed detection rates 𝑘𝑘𝑒𝑒,𝑎𝑎,𝑠𝑠 and corre-
sponding reductions in ℛ0, the entire undetected popula-
tion has to be tested once every 𝑁𝑁 days (or equivalently 
every day a random fraction of 1/𝑁𝑁). To improve effi-
ciency of testing, i.e., the probability per test of getting a 
positive result, the sample population can be reduced by 
the following approaches. 

Serological testing 

With serological testing, we can remove the recovered pop-
ulation from the pool of undetected individuals, and thus 
the same number of positive test results can be achieved 
with fewer tests. However, during an early stage of the pan-
demic the relative size of the undetected recovered com-
pared with the whole undetected population is very small, 
and therefore the gain would be negligible. Nevertheless, 
this approach can easily be integrated into any mass testing 
strategy, for example by serological tests 1 day before the 
PCR tests in order to exclude immune individuals. Over 
time, the numbers of people with previously detected anti-
body titres will increase. This will reduce the number of 
virus RNA tests required. 

Testing high prevalence sub-populations 

A more effective approach would be based on an inference 
model (e.g., by using information from contact tracing), 
which allows the sample population 𝒟𝒟 to be divided into 
one group 𝒟𝒟�  with a higher percentage of infected individ-
uals and the remainder. For the following analysis we de-
noted the size of 𝒟𝒟 with 𝑛𝑛 and that of 𝒟𝒟�  with 𝑛𝑛�. Further, 𝑝𝑝� 
is the fraction of infected persons in 𝒟𝒟�  and 𝑝𝑝 that in 𝒟𝒟. 
Testing every person in 𝒟𝒟�  at a frequency of 1/𝑁𝑁 would 
require 𝑛𝑛� /𝑁𝑁 tests per day, as opposed to 𝑛𝑛/𝑁𝑁 tests, if the 
whole sample population was tested. The numbers of pos-
itive test results per day, on the other hand, would be 
𝑃𝑃� (𝑁𝑁) = 𝑝𝑝� 𝑛𝑛� /𝑁𝑁 and 𝑃𝑃(𝑁𝑁) = 𝑝𝑝𝑝𝑝/𝑁𝑁, respectively. In order 
to obtain the same number of positive results from the 
group 𝒟𝒟�  as from 𝒟𝒟, the test interval 𝑁𝑁 to 𝑁𝑁�  has to be re-
duced, such that 𝑃𝑃� (𝑁𝑁�) = 𝑃𝑃(𝑁𝑁). This gives 𝑁𝑁� = 𝑁𝑁(𝑝𝑝�𝑛𝑛�)/
(𝑝𝑝𝑝𝑝) and one can conclude that the number of tests re-
quired to achieve the same overall quota is reduced by the 
factor 

          𝑟𝑟 = 𝑛𝑛�/𝑁𝑁�

𝑛𝑛/𝑁𝑁
= 𝑁𝑁𝑛𝑛�

𝑁𝑁�𝑛𝑛
= 𝑝𝑝

𝑝𝑝�
.   (6) 

In order for this result to be practically meaningful 𝑁𝑁� ≥ 1, 
which translates into the requirement that 

          𝑛𝑛�
𝑛𝑛
≥ 𝑟𝑟

𝑁𝑁
.             (7) 

In short, if one can identify a group 𝒟𝒟� ⊂ 𝒟𝒟 larger than 
𝑛𝑛𝑛𝑛/𝑁𝑁 for which the percentage of infections is higher than 
in 𝒟𝒟 by a factor of 𝑟𝑟−1, then the number of tests needed to 
obtain the same reproduction number reduces by the factor 
𝑟𝑟. 

Results 
Figure 2 shows the model results for a period of 1 year 
(without mitigation strategies) with ℛ0 ∈ {1.9,2.4,2.9} (re-
spective plots from left to right). Dashed lines represent the 
immune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected 
(𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines the deceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) popu-
lation. 
For bigger basic reproduction numbers, one can observe a 
larger immune population in the endemic state (right half 
of the graphs), and a higher and sharper peak in the number 
of infections. For the remaining studies we took ℛ0 = 2.4 
as the base case.  
The left and right plots in figure 3 show base case predic-
tions with and without limitations in intensive care units. 
In both cases, 87% of the endemic population is immune, 
which compares well with 81% infected people predicted 
by [19] for the UK and US populations in the absence of 
mitigation plans. Without intensive care, the chance of dy-
ing for strong symptomatic people is roughly two-fold 
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higher than that with proper treatment (4.6 vs 2.3%). It is 
important to emphasise that in most European countries 
saturation of intensive care units did not occur owing to 
lockdown enforcement and other measures, especially not 
during the second wave. Although these numbers are sub-
ject to errors (mainly due to uncertainties in the parameter 
values and efforts to increase intensive care and respirator 
availability), it can be expected that the relevant dynamics 
are captured to a high degree. If the results are compared 
with the base case, much insight can be gained, for exam-
ple into how social distancing and mass testing can be com-
bined most effectively. 

Mass testing 
Using Monte-Carlo to estimate the test detection rates 
given by equations (3) and (4), one can compute the ratio 
ℛeff
𝑤𝑤𝑤𝑤/ℛ0 with respect to the testing frequency 𝑁𝑁−1. The 

plots in figures 4a and 4b show the number of tests required 
to reach ℛeff = 1. This depends on the time from sampling 
to result (note: we assumed immediate notification and im-
mediate implementation of quarantine measures upon no-
tification) and on the false negative rate (5% in fig. 4a and 
15% in fig. 4b). The horizontal green dashed lines indicate 
ℛeff
𝑤𝑤𝑤𝑤 = 1, if the virus reproduction rate without any mitiga-

tion is ℛ0 = 2.4.

Figure 2: Predictions for a period of 1 year. with ℛ0 = 1.9 (a), ℛ0 = 2.4 (b) and ℛ0 = 2.9 (c). Dashed lines represent the im-
mune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines the deceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) population. The values are 
in % of the initial population size and are plotted over number of days. 

 

 

Figure 3: Base case model predictions (with ℛ0 = 2.4) for a period of 1 year; left with intensive care unit limitation and right 
without. Dashed lines represent the immune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines the de-
ceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) population. The values are in % of the initial population size and are plotted over number of days. 
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Reducing the initial ℛ0 = 2.4 to 1 would the entire suscep-
tible population to be tested roughly once every 8 days, if 
the false negative rate is 5%, if testing results are available 
after 1 day and quarantine of the detected individuals com-
mences immediately. For half a day delay, the testing in-
terval can be increased to roughly 12 days and for a delay 
of 1½ days it would be 5 days. This information is im-
portant for optimising technical development decisions. 
The overall testing capacity needs to be larger if the testing 
method requires more time (fig. 4) or if there are delays in 
case notification or implementation of quarantine 
measures. This could be justified if a low-cost technique 
(such as next generation sequencing, pool-testing or suffi-
ciently sensitive antigen tests) could be devised [33]. 
To gain further insight into robustness and effectivity of 
repetitive mass testing, we set our core model parameters 
for the base scenario to a 1 day delay time and a 5% false 
negative rate. The mass testing results are shown in figure 
5, subject to variations of the ratio of asymptomatic to 
symptomatic cases, infectiousness of asymptomatic cases, 
their recovery time and efficacy of isolation. Two observa-
tions can be made here. 
First, as the contribution of the asymptomatic cases be-
comes more significant in the composition of ℛ0, mass 
testing becomes more effective. This is due to the fact that 
the pre-symptomatic cases spend a much shorter time un-
detected in comparison with the asymptomatic ones. 
Therefore, in order to reduce their transmission in that short 
period of time, the testing frequency has to be significantly 
enhanced. On the other hand, once asymptomatic cases 
make a larger contribution in the virus transmission chain, 

mass testing has a longer time span to detect the virus car-
riers. In other words, for a fixed ℛ0, if we stretch the infec-
tiousness period of an infected case, there will be a higher 
chance that this case would be detected by mass testing. 
The second observation here is that the efficacy of isolation 
of the positive cases plays a direct and important role in the 
success of a mass testing campaign. Consider ℰ to be the 
ratio of infectiousness of isolated cases with respect to the 
symptomatic ones. It is straightforward to see that each de-
tection rate is reduced by the factor (1− ℰ), resulting in 
less efficient mass testing as shown in figure 5c. 

Mitigation study 
In this section we investigate the effect of two different 
mitigation strategies: social distancing and mass testing. It 
is important to point out that our results have to be seen 
relative to the base case without mitigation. As the esti-
mated parameters all come with uncertainty, the numerical 
results are subject to quantitative errors, but they provide a 
qualitative picture of the essential dynamics. 
The first mitigation strategy tested with our model was so-
cial distancing for 150 days (from day 50 till day 200); see 
figures 6b and 6c. Dashed lines represent the immune 
(𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) 
and solid lines the deceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) populations, on the up-
per panel with linear and in the middle panel with logarith-
mic scaling. The grey shading marks the “social distanc-
ing” phases. For comparison, figure 6a shows the base 
case. For the case in figure 6b, the infection rate was re-

Figure 4: Mass testing. The number of tests required to reach ℛeff = 1 depends on the time from sampling to result. A mitigation 
strategy relying on mass testing alone is assumed and we computed the number of tests performed per day, which are needed to 
achieve a particular test-speed dependent ℛeff

𝑤𝑤𝑤𝑤/ℛ0 ratio; for (a) 5% and (b) 15% false negative test results are assumed. The 
green lines indicate ℛeff

𝑤𝑤𝑤𝑤 = 1. Test speeds were: 0.5 days (black line), 1 day (orange line), 1.5 days (blue line) and 2 days (purple 
line). 
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duced by 58%, corresponding to a virus reproduction num-
ber of ℛeff = 1. In the logarithmic plot the number of in-
fected persons remains constant during the social distanc-
ing phase (as expected when ℛeff = 1 and 𝑛𝑛𝑠𝑠 ≈ 𝑛𝑛𝑠𝑠0), but 
the number of cases and deaths keep increasing. Only a 
very small fraction of the endemic population is immune. 
With some delay after social distancing is abandoned, the 
numbers rise dramatically like in the base case, but about 
150 days later. 
Figure 6c shows the case with a 71% lower infection rate 
(corresponding to an effective reproduction number of 
0.7). This time the reproduction number ℛeff is smaller 
than 1 and therefore the number of infected persons de-
clines exponentially, seen in the logarithmic plot. After the 
social distancing phase there is a delay of approximately 3 
months before the numbers climb dramatically. In both 

cases the endemic state is almost the same as in the base 
case, i.e., temporary social distancing only delays the main 
outbreak. Thus, social distancing for a limited time alone 
is insufficient for resolving the basic problem. The success 
of a containment strategy eventually relies on discovering 
an effective and cheap vaccine in due time. Additional in-
formation regarding intensive care unit capacity is pro-
vided in the lower panel logarithmic plots of figure 6; 
shown are 20% of the strong symptomatic population (dot-
ted lines) together with the intensive care unit capacity of 
0.008% (horizontal long dashed lines). 
The second mitigation strategy we investigated was mass 
testing with isolation of detected cases over the same pe-
riod, that is, from day 50 till day 200. Figures 7b and 7c 
show the results obtained with an average testing interval 
of 7.92 days with 1 day processing time, which reduces 

Figure 5: Sensitivity analysis of mass testing with 1 day delay time and a 5% false negative rate. A mitigation strategy relying on 
mass testing alone is assumed and we computed the number of tests performed per day, which are needed to achieve a particu-
lar ℛeff

wt/ℛ0 ratio; for (a) fraction of asymptomatic cases: 50% (black line), 44% (orange line), 39% (blue line) and 33% (purple 
line); for (b) infectiousness of asymptomatic cases compared to symptomatic ones: 100% (black line), 70% (orange line), 40% 
(blue line) and 10% (purple line); for (c) infectiousness of isolated cases compared to symptomatic ones: 0% (black line), 10% 
(orange line), 20% (blue line) and 30% (purple line); for (d) recovery time of asymptomatic cases: 15 days (black line), 12 days 
(orange line), 10 days (blue line) and 8 days (purple line). The green lines indicate ℛeff

wt = 1. 
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ℛeff to 1 (with 𝑘𝑘𝑒𝑒 = 0.2097, 𝑘𝑘𝑠𝑠 = 0.0242 and 𝑘𝑘𝑎𝑎 =
0.0506), and once with a testing interval of 2.68 days with 
1 day processing time, which results in ℛeff = 0.7 (with 
𝑘𝑘𝑒𝑒 = 0.5417, 𝑘𝑘𝑠𝑠 = 0.0102 and 𝑘𝑘𝑎𝑎 = 0.0052). Dashed 
lines represent the immune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the 
infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines the deceased 
(𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) populations, on the upper panel with linear and in 
the middle panel with logarithmic scaling. The gray shad-
ing marks the “mass testing” phases. These results are very 

similar as those shown in figure 6. For comparison the base 
case is shown in figure 7a. 
This demonstrates that mass testing would have a similar 
effect as social distancing, and provided effective testing 
methods become available, this approach has the important 
advantage that the world’s economy would not come to a 
halt. As in the case of social distancing, unless one assumes 
that the virus can be defeated completely and globally, test-
ing would have to be continued until an effective vaccine 
becomes widely available. Again, information regarding 

Figure 6: Social distancing from day 50 to day 200. (a) base case; (b) with a 58% lower infection rate (corresponding to a repro-
duction number of 1); (c) with a 71% lower infection rate (corresponding to a reproduction number of 0.7). Dashed lines repre-
sent the immune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines the deceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) populations, on 
the upper panel with linear and in the middle panel with logarithmic scaling. The lower panel logarithmic plot shows 20% of the 
strongly symptomatic population (dotted lines) together with the intensive care unit capacity of 0.008% (horizontal long dashed 
lines). The values are in % of the initial susceptible population size and are plotted over number of days. The grey shading marks 
the “social distancing” phases. 
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intensive care unit capacity is provided in the lower panel 
logarithmic plots of figure 7. 
Finally, we investigated combination of social distancing 
and mass testing. Figure 8b shows a combination of social 
distancing followed by mass testing. From day 50 to 200, 
a 71% lower infection rate due to social distancing is con-
sidered, followed by a period of 100 days with a testing 
interval of 7.92 days with 1 day processing time. 

Extreme social distancing brings the number of infections 
down and moderate mass testing keeps the values constant. 
Again, after the mass testing phase ends there is a delayed 
outbreak leading to almost the same endemic state as in the 
base case, which is shown in figure 8a. Figure 8c shows 
mass testing and social distancing at the same time from 
day 50 till day 300. It can be seen that reducing the infec-
tion rate by only 33%, a very long testing interval of 22.46 
days and 1 day processing time is sufficient in this case to 
reduce the reproduction number to 1 and thus keep the size 

Figure 7: Mass testing from day 50 to day 200. (a) base case; (b) with a testing interval of 7.92 days with 1 day processing time 
(corresponding to a reproduction number of 1); (c) with a testing interval of 2.68 days with 1 day processing time (reproduction 
number of 0.7). Dashed lines represent the immune (𝑛𝑛𝑠𝑠0 − 𝑛𝑛𝑠𝑠), dash-dotted lines the infected (𝑛𝑛𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) and solid lines 
the deceased (𝑛𝑛𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡) populations, on the upper panel with linear and in the middle panel with logarithmic scaling. The lower 
panel logarithmic plot shows 20% of the strongly symptomatic population (dotted lines) together with the intensive care unit 
capacity of 0.008% (horizontal long dashed lines). The values are in % of the initial susceptible population size and are plotted 
over number of days. The grey shading marks the “mass testing” phases. 
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of the infected population constant. The lower panel loga-
rithmic plots of figure 8 show 20% of the strongly sympto-
matic population (dotted lines) together with an intensive 
care unit capacity of 0.008% (horizontal long dashed 
lines). Overall, this shows that the “edge” gained by social 
distancing can be maintained by shifting mitigation to-
wards moderate mass testing. 

Contact tracing 
Contact tracing has been proposed to slow down or even 
stabilise the pandemic [24, 35, 36]. The strategy is that 
symptomatic individuals who go into self-quarantine will 

use indirect contact information (including that from an 
app) to alert all proximity contacts of the past 2 weeks. In 
practice, either symptomatic individuals contact their close 
relatives and friends with whom they had contact, or other 
unknown contacts will be contacted by the authorities or 
by the app. It is clear that in order to make contact tracing 
work, prevalence and infectiousness must be low before 
symptoms arise. The latter turned out not to be the case for 
COVID-19, as infectiousness for up to 4–5 days before 
symptoms is possible [2], and a large fraction of cases re-
mains asymptomatic with an infectious period of approxi-
mately 11–12 days [24]. 

Figure 8: Mass testing combined with social distancing. (a) base case; (b) social distancing phase from day 50 to day 200 with 
71% lower infection rate followed by mass-testing period of 100 days with a testing interval of 7.92 days and one day processing 
time; (c) social distancing and mass testing at the same time from day 50 till day 300 with a 33% lower infection rate and a test-
ing interval of 22.46 days and one day processing time. 
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Here we present a simple analysis to find an upper bound 
on effectiveness of contact tracing. An idealised setting 
was considered, where we assumed that all symptomatic 
individuals participating in the scheme would perfectly 
self-isolate themselves after notifying the contact tracing 
system. Furthermore, we assumed that the notice-to-quar-
antine time is negligible [24, 35]. To parametrise the miti-
gation power of contact tracing, suppose 𝑟𝑟1 is the fraction 
of asymptomatic individuals and 𝑟𝑟2 is their infectiousness 
in comparison with symptomatic ones. The effective repro-
duction number resulting from contact tracing is derived 
below, for variables 𝑟𝑟1 and 𝑟𝑟2. 

For both 𝑟𝑟1 and 𝑟𝑟2 different values are suggested in the lit-
erature. For 𝑟𝑟1, one finds 1/3 in [19], 0.4 in [24] and 0.5 in 
[34], and for 𝑟𝑟2 one finds 0.1 in [24], 2/3 in [19] and 1 in 
[37]. Based on these published numbers we considered 
𝑟𝑟1 ∈ [0.3,0.5] and 𝑟𝑟2 ∈ [0.1,0.5]. From equation (34) with 
our base case values 𝑟𝑟1 = 1/3 and 𝑟𝑟2 = 0.5, one obtains 
𝛽𝛽 = 0.67 (1/day), which is consistent with our previous 
parameter estimation. Based on our previous assumptions 
and on the values in table 2 we obtained 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑎𝑎−1 = 11.5 
days, 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝜉𝜉𝑚𝑚𝑚𝑚

−1 = 1.5 days and 𝑡𝑡𝑚𝑚𝑚𝑚 = 𝑆𝑆(𝑠𝑠)𝜉𝜉𝑠𝑠𝑠𝑠−1 = 10. Of 
interest here is the fraction 

          𝜅𝜅 = ℛ0
𝑠𝑠𝑠𝑠𝑠𝑠

ℛ0
= (1−𝑟𝑟1)(𝑡𝑡𝑖𝑖𝑖𝑖+𝑡𝑡𝑚𝑚𝑚𝑚/10)

𝑟𝑟1𝑟𝑟2𝑡𝑡𝑖𝑖𝑖𝑖+(1−𝑟𝑟1)(𝑡𝑡𝑖𝑖𝑖𝑖+𝑡𝑡𝑚𝑚𝑚𝑚/10)
  (8) 

of infected people who were infected by symptomatic 
cases, since this is the maximum relative reduction of ℛ0 
that can be achieved by tracing contacts of symptomatic 
individuals (by classical contact tracing or by using an app) 
with a success rate of 𝜁𝜁 = 1. Ignoring secondary infections 
(their probability becomes around 0.8%), we obtained the 
approximation 

            ℛeff
𝑐𝑐𝑐𝑐 ≈ [1− 𝜁𝜁𝜁𝜁]ℛ0                         (9) 

for the effective reproduction number, if contact tracing is 
employed. 
Figures 9a and 9b show the performance of contact tracing 
for different values of 𝑟𝑟1, 𝑟𝑟2 and 𝜁𝜁. The numbers attached 
to the isolines refer to the ratio ℛeff

𝑤𝑤𝑤𝑤/ℛ0, and the bold con-
tours depict combinations of 𝑟𝑟2 and 𝜁𝜁 for which ℛeff is re-
duced from 2.4 to ℛeff

𝑐𝑐𝑐𝑐 = 1. The effect of contact tracing, 
if applied only to identify contacts with symptomatic per-
sons, is limited to optimistic assumptions concerning the 
parameters dictating the COVID-19 pandemic and strongly 
depends on size and infectiousness of the asymptomatic 
population relative to size and infectiousness of the symp-
tomatic one. Even if the most optimistic assumptions 
would hold, more substantial reductions of ℛeff would be 
desirable in order to accelerate the end of the pandemic 
(e.g., even in the absence of effective therapies or vac-
cines). For our base parameters of 𝑟𝑟1 = 1/3 and 𝑟𝑟2 = 1/2, 
contact tracing alone would not lead to an effective repro-
duction number of 1 (see fig. 9a at 50% infectiousness). 

Discussion 
As more and more affected populations are focusing on 
risk mitigation plans for COVID-19, it is important to iden-
tify strategies to mitigate and eventually suppress the pan-
demic. For this reason, it is crucial to understand the mech-
anisms underlying this pandemic-spread. Outcomes of so-
cial distancing and mass testing are investigated in this pa-
per. It was found that the latter can significantly reduce the 
percentage of people getting infected and the death toll. It 

Figure 9: Contact tracing: Effectiveness of contact tracing as a function of relative infectiousness of asymptomatic cases (𝑟𝑟2) and 
the success rate of contact tracing (𝜁𝜁). (a) 33% of infected persons are asymptomatic (𝑟𝑟1 = 0.33); (b) 50% of infected persons 
are asymptomatic (𝑟𝑟1 = 0.5). The numbers attached to the isolines refer to the ratio ℛeff

𝑤𝑤𝑤𝑤/ℛ0, and the bold contours depict 
combinations of 𝑟𝑟2 and 𝜁𝜁 for which ℛeff is reduced from 2.4 to ℛeff

𝑐𝑐𝑐𝑐 = 1. In all computations, notice-to-quarantine time was 
ignored and it was assumed that quarantined contacts are not infectious. 
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is important to emphasise here that repetitive testing of in-
dividuals without symptoms (if sufficiently large numbers 
of tests are available and can be applied) has a much 
stronger effect on the reproduction number than testing 
people with symptoms, since in most cases the latter are 
contained. As testing capacities improve, our approach 
may help to decide by how much social distancing 
measures can be relaxed. Whereas social distancing is cur-
rently essential, it is of utmost importance that testing ca-
pabilities are upgraded such that they cover large portions 
of affected populations in the near future. 
From our analysis we conclude that testing every individ-
ual without symptoms every few days (with our assump-
tions roughly every week) would reduce the reproduction 
number of COVID-19 to 1 and thereby stabilise the pan-
demic, which is very promising. After a while, fewer and 
fewer infected people (who spread the virus) will be de-
tected. In this way, continued large scale testing can verify 
the success of the mitigation strategy. Mass testing should 
be continued beyond this point, though at a reduced fre-
quency. This would allow determination of whether the 
fraction of infected persons tends to increase. If this were 
the case, testing frequencies should again be ramped up. In 
any case, unless the virus can be defeated completely and 
globally by reducing the number of infected individuals to 
zero, there is a risk of COVID-19 re-emergence after such 
mitigation measures are abandoned. 
In this context, the estimates for mass testing that are pro-
vided by our analysis should be regarded as estimates for 
the upper boundary of the tests needed. This upper bound-
ary test number can be used as a guideline for development 
of mass testing technology and logistics. For further im-
provements of the predictions a more reliable data base for 
parameter tuning would be necessary. The model itself can 
be refined by accounting for different age groups and la-
tency, which would involve additional parameters. In the 
future it would be of utmost interest to further investigate 
combined strategies such as social distancing for old and 
endangered persons and mass testing for the remaining 
population, including the work force. Ideally, contact trac-
ing and repetitive testing should be combined with some 
sort of social distancing to successfully suppress the virus 
spread and to keep the death toll low. 
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Appendix: Supplementary material 

System of ordinary differential equations 
The SEIR compartmental model consistent with the flowchart given in figure 1 takes the form 

 𝑛̇𝑛𝑠𝑠 = −𝛽𝛽 �
𝑛𝑛𝑖𝑖𝑖𝑖
2

+ 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑛𝑛𝑚𝑚𝑚𝑚�
𝑛𝑛𝑠𝑠
𝑛𝑛𝑠𝑠0

 −  𝑄𝑄
𝑛𝑛𝑠𝑠
𝑛𝑛𝑠𝑠0

,                                                  

𝑛̇𝑛𝑒𝑒 = 𝛽𝛽(𝑛𝑛𝑖𝑖𝑖𝑖/2 + 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑛𝑛𝑚𝑚𝑚𝑚)
𝑛𝑛𝑠𝑠
𝑛𝑛𝑠𝑠0

 −  (𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠)𝑛𝑛𝑒𝑒  +  𝑄𝑄
𝑛𝑛𝑠𝑠
𝑛𝑛𝑠𝑠0

 −  𝑘𝑘𝑒𝑒𝑛𝑛𝑒𝑒,

𝑛̇𝑛𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑎𝑎𝑛𝑛𝑒𝑒  −  𝛾𝛾𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖  −  𝑘𝑘𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖,                                                                     
𝑛̇𝑛𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑠𝑠𝑛𝑛𝑒𝑒  −  𝜉𝜉𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑖𝑖  −  𝑘𝑘𝑠𝑠𝑛𝑛𝑖𝑖𝑖𝑖,                                                                 
𝑛̇𝑛𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖,                                                                                                         
𝑛̇𝑛𝑚𝑚𝑚𝑚 = 𝜉𝜉𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖𝑖𝑖  −  (𝛾𝛾𝑚𝑚𝑚𝑚 + 𝜉𝜉𝑠𝑠𝑠𝑠)𝑛𝑛𝑚𝑚𝑚𝑚,                                                                 
𝑛̇𝑛𝑠𝑠𝑠𝑠 = 𝜉𝜉𝑠𝑠𝑠𝑠𝑛𝑛𝑚𝑚𝑚𝑚  −  (𝛾𝛾𝑠𝑠𝑠𝑠 + 𝜃𝜃)𝑛𝑛𝑠𝑠𝑠𝑠,                                                                        
𝑛̇𝑛𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠  +  𝛾𝛾𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚                 and                                                           
𝑛̇𝑛𝑑𝑑 = 𝜃𝜃𝑛𝑛𝑠𝑠𝑠𝑠 .                                                                                                           

 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

Note that 𝜖𝜖 ∈ [0,1] is the transmission reduction factor of the self-isolated individuals. It is assumed that those infected 
persons who were detected by testing or hospitalized infect much less due to strong isolation and other precautions. 
Therefore, their effect on the infection rate is neglected here. In order to parametrize the model, besides the rates 𝛽𝛽, 𝛼𝛼𝑎𝑎, 
𝛼𝛼𝑠𝑠, 𝛾𝛾𝑎𝑎, 𝛾𝛾𝑚𝑚𝑚𝑚, 𝛾𝛾𝑠𝑠𝑠𝑠, 𝜉𝜉𝑚𝑚𝑚𝑚, 𝜉𝜉𝑠𝑠𝑠𝑠 and 𝜃𝜃, also the relative rate 𝑄𝑄 of infections from outside, i.e., by travel or from the animal world, 
has to be determined. Further, the initial values of 𝑛𝑛𝑠𝑠(𝑡𝑡), 𝑛𝑛𝑒𝑒(𝑡𝑡), 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑛𝑛𝑟𝑟𝑟𝑟(𝑡𝑡), 𝑛𝑛𝑚𝑚𝑚𝑚(𝑡𝑡), 𝑛𝑛𝑠𝑠𝑠𝑠(𝑡𝑡), 𝑛𝑛𝑟𝑟𝑟𝑟(𝑡𝑡) and 𝑛𝑛𝑑𝑑(𝑡𝑡) 
have to be chosen. The variables 𝑛𝑛�𝑒𝑒 (𝑡𝑡), 𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡), 𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡), 𝑛𝑛�𝑟𝑟𝑟𝑟 (𝑡𝑡), 𝑛𝑛�𝑚𝑚𝑚𝑚 (𝑡𝑡), 𝑛𝑛�𝑠𝑠𝑠𝑠 (𝑡𝑡), 𝑛𝑛�𝑟𝑟𝑟𝑟 (𝑡𝑡) and 𝑛𝑛�𝑑𝑑 (𝑡𝑡) denote the respective 
numbers of persons who were tested positive and thus are removed from transmission. The detection rates of exposed 
(𝑛𝑛𝑒𝑒), asymptomatic (𝑛𝑛𝑖𝑖𝑖𝑖) and mild symptomatic (𝑛𝑛𝑖𝑖𝑖𝑖) persons due to testing are proportional to 𝑘𝑘𝑒𝑒, 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑠𝑠, respec-
tively. These individuals are then accounted for by the respective numbers 𝑛𝑛�𝑒𝑒 (𝑡𝑡), 𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡) and 𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡); see figure S1. Note 

Figure S1: Graph showing the dependencies of the compartments describing the dynamics of the positively tested people. 
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that the graph in figure S1 is very similar as the one in figure 1, except that there is no compartment for susceptible persons 
(since by definition a susceptible person cannot be detected infected) and that there exist sources due to testing (dotted 
arrows) instead of sinks. 
To account for the dynamics with testing, the system in equations (10)-(18) has to be augmented by the ordinary differ-
ential equations 

 𝑛𝑛�̇𝑒𝑒 = −(𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠)𝑛𝑛�𝑒𝑒  +  𝑘𝑘𝑒𝑒𝑛𝑛𝑒𝑒,          
𝑛𝑛�̇𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑎𝑎 𝑛𝑛�𝑒𝑒  −  𝛾𝛾𝑎𝑎 𝑛𝑛�𝑖𝑖𝑖𝑖  +  𝑘𝑘𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖,       
𝑛𝑛�̇𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑠𝑠 𝑛𝑛�𝑒𝑒  −  𝜉𝜉𝑚𝑚𝑚𝑚 𝑛𝑛�𝑖𝑖𝑖𝑖  +  𝑘𝑘𝑠𝑠𝑛𝑛𝑖𝑖𝑖𝑖,   
𝑛𝑛�̇𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑎𝑎 𝑛𝑛�𝑖𝑖𝑖𝑖,                                           
𝑛𝑛�̇𝑚𝑚𝑚𝑚 = 𝜉𝜉𝑚𝑚𝑚𝑚 𝑛𝑛�𝑖𝑖𝑖𝑖  −  (𝛾𝛾𝑚𝑚𝑚𝑚 + 𝜉𝜉𝑠𝑠𝑠𝑠)𝑛𝑛�𝑚𝑚𝑚𝑚 ,   
𝑛𝑛�̇𝑠𝑠𝑠𝑠 = 𝜉𝜉𝑠𝑠𝑠𝑠 𝑛𝑛�𝑚𝑚𝑚𝑚  −  (𝛾𝛾𝑠𝑠𝑠𝑠 + 𝜃𝜃)𝑛𝑛�𝑠𝑠𝑠𝑠,         
𝑛𝑛�̇𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑠𝑠𝑠𝑠 𝑛𝑛�𝑠𝑠𝑠𝑠  +  𝛾𝛾𝑚𝑚𝑚𝑚 𝑛𝑛�𝑚𝑚𝑚𝑚             and
𝑛𝑛�̇𝑑𝑑 = 𝜃𝜃 𝑛𝑛�𝑠𝑠𝑠𝑠.                                            

 

(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 

Basic and effective reproduction numbers 
To compute ℛ0, we follow the next generation matrix method [1, 2] and split the dynamics of the infected population into 
the infection driven propagation 𝑓𝑓 and the remainder 𝑉𝑉, i.e., 

 

⎣
⎢
⎢
⎢
⎡
𝑛̇𝑛𝑒𝑒
𝑛̇𝑛𝑖𝑖𝑖𝑖
𝑛̇𝑛𝑖𝑖𝑖𝑖
𝑛̇𝑛𝑚𝑚𝑚𝑚
𝑛̇𝑛𝑠𝑠𝑠𝑠 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0 𝛽𝛽/2 𝛽𝛽 𝜖𝜖𝜖𝜖 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

���������������
𝑓𝑓

⎣
⎢
⎢
⎢
⎡
𝑛𝑛𝑒𝑒
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑚𝑚𝑠𝑠
𝑛𝑛𝑠𝑠𝑠𝑠 ⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠 0 0 0 0
−𝛼𝛼𝑎𝑎 𝛾𝛾𝑎𝑎 0 0 0
−𝛼𝛼𝑠𝑠 0 𝜉𝜉𝑚𝑚𝑚𝑚 0 0

0 0 −𝜉𝜉𝑚𝑚𝑚𝑚 𝜉𝜉𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑚𝑚𝑚𝑚 0
0 0 0 −𝜉𝜉𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝛾𝛾𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎥
⎤

�����������������������������
𝑉𝑉

⎣
⎢
⎢
⎢
⎡
𝑛𝑛𝑒𝑒
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑚𝑚𝑚𝑚
𝑛𝑛𝑠𝑠𝑠𝑠 ⎦

⎥
⎥
⎥
⎤

. (27) 

Note that testing is not considered here, i.e., 𝑘𝑘𝑒𝑒, 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑠𝑠 are zero. The ℛ0 of this system is the spectral radius of 𝑓𝑓𝑉𝑉−1, 
that is, 

 ℛ0 = 𝜌𝜌(𝑓𝑓𝑉𝑉−1) =
𝛽𝛽𝛼𝛼𝑠𝑠

𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠
�
𝛼𝛼𝑎𝑎

2𝛾𝛾𝑎𝑎𝛼𝛼𝑠𝑠
+

1
𝜉𝜉𝑚𝑚𝑚𝑚

+
𝜖𝜖

𝛾𝛾𝑚𝑚𝑚𝑚 + 𝜉𝜉𝑠𝑠𝑠𝑠
� . (28) 

 

To compute ℛeff
𝑤𝑤𝑤𝑤, the main dynamics of the infected population, which can be described by 

[𝑛𝑛𝑒𝑒(𝑡𝑡),𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡),𝑛𝑛𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑛𝑛𝑚𝑚𝑚𝑚(𝑡𝑡), 𝑛𝑛𝑠𝑠𝑠𝑠(𝑡𝑡),𝑛𝑛�𝑒𝑒 (𝑡𝑡),𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡),𝑛𝑛�𝑖𝑖𝑖𝑖 (𝑡𝑡), 𝑛𝑛�𝑚𝑚𝑚𝑚 (𝑡𝑡),𝑛𝑛�𝑠𝑠𝑠𝑠 (𝑡𝑡)]𝑇𝑇, is split into the rate of appearance 𝑓𝑓 of 
new infected individuals and transfer 𝑉𝑉� of infected ones across different compartments, i.e., 

 

𝑓𝑓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 𝛽𝛽/2 𝛽𝛽 𝜖𝜖𝜖𝜖 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (29) 

and 
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𝑉𝑉� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠 + 𝑘𝑘𝑒𝑒 0 0 0 0 0 0 0 0 0

−𝛼𝛼𝑎𝑎 𝛾𝛾𝑎𝑎 + 𝑘𝑘𝑎𝑎 0 0 0 0 0 0 0 0
−𝛼𝛼𝑠𝑠 0 𝜉𝜉𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑠𝑠 0 0 0 0 0 0 0

0 0 −𝜉𝜉𝑚𝑚𝑚𝑚 𝜉𝜉𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑚𝑚𝑚𝑚 0 0 0 0 0 0
0 0 0 −𝜉𝜉𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝛾𝛾𝑠𝑠𝑠𝑠 0 0 0 0 0
−𝑘𝑘𝑒𝑒 0 0 0 0 𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠 0 0 0 0

0 −𝑘𝑘𝑎𝑎 0 0 0 −𝛼𝛼𝑎𝑎 𝛾𝛾𝑎𝑎 0 0 0
0 0 −𝑘𝑘𝑠𝑠 0 0 −𝛼𝛼𝑠𝑠 0 𝜉𝜉𝑚𝑚𝑚𝑚 0 0
0 0 0 0 0 0 0 −𝜉𝜉𝑚𝑚𝑚𝑚 𝜉𝜉𝑠𝑠𝑠𝑠 + 𝛾𝛾𝑠𝑠𝑠𝑠 0
0 0 0 0 0 0 0 0 −𝜉𝜉𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝛾𝛾𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (30) 

which leads to 

 ℛeff
𝑤𝑤𝑤𝑤 = 𝜌𝜌(𝑓𝑓 𝑉𝑉�

−1
) =

𝛽𝛽𝛼𝛼𝑠𝑠
𝛼𝛼𝑎𝑎 + 𝛼𝛼𝑠𝑠 + 𝑘𝑘𝑒𝑒

�
𝛼𝛼𝑎𝑎

2(𝛾𝛾𝑎𝑎 + 𝑘𝑘𝑎𝑎)𝛼𝛼𝑠𝑠
+

1
𝜉𝜉𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑠𝑠

�1 +
𝜖𝜖𝜉𝜉𝑚𝑚𝑚𝑚

𝛾𝛾𝑚𝑚𝑚𝑚 + 𝜉𝜉𝑠𝑠𝑠𝑠
�� . (31) 

Contact tracing 
To analyze the effect of contact tracing on the effective reproduction number, the expected infectiousness 𝛽𝛽� (𝜏𝜏) at time 𝜏𝜏 
after infection plays a central role. By knowing 𝛽𝛽� (𝜏𝜏) we can extract the basic reproduction number as 

 
ℛ0 = � 𝛽𝛽�

∞

0
(𝜏𝜏)𝑑𝑑𝑑𝑑. (32) 

Note that the above equation is consistent with our previous computation of ℛ0 in the linear regime [3]. In our compart-
mental setting shown in Fig. 1 one obtains the expression 

 𝛽𝛽� (𝜏𝜏) = �𝒫𝒫𝑖𝑖
𝑖𝑖∈𝒮𝒮𝑐𝑐

𝛽𝛽�𝑖𝑖 (𝜏𝜏), (33) 

where 𝒫𝒫𝑖𝑖 is the probability that an infected individual is in compartment 𝑐𝑐𝑖𝑖, 𝒮𝒮𝑐𝑐 = {𝑠𝑠, 𝑒𝑒, 𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚, 𝑟𝑟𝑟𝑟, 𝑠𝑠𝑠𝑠, 𝑑𝑑} is the 
index set of all compartments and 𝛽𝛽�𝑖𝑖 (𝜏𝜏) denotes the infectiousness at time 𝜏𝜏 after infection, if the individual is in 𝑐𝑐𝑖𝑖. 
Correspondingly, we denote the time spent in each compartment as 𝑡𝑡𝑖𝑖∈𝒮𝒮𝑐𝑐 . From equations (32) and (33), if we assume that 
infectiousness is constant inside each compartment, we obtain 

 

ℛ0 = 𝛽𝛽𝑟𝑟1𝑟𝑟2𝑡𝑡𝑖𝑖𝑖𝑖�����
ℛ0
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+ 𝛽𝛽(1 − 𝑟𝑟1) �𝑡𝑡𝑖𝑖𝑖𝑖 +
1

10
𝑡𝑡𝑚𝑚𝑚𝑚�

�����������������
ℛ0
𝑠𝑠𝑠𝑠𝑠𝑠

,
 (34) 

where 𝑟𝑟1 = 1 − 𝑆𝑆(𝑚𝑚) is the fraction of exposed people who develop no symptoms (thus remain asymptomatic), and 𝑟𝑟2 is 
the factor by which asymptomatic people are less infectious than symptomatic ones. 

Model implementation 
The dynamic model was implemented with Maple 2018. The calculations for mass testing and contact tracing were im-
plemented with MATLAB and the Statistics Toolbox Release 2018b. The corresponding codes are available on GitHub 
server via https://github.com/gorjih2/STeCC_preliminary. 
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