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Summary

Tumour-infiltrating myeloid-derived suppressor cells (MD-
SCs) are a heterogeneous population of myeloid cells.
The main feature of MDSCs is their ability to suppress T-
cell activation and function, which leads to immunosup-
pressive activity in the tumour microenvironment. High-
er numbers of circulating and tumour-infiltrating MDSCs
have been observed in a large number of patients with
various types of tumour, and are linked to poor prognosis,
especially in hormone-driven tumours. Recently, it has
been demonstrated that the recruitment of MDSCs in
prostate cancer confers resistance to canonical endocrine
therapies, opening a new approach to the treatment of
hormone-driven cancer patients.

Introduction

Hormone-dependent cancers rely on hormones for their
continuous growth and survival. Examples of hormone-
driven cancers are prostate, breast and ovarian cancers.
Over the years, a growing body of literature has reported
that hormone-driven cancers are poorly immunogenic and
their tumour microenvironment is highly infiltrated by
myeloid cells with immunosuppressive activity [1–6]. One
of the most represented myeloid populations in these tu-
mours are myeloid-derived suppressor cells (MDSCs) [2,
4, 7]. Higher numbers of circulating and tumour-infiltrat-
ing MDSCs have been observed in a large number of pa-
tients with various types of tumour, and are linked to poor
prognosis, especially in hormone-driven tumours [1, 6–8].
For more than the last two decades, MDSCs have cap-
tured the spotlight owing to their ability to suppress T-cell
activation and function, which leads to immunosuppres-
sive activity in the tumour microenvironment [9]. Scien-
tists have been investigating MDSCs in both humans and
mice as a major antagonist of antitumour immunity. These
cells are being recognised as immunosuppressive as they
accumulate in almost every type of cancer patient [10, 11].
However, novel roles played by MDSCs in the tumour mi-
croenvironment have recently been defined. This review
will summarise the role of MDSCs in hormone-dependent
cancers and will provide a detailed insight into some of
the recent studies that have provided significant evidence

on unexpected functions played by MDSCs to support tu-
mourigenesis.

Origin of MDSCs

In cancer, the physiological process of myelopoiesis within
the bone marrow is dysregulated. MDSCs generally are
generated in the bone marrow through a mechanism in-
volving granulocyte-monocyte colony-stimulating factor
(GM-CSF), interleukin (IL)-6, IL-10 and tumour necrosis
factor-alpha (TNF-α) [12]. During tumourigenesis, these
factors are overproduced and favour the generation of a
very heterogeneous population of granulocytes, which are
recruited within the tumour, and can support tumour pro-
gression and cancer cell proliferation [13]. As yet there
is no clear picture that distinguishes subpopulations of tu-
mour-infiltrating granulocytic populations, polymorphonu-
clear, in a tumour. This population, also called immature
myeloid cells [14], includes tumour-associated neutrophils
[3, 15], immunosuppressive neutrophils [16] and polymor-
phonuclear myeloid-derived suppressor cells (PMN-MD-
SCs) [2, 4, 7]. Here, we focus on PMN-MDSC biology.
PMN-MDSC is a term introduced to scientific literature
more than 10 years ago describing a group of immature
myeloid cells with potent immune regulatory activity [17].
The current preponderant view is that PMN-MDSCs dif-
ferentiate along the same pathways as neutrophils [18].
Recently, in addition to pluripotent hematopoietic stem
cells, multipotent common myeloid progenitors and gran-
ulocyte-macrophage progenitors, several populations of
committed granulocytic precursors were identified
[19–21]. Moreover, precursors that belong to the mono-
cytic lineage, termed monocyte-like precursors of granu-
locytes has been defined as an abnormal mechanism of
PMN-MDSC accumulation in cancer (fig. 1A) [22].

Markers of PMN-MDSCs in mice are the expression of
CD11b and the two-epitopes of the Gr1 molecule: Ly6G
and ly6C. Indeed, murine PMN-MDSCs are defined as
CD11b positive, Ly6Clow, Ly6Gbright [23]. In humans,
PMN-MDSCs are most commonly defined as
CD11b+CD15+ CD14− or CD11b+CD66b+CD14− [23].
They express the common myeloid marker CD33 but lack
the expression of the major histocompatibility complex
(MHC) class II molecule human leucocyte antigen (HLA)-
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DR [24]. Currently, PMN-MDSCs can be distinguished
from proinflammatory neutrophils by the expression of
lectin-type oxidised low-density lipoprotein (LDL) recep-
tor-1 (Lox-1) and by density gradient. Lox-1 expression
intensity has been associated with higher immunosuppres-
sive activity (fig. 1B) [25].

The recruitment of PMN-MDSCs to the tumour microen-
vironment is still not fully understood. PMN-MDSC re-
cruitment to the tumour bed is associated with interactions
between tumour-derived chemokines and their receptors
expressed on PMN-MDSCs. Recent studies have demon-
strated the contribution of these tumour-derived
chemokines, such as CC-chemokine ligand 2 (CCL2), C-
X-C motif chemokine ligand 5 (CXCL5) and CXCL12,
and their respective receptors CCR2, CCR5 and CXCR4,
to the recruitment of PMN-MDSCs to the tumour microen-
vironment [1, 13]. These chemokines are highly redundant,
irrespective of the cancer type, and help to provide a con-
tinuous supply of PMN-MDSCs to the tumour (fig. 1C).

Function of MDSCs

Most studies have shown that the immunosuppressive
functions of MDSCs require direct cell-cell contact, which
suggests that they act either through cell-surface receptors
and/or through the release of short-lived soluble mediators
[26]. MDSCs regulate immunosuppression through vari-
ous mechanisms. The best-recognised mechanism is as-
sociated with the metabolism of L-arginine. MDSCs ex-
press high levels of both arginase and nitric oxide synthase
(iNOS), which are two important enzymes involved in L-
arginine metabolism. In detail, iNOS uses L-arginine to
generate nitric oxide (NO) and arginase to convert L-argi-
nine into urea and L-ornithine. The increased activity of
arginase in MDSCs leads to enhanced L-arginine catab-
olism, which depletes this nonessential amino acid from
the microenvironment. The shortage of L-arginine in the
tumour microenvironment inhibits T-cell proliferation
through several mechanisms, including decreasing their
CD3ζ expression [27]. In addition, NO suppresses T-cell
function through a variety of mechanisms that involve the
inhibition of Janus kinase 3 (JAK3) and signal transducer
and activator of transcription-5 (STAT5) in T lymphocytes,
the inhibition of MHC class II expression and the induction
of T-cell apoptosis [28, 29].

Another important factor that contributes to the suppres-
sive activity of MDSCs is reactive the presence of oxygen
species (ROS). Increased production of ROS has emerged
as one of the main characteristics of MDSCs [30]. This
idea is supported by studies in which inhibition of ROS
production by MDSCs isolated from mice and patients
with cancer completely abrogated the suppressive effect of
these cells in vitro [31]. MDSCs are highly influenced by
the tumour microenvironment: transforming growth fac-
tor-beta (TGFβ), IL-10, IL-6, IL-3, platelet-derived growth
factor (PDGF) and GM-CSF induce the production of ROS
[32]. More recently, it has emerged that peroxynitrite
(ONOO−) is a crucial mediator of MDSC-mediated sup-
pression of T-cell function. Peroxynitrite is a product of
a chemical reaction between NO and superoxide anion
(O2

−) and is one of the most powerful oxidants produced
in the body; it induces nitration and nitrosylation of differ-
ent amino acids. Several studies confirm that high levels
of peroxynitrite are associated with tumour progression in
many types of cancer, which has been linked with T-cell
unresponsiveness [33]. Peroxynitrite production by MD-
SCs during direct contact with T cells results in nitration
of the T-cell receptor and CD8 molecules, which alters the
specific peptide binding of the T cells and renders them
unresponsive to antigen-specific stimulation [34]. PMN-
MDSCs rely more on the expression of ROS and arginase
to mediate immunosuppression [35]. As a consequence of
their high immunosuppressive activity, the high frequency
of PMN-MDSCs in tumours corresponds to enhanced im-
munosuppression [36].

Emerging studies and the development of new genetic
tools have provided cancer research with new insights into
the profound influence of these dynamic cells, by uncover-
ing distinct capabilities for PMN-MDSCs throughout each
step of carcinogenesis: from primary tumour growth to
metastasis to therapy resistance [37, 38]. Indeed, MDSCs
have been shown to mediate protumoural functions by pro-
moting tumour angiogenesis, and driving tumour cell in-
vasion and metastasis. Furthermore, previous reports have
proposed that MDSCs play a major role in epithelial-to-
mesenchymal transition or creating “pre-metastatic nich-
es” that lead to metastatic activity [1, 13, 23]. These func-
tions will be discussed in detail in the following
paragraphs.

Figure 1: Development and recruitment of PMN-MDSCs. (A) During tumourigenesis GM-CSF, interleukin (IL)-6, IL-10 and tumour necrosis
factor alpha (TNF-α) drive the differentiation of granulocyte-macrophage progenitors (GMPs), granulocytic precursors (GPs) and monocyte-
like precursors of granulocytes (MLPG) into polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC). (B) Surface markers ex-
pressed by mouse (left) and human (right) PMN-MDCSs. (C) PMN-MDSCs are recruited to the tumour following the tumour-derived
chemokine gradient.
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MDSCs and prostate cancer

Prostate cancer is one of the leading causes of cancer in-
cidence and the second leading cause of cancer-related
deaths amongst males in the United States. For organ-con-
fined disease, the initial treatment is prostatectomy or ra-
diation, which usually is curative. Androgen-deprivation
therapy has become the main prostate cancer therapy for
patients at various stages of the disease [38]. However, a
considerable fraction of patients receiving such treatments
ultimately progress to more aggressive disease, developing
castration-resistant prostate cancer (CRPC) [38]. The prog-
nosis for patients with CRPC remains poor and treatments
for these patients remain a major unmet medical need [38].
Recently, Calcinotto et al. [38] reported in Nature an un-
expected role played by tumour-infiltrating immune cells
(summarised in fig. 2). They found that myeloid cells can
drive therapy resistance in CRPC, which progresses de-
spite low androgen levels. This discovery opened several
possibilities for new adjuvant therapeutic options to broad-
en our understanding of the wide range of interactions in
the prostate cancer microenvironment. As the androgen re-
ceptor is considered a regulator of gene expression, the
absence of androgen-mediated signalling through andro-
gen-deprivation therapy could result in the prevention of
prostate cancer progression [39, 40].

CRPC depends on a vast spectrum of mechanisms [41] and
causes disease progression in patients. The identification
of mechanisms associated with disease progression has led
to the development of associated treatments. Nearly half of
CRPCs have been observed to have an increase in the copy
number of the androgen receptor gene [42]. Accumulated
data provide a strong correlation between androgen recep-
tor expression and CRPC progression, which has pushed
biomedical research a step forward towards the generation
of androgen receptor inhibitory drugs [43]. In addition,
other inhibitory drugs are being developed, to block andro-
gen biosynthesis via an increase of androgen synthesising
enzymes [44]. Despite of these drug-driven inhibitions of
androgen regulation in CRPC patients, resistance to these
clinical drug molecules can still be acquired. Henceforth,

patients receiving these canonical drug-driven treatments
are in dire need of additional clinical strategies. Calcinotto
and colleagues investigated the role of immune cell popu-
lations behind the progression of CRPC. Prostate tumour
biopsies from patients with advanced CRPC were enriched
in PMN-MDSCs compared with biopsies collected from
patients still sensitive to androgen-deprivation treatments.
As research models, the authors used human samples and
mouse models of prostate cancer to investigate the di-
rect contribution of PMN-MDSCs to castration resistance.
In mice, the authors saw an increase in the recruitment
of PMN-MDSCs in tumours collected from castration-re-
sistant mice. Moreover, they found that the conditioned
medium of PMN-MDSCs generated in vitro helped andro-
gen-dependent prostate-cancer cell lines sustain their pro-
liferation and survival under androgen deprivation. The
secretome of PMN-MDSCs increased the transcription of
androgen receptor target genes, whose expression in phys-
iological conditions is driven by the androgen receptor. In
addition, pharmacological inhibition of MDSCs delayed
the emergence of castration resistance in mice. It was evi-
dent that a factor released by PMN-MDSCs promoted the
appearance of CRPC. Strikingly, they found overexpres-
sion of IL-23 and its receptor upon castration in the tu-
mours of castrated mice and CRPC patients. Based on the
robust data, Calcinotto et al. proposed that signalling me-
diated by IL-23 secreted by PMN-MDSCs on prostate can-
cer cells could be a major reason for the promotion of the
development of CRPC. By blocking IL-23-mediated sig-
nalling in mice through pharmacological and/or genetic ap-
proaches, the authors showed a delay in the development
of CRPC. Their experimental model clearly demonstrat-
ed a significant increase in the expression of androgen re-
ceptors and the genes that are transcriptionally dependent
on androgen receptor, via the activation of the STAT3 –
retinoic acid-related orphan receptor gamma (RORγ) path-
way by IL-23 (fig. 2). Treatment aimed at blocking IL-23,
such as blocking antibodies, reverts the efficacy of andro-
gen-deprivation therapy in CRPC animals. IL-23-specific
antibodies, which block the effect of IL-23, have been ap-

Figure 2: PMN-MDSCs drive therapy resistance in castration-resistant prostate cancer. (A) Androgen receptor (AR) binding drives the tran-
scription of genes that are required to promote the growth of prostate cancer. (B) Chemical castration is used to lower androgen levels in
prostate cancer patients. Nevertheless, the subsequent deceleration of tumour growth is transient. (C) The authors showed that in castration-
resistant conditions, PMN-MDSCs contribute to the failure of therapy. PMN-MDSCs secrete IL-23, which binds to the IL-23 receptor (IL-23R)
on tumour cells triggering a pathway that is mediated by RORγ and STAT3 proteins (here STAT3 gets phosphorylated; “P” is a phosphate
group). This pathway drives the expression of androgen receptors, which in turn helps the transcription of androgen-dependent genes, which
promotes the growth of prostate cancer. (D) Inhibition of IL-23/IL23R axis using an IL-23 inhibitor (IL-23i) blocks prostate tumour growth by re-
pressing the downstream pathway mediated by RORγ and STAT3, thus resulting in a downregulation of the androgen receptor target genes.
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proved for a clinical trial in patients with autoimmune con-
ditions. This will clearly pave the way for a possible treat-
ment of CRPC.

Another important study by Garcia et al., using an en-
dogenous Pten-null mouse model, demonstrated that the
prostate tumour microenvironment is enriched with GR1+

CD11b+ MDSCs, which are solely responsible for disease
initiation and progression [45]. Di Mitri et al. found that tu-
mours derived from Pten-null mice are enriched in MDSCs
(defined as CD11b+ Gr1+ cells) and help to sustain tumour
growth by bypassing senescence in a paracrine manner
[46]. On the other hand, Wang et al. explored the poten-
tial of MDSCs in antagonising T-cell proliferation upon
the activation of yes-associated protein (YAP) signalling in
prostate tumours [47, 48].

MDSCs and breast cancer

Breast cancer is the second most common cancer overall,
impacting millions of women each year. Nearly 2 million
new cases and 606,520 deaths were estimated to occur in
the United States alone in 2020 [49], and the rate of in-
vasive breast cancer is increasing in nearly every region
globally at an alarming rate [50]. Breast cancer is a hetero-
geneous group of diseases with different histopathological
characteristics and high genetic variability, and is therefore
characterised by varying prognostic outcomes [51]. Clini-
cally, breast cancer can be categorised into three basic ther-
apeutic groups [52]: triple-negative breast cancers, which
lack expression of oestrogen and progesterone receptors
and HER2, and are also known as basal-like breast can-
cers [53–55]; the HER2 amplified group, which dramat-
ically overexpresses the HER2 receptor tyrosine kinase;
the oestrogen receptor positive group, which are also re-
ferred to as luminal-like breast cancers. Tumours of the
oestrogen receptor positive group, which are the most nu-
merous, rely on oestrogens to promote proliferation and
inhibit apoptosis. Patients with these tumours receive anti-
hormonal therapy, but often experience therapy resistance
and relapse.

Besides their immunosuppressive function, PMN-MDSCs
actively shape the breast tumour microenvironment
through complex cross-talk between cancer cells and the
surrounding stroma, resulting in increased angiogenesis,
tumour invasion and metastasis [47, 56]. Breast cancer
cells express various cytokines, including GM-CSF and
IL-6, that impact myeloid cell differentiation, promoting
PMN-MDSCs during tumour development [8, 57]. PMN-
MDSCs accumulate in the blood and immune organs of
breast cancer patients, develop immunosuppressive activ-
ity and alter tumour progression either by infiltrating tu-
mours [58] or homing in to distant organs to establish
premetastatic niches [2]. Numerous research findings have
demonstrated the occupancy and escalation of PMN-MD-
SCs in different tumour microenvironments that lead to
poor prognostic outcomes in advanced-stage breast cancer
patients [4, 5, 7, 59]. Furthermore, circulating MDSCs
have been monitored in a large number of breast cancer
patients with poor prognosis [4, 7, 60, 61]. Bosiljcic et al.
showed that a higher number of immunosuppressive MD-
SCs (CD11b+ GR1+ cells) was significantly found in the
spleen and lungs of 4T1 and 4T07 tumour-bearing mice,
where, notably, the higher level of MDSC accumulation in

mice organs was associated with the production of G-CSF
[62].

Several results support the role of PMN-MDSCs during
the metastatic process. Danilin et al. demonstrated the role
of MDSCs in promoting bone metastasis in breast cancer
mouse models [63]. They also provided evidence regard-
ing the interaction between MDSCs and the breast tumour
microenvironment beyond their immunosuppressive activ-
ity, by using orthotopic and intracardiac breast cancer
mouse models [63]. Furthermore, Ma et al. showed an in-
crease in the level of TGF-β1 in a breast cancer mouse
model with lung metastasis in postoperative conditions
[64]. Importantly, the recruitment of MDSCs to the mi-
croenvironment is associated with the inhibition of anti-
tumour immune responses through suppressive cytokines
such as TGF-β1, vascular endothelial growth factor
(VEGF) and IL-10 [64].

MDSCs and ovarian cancer

Ovarian cancer is one of the major causes of cancer-related
deaths in women, putting it in the fifth position among oth-
er gynaecological cancers [65]. Despite standard first-line
chemotherapy, patients with advanced ovarian cancer ex-
perience tumour relapse within a few years after treatment.
Recently, there has been compelling evidence of a corre-
lation between poor prognosis in ovarian cancer and MD-
SCs [66, 67]. For example, Baert et al., using an ID8-fLuc
ovarian cancer mouse model, demonstrated that MDSCs
play a major role in immunosuppression [66]. Likewise,
Horikawa et al. demonstrated in an ovarian cancer murine
model that VEGF plays a significant role in suppressing
CD8 T-cell activity by stimulating the accumulation of
MDSCs in the tumour microenvironment [67]. Further-
more, a few studies have revealed the importance of cy-
tokines in the recruitment of MDSCs in the ovarian tumour
microenvironment [6, 68, 69]. As an example, Alfaro et
al. showed that IL-8 has an impact on the recruitment of
PMN-MDSCs in the tumour microenvironment of ovari-
an cancer [68]. Importantly, Obermajer et al. showed that
prostaglandin E2 mediates a tumour-associated inflamma-
tory function by promoting the tumour infiltration of im-
munosuppressive monocytic MDSCs through the CX-
CR4-CXCL12/SDF-1 migratory axis [70].

Apart from their immunosuppressive activity, MDSCs also
have a robust impact in promoting two of the dreadful hall-
marks of cancer, angiogenesis and metastasis, in ovarian
cancer [71]. In this regard, Cui et al. found that MDSCs
promote “stemness”-like activity by targeting corepressor
C-terminal-binding protein 2 (CtBP2), which leads to
metastasis formation, and demonstrated, with a mechanis-
tic approach, the clinical relevance of cross-talk among
MDSCs, microRNA101 and CtBP2 in ovarian cancer pa-
tients [72]. Overall, we can assert that MDSCs play a key
role in promoting ovarian cancer tumorigenesis through
both immunosuppressive (suppression of T-cell response)
and non-immunosuppressive mechanisms (metastasis for-
mation, angiogenesis), which would lay the path for future
studies combining immunotherapy with conventional anti-
cancer therapies to target not only ovarian cancer, but most
other cancer types as well.
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Targeting of MDSCs

Clinical data indicate that increased MDSC counts in pe-
ripheral blood also impact prognosis and treatment out-
come [3, 4, 7, 36, 60, 61]. Some chemotherapies can crit-
ically suppress MDSC counts and it is postulated that this
may be vital to the benefit from these drugs [73–75]. How-
ever, following anticancer treatment, the frequency of MD-
SCs does not decline to the level seen in tumour-free mice
and healthy human subjects. Moreover, tumour recurrence
after treatment correlates with re-expansion of MDSCs
[76]. A few studies have investigated the development of
MDSC inhibitors, most of them focused on inhibiting the
STAT3 signalling pathway [77, 78] or kinases involved
in MDSC function [79]. However, none of them has pro-
gressed beyond the pre-clinical phase. Recently, MDSCs
displayed a significantly higher sensitivity to cabozantinib
and BEZ235. Cabozantinib or BEZ235 treatment allevi-
ated the suppressive activity of intratumoural MDSCs on
CD4+ and CD8+ T-cell proliferation through inhibition of
PI3K signalling in a mouse model of castration-resistant
prostate cancer when combined with immune-checkpoint
blockers [80]. Recent studies have described the contri-
bution of CXCR2 in the recruitment of MDSCs to the
tumour bed. Pharmacological inhibition of CXCR2 sig-
nalling was broadly explored in combination with check-
point blockers in pancreatic cancer [81] and prostate can-
cer [80] and even proposed for the treatment of castration
resistant prostate cancer patients [38, 46]. First, a short
peptide CXCR2 “pepducin” (1/2i-pal) was used to inhibit
CXCR2 signalling by interfering with its ability to couple
to intracellular signal-transduction molecules [82, 83]. Lat-
er, several small-molecule inhibitors of CXCR2 were de-
veloped, such as AZD5069 [38, 81, 84], AZ13381758
[84], SX-682 [80].

Concluding remarks

Several sets of evidence at preclinical and clinical levels
demonstrate the prominent role played by MDSCs in sup-
porting tumourigenesis. They promote tumour progression
and metastasis, and create an immunosuppressive tumour
microenvironment. Many questions relating to the poly-
hedric protumoural role of MDSC in cancers are still open.
Despite the fact that MDSCs expand and play an integral
role in promoting hormone-dependent tumour progression,
the molecular mechanisms behind the role of MDSCs in T-
cell suppression and resistance to anti-hormonal therapies
still need to be elucidated. The identity of MDSCs, typical-
ly defined as immature myeloid cells, is highly controver-
sial as they can be defined only functionally.

One of the major achievements in the field will be better
characterisation of human tumour-infiltrating MDSCs, in
order to define subsets specifically infiltrating each cancer
type. Moreover, the results of a deeper characterisation of
surface markers expressed by pathogenic MDSCs will pro-
vide new checkpoints to target, potentially providing in-
novative targets for immunotherapy. The use of blockers
of MDSCs for the treatment of hormone-driven cancer to
inhibit the protumoural functions of these cells in the tu-
mour microenvironment is under clinical evaluation. This
approach will open a new approach to the treatment of
hormone-driven cancers. In different tumour contexts, re-
search has demonstrated the value of targeting MDSCs in

combination with immune checkpoint inhibitors and oth-
er forms of immunotherapy to enhance their efficacy. This
strategy was shown to improve overall survival in patients
with several types of cancer. Similarly, in hormone-driven
cancers, a combined approach targeting the anti-hormonal
therapy with anti-MDSC therapies may be beneficial.
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