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Summary

The systematic identification of infected individuals is critical
for the containment of the COVID-19 pandemic. Currently, the
spread of the disease is mostly quantified by the reported num-
bers of infections, hospitalisations, recoveries and deaths; these
quantities inform epidemiology models that provide forecasts for
the spread of the epidemic and guide policy making. The ve-
racity of these forecasts depends on the discrepancy between
the numbers of reported, and unreported yet infectious, individ-
uals. We combine Bayesian experimental design with an epi-
demiology model and propose a methodology for the optimal
allocation of limited testing resources in space and time, which
maximises the information gain for such unreported infections.
The proposed approach is applicable at the onset and spread of
the epidemic and can forewarn of a possible recurrence of the
disease after relaxation of interventions. We examine its ap-
plication in Switzerland; the open source software is, however,
readily adaptable to countries around the world. We find that
following the proposed methodology can lead to vastly less un-
certain predictions for the spread of the disease, thus improving
estimates of the effective reproduction number and the future
number of unreported infections. This information can provide
timely and systematic guidance for the effective identification
of infectious individuals and for decision-making regarding lock-
down measures and the distribution of vaccines.

Keywords— Bayesian optimal experimental design, epidemiology,
COVID-19

Introduction

The identification of unreported individuals infected by SARS-
CoV-2 is critical for the quantification, forecasting and plan-
ning of interventions during the COVID-19 pandemic [1]. Cur-
rently the spread of the disease is mostly quantified by the re-
ported numbers of infections, hospitalisations, recoveries and
deaths [2]. These quantities inform epidemiology models that
provide short term forecasts for the spread of the epidemic,
help quantify the role of possible interventions and guide pol-
icy making. The veracity of these forecasts depends on the

discrepancy between the numbers of reported, and unreported
yet infectious, individuals.

In recent months, the estimation of unreported infections has
been the subject of several testing campaigns [3, 4]. Although
there is valuable information being gathered, their estimates
rely on testing individuals who are either already symptomatic
or have been selected based on certain criteria (hospital vis-
its, airport arrivals, geographic vicinity to researchers, etc.).
Generic, randomised tests of the population are broadly ap-
plied, but they have been hampered either by delays [5] or by
insufficient numbers of test kits [6]. There is broad recognition
that efficient testing strategies are critical for the timely iden-
tification of infectious individuals and the optimal allocation of
resources [7]. However, targeted testing entails bias and ran-
dom tests require access to a high percentage of the population
with commensurate high costs. The quality of the data, as well
as the ways they are incorporated in the epidemiology models,
is critical for their predictions and for estimating their uncer-
tainties [8]. A way to minimise these uncertainties by suitably
distributing in space and time a given number of test kits is
the subject of this work. This optimal allocation of testing re-
sources and the respective increase in the fidelity of forecasting
models are essential to effective policy making throughout the
pandemic.

Here, we present a methodology for the OPtimal Allocation
of LImited Testing resourceS (OPALITS) that maximises the
information gain over any prior knowledge regarding infections.
The method relies on forecasts by epidemiological models with
parameters adjusted through Bayesian inference as data be-
come available through suitable surveys [9]. The forecasts are
combined with Bayesian experimental design [10–12] to deter-
mine the optimal test allocation in space and time for various
objectives (minimise prediction uncertainty, maximise infor-
mation gain of unreported infections). We emphasise that the
proposed OPALITS is applicable in all stages of the pandemic,
regardless of the availability of data.

We employ the SEIrIuR model [13], which quantifies the
spread of a disease in a country’s population distributed in a
number of communities that are interacting through mobility
networks. The SEIrIuR model predicts the number of sus-
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ceptible (S), exposed (E), infectious reported (Ir), unreported
(Iu), and removed (R) individuals from the population. Here
we focus on Switzerland and consider its cantons as the re-
spective communities. The model parameters are: the relative
transmission rate between reported and unreported infectious
individuals (µ), the virus latency period (Z), the infectious pe-
riod (D) and the reporting rate (α). The transmission rate (β)
and the mobility factor (θ) are considered to be time depen-
dent in order to account for government interventions. For all
stages of the epidemic, the uncertainties of the model param-
eters are quantified and propagated using Bayesian inference.
At the onset of the epidemic, the uncertainty was quantified
through prior probability distributions. As data on daily in-
fections become available, the uncertainty in model parameters
was updated through Bayesian inference. The parameter prob-
ability distributions are used to propagate uncertainties in the
model forecasts and can assist decision makers in quantifying
risks associated with the progression of the disease. The proper
quantification of uncertainty bounds in the model parameters
has a profound effect on predictions of the disease dynamics [8].
Large uncertainty bounds around the most probable parame-
ter values hinder the decision process for identifying effective
interventions.

The OPALITS aims to assign limited test-kit resources to
acquire data that would reduce the model prediction uncertain-
ties. Minimising the uncertainty of the model parameters leads
to more reliable predictions for quantities such as the reproduc-
tion number [14]. Moreover, the reduced model uncertainties
help minimise risks associated with the decision-making pro-
cess including timing, extent of interventions and probability
of exceeding hospital capacity.

We quantify the information gain from these tests using a
utility function [12, 15] based on the Kullback-Leibler diver-
gence between the inferred posterior distribution and the cur-
rent prior distribution of the model parameters. The prior can
be formulated using the posterior distribution estimated from
daily data of the infectious reported individuals up to the cur-
rent date (see Materials and methods). Hence, at any stage of
the epidemic, the OPALITS provides guidance on the time and
location/community where testing needs to be carried out to
maximise the expected information gain regarding infections
in a population.

We demonstrate the simplicity and applicability of the
present method in estimating the spread of the coronavirus
disease in the cantons of Switzerland. We find that the OPAL-
ITS methodology outperforms non-specific, randomised testing
of sub-populations throughout the COVID-19 pandemic. The
proposed strategy is readily applicable to other countries and
the employed open source software can readily accommodate
different epidemiological models.

Methods

The optimal time (day) and location (canton) for surveying
a population to detect infectious individuals is determined via
Bayesian optimal experimental design [12,16,17]. This optimal
testing allocation (OPALITS) relies on combining Bayesian in-
ference and utility theory with forecasting models of the epi-
demic. We remark that the OPALITS does not depend on a
particular epidemiological model or type of data. The method-
ology is applicable at all stages of the epidemic (inception to
re-occurrence). It can operate without data at the early stages
of the pandemic and takes advantage of data available at later
stages of the pandemic. The methodology is rendered computa-

tionally efficient using a sequential optimization algorithm [18].

Bayesian Inference from randomized testing We con-
sider a testing campaign including a set (s) of surveys si =
(ki, ti), i = 1, . . .My performed in location ki∈ C and on day
ti∈ T . These surveys measure a quantity of interest (QoI), that
is denoted by y(s) = (y1, . . . , yMy ). Here, yi is the number
of unreported infectious individuals, measured through survey
si. The QoI can be predicted by a model g(s,ϑ, ϑ̃) (here the
SEIrIuR epidemiological model) that depends on parameters

of interest ϑ ∈ RN and nuisance parameters ϑ̃ ∈ RÑ . The dis-
tinction between model and nuisance parameters is discussed in
later sections. We note that both sets of parameters are uncer-
tain and the proposed method aims to reduce the uncertainty
only in the parameters of interest.

A stochastic error term ε(s) links the model prediction with
the QoI

y(s) = g(s,ϑ, ϑ̃) + ε(s) . (1)

The error ε(s) is assumed to follow a zero-mean multivari-
ate normal distribution N (0,Σ) with covariance matrix Σ ∈
RMy×My . The elements of the covariance matrix (Σs,s′) corre-
spond to surveys taken at s = (k, t) and s′ = (k′, t′) and are
given by

Σs,s′ = σt σt′ exp

(
−|t− t

′|
τ

)
δkk′ , (2)

where δkk′ is the Kronecker delta, which is 1 for k = k′ and
0 otherwise. The correlation time τ ∈ [0.5, 3.5] is considered
a nuisance parameter. These assumptions about the covari-
ance imply that surveys in different locations are not corre-
lated, while those in the same location have an exponentially
decaying temporal correlation. The latter avoids clustering of
surveys in small time intervals [19, 20]. The factor σt ∈ R is
assumed proportional to the expectation of the QoI, taken over
all possible survey locations and over the range of model and
nuisance parameters

σt = c
1

K

K∑
i=1

Eϑ,ϑ̃

[
g(si,ϑ, ϑ̃)

]
, (3)

where si = (i, t). The parameter c ∈ [0, 0.25] is considered
a model parameter. The expectation Eϑ,ϑ̃[ · ] is taken with

respect to all parameters ϑ and ϑ̃ that follow the prior proba-
bility distribution with density p(ϑ, ϑ̃) = p(ϑ)p(ϑ̃).

Under these assumptions, the conditional probability of y on
ϑ, ϑ̃ and s is given by

p(y|ϑ, ϑ̃, s) =
1√

(2π)My |Σ|
exp

(
−1

2
z>Σ−1z

)
, (4)

where |Σ(s)| is the determinant of the covariance matrix Σ(s)

and z = y(s)− g(s,ϑ, ϑ̃).
In the present study, the QoI measured by a survey is the

number of unreported infectious individuals in a particular can-
ton on a particular date. This implicitly assumes that there
no restrictions on when the survey can be conducted and that
there are no observational delays, which means the the QoI is
instantaneously obtained. Both assumptions are not restrictive
however. Restrictions on the possible survey dates can be ac-
counted for by simply excluding those dates from the dates on
which the utility function is evaluated. Also, a delay of one day
(meaning that two days are needed to survey a canton k, start-
ing from day t) would mean that y = (Iuk (t) + Iuk (t + 1))/2 is
measured. In other words, when there is a delay the measured

Swiss Medical Weekly Swiss Med Wkly. 2020;150:w20445 Page 2 of 13

Published under the copyright license ”Attribution - Non-Commercial - No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

http://emh.ch/en/services/permissions.html


Original article Swiss Med Wkly. 2020;150:w20445

quantity can still be mapped to a model quantity, which allows
us to perform Bayesian inference. There are several types
of measurements (Rapid testing [21], PCR [22], Schwabs [23])
being proposed for testing asymptomatic individuals. We em-
phasize that our methodology is compatible with any of these
types. Data related issues such as uncertainties, test sensi-
tivities and delays in processing can be accommodated in the
Bayesian inference framework and in the input to the SEIR
model.

Expected Information Gain The most informative sur-
veys y provide the least uncertainty in the estimates of the
model parameters ϑ. Starting with a user-postulated prior dis-
tribution p(ϑ), Bayesian learning is used to update the uncer-
tainties in the model parameters leading to a posterior distri-
bution p(ϑ|y, ϑ̃, s), based on the information contained in the
test data y. The Kullback–Leibler (KL) divergence between

the posterior p(ϑ|y, ϑ̃, s) and the prior distributions p(ϑ) of
the model parameters measures the distance between the two
distributions. Informative data produce posterior distributions
that differ from the prior; greater differences lead to higher in-
formation gain. Therefore, the most informative data y cor-
respond to the testing strategy (measurement locations and
times) with the highest information gain [15,24].

The OPALITS is identified by maximizing a utility func-
tion [12, 25]. One choice is the KL divergence u(y, ϑ̃, s) =

DKL

(
p(ϑ|y, ϑ̃, s)‖p(ϑ)

)
quantifying the information gain from

the data [12]. However, since data are not available in the ex-
perimental design phase, the utility function is selected here to
be the expected KL divergence Ey|ϑ̃,s

[
u(y, ϑ̃, s)

]
over all data

generated by the model prediction error equation 1. Also, to
account for the uncertainty in nuisance parameters ϑ̃, encoded
in the prior distribution p(ϑ̃), the expectation is also taken

with respect to ϑ̃, which results in the utility function [25]

U(s) = Eϑ̃

[
Ey|ϑ̃,s

[
u(y, ϑ̃, s)

]]
=

∫∫∫
log

(
p(ϑ|y, ϑ̃, s)

p(ϑ)

)
p(ϑ|y, ϑ̃, s) dϑ

p(y|ϑ̃, s) dy p(ϑ̃)dϑ̃ .

(5)

By using Bayes’ theorem

p(ϑ|y, ϑ̃, s) =
p(y|ϑ, ϑ̃, s) p(ϑ)

p(y|ϑ̃, s)
, (6)

the utility function can be simplified to

U(s) =

∫∫∫
log

(
p(y|ϑ, ϑ̃, s)

p(y|ϑ̃, s)

)
p(y|ϑ, ϑ̃, s) dy

p(ϑ) p(ϑ̃) dϑ dϑ̃ .

(7)

Note that the expected utility only depends on the locations
and times of the measurements via s. The term p(y|ϑ̃, s) is
the model evidence given by

p(y|ϑ̃, s) =

∫
p(y|ϑ, ϑ̃, s) p(ϑ) dϑ . (8)

The choice of the prior distribution p(ϑ) for the parameters
allows to incorporate prior knowledge from epidemiology. If no
information is available from data, a case encountered in the
beginning of the infection, a uniform prior distribution can be
assumed. Table S5 summarizes our choice of prior distributions
for all the involved uncertain quantities. If data d of the daily

number of reported infectious individuals is available, Bayesian
inference can be used to inform the prior distribution, as de-
scribed later on. In this case, the prior p(ϑ) in equation 7 is
replaced by the distribution p(ϑ|d) informed from the data d.

In the present work, the assumed nuisance parame-
ters are the correlation time τ and the initial condi-
tion of the unreported infections in the cantons of Aar-
gau, Bern, Basel-Landschaft, Basel-Stadt, Fribourg, Geneva,
Grisons, St.Gallen, Ticino, Vaud, Valais and Zurich IuIC =
(IuAR, I

u
BE, I

u
BL, I

u
BS, I

u
FR, I

u
GE, I

u
GR, I

u
SG, I

u
TI, I

u
VD, I

u
VS, I

u
ZH), with

prior distributions IuIC ∼ U([0, 50]12) and τ ∼ U([0.5, 3.5]).

Epidemiological Model Here we employ the SEIrIuR epi-
demiological model [13] to forecast the dynamics of the coro-
navirus outbreak in Switzerland

dSk
dt

= −βSkI
r
k

Nk
− µβSkI

u
k

Nk

+ θ

K∑
l=1

(
MklSl
Nl − Irl

− MlkSk
Nk − Irk

) (9)

dEk
dt

=
βSkI

r
k

Nk
+
µβSkI

u
k

Nk
− Ek

Z

+ θ

K∑
l=1

(
MklEl
Nl − Irl

− MlkEk
Nk − Irk

) (10)

dIrk
dt

= α
Ek
Z
− Irk
D

(11)

dIuk
dt

= (1− α)
Ek
Z
− Iuk
D

+ θ

K∑
l=1

(
MklI

u
l

Nl − Irl
− MlkI

u
k

Nk − Irk

)
(12)

dNk
dt

= θ

K∑
l=1

(Mkl −Mlk) , (13)

where Sk, Ek, Irk and Iuk denote the number of individuals in
canton k = {1, . . . ,K} that are susceptible, exposed, reported
infectious and unreported infectious, respectively. We denote
by K the number of cantons (26 in Switzerland), by Nk the
total population of the canton k, while the population mobil-
ity between cantons k and l is denoted by Mkl with values
obtained from the Swiss Federal Statistical Office [26]. The
model parameters are the transmission rate (β), the relative
transmission rate between reported and unreported infectious
individuals (µ), the virus latency period (Z), the infectious
period (D), the reporting rate (α) and the mobility factor (θ).

We employ different time-dependent expressions for the
transmission rate and the mobility factor for each stage of the
epidemic. Constants are chosen for the start of an epidemic
while in the cases of monitoring of interventions, the following
expressions are used:

β(t) =

{
b0, t ≤ δ1
b1, δ1 < t

, θ(t) =

{
θ0, t ≤ δ1
θ1, δ1 < t

, (14)

where b0, b1, θ0 and θ1 are the transmission rates and mobility
factors before and after the intervention. Time t = 0 corre-
sponds to the 25th of February 2020, and δ1 = 21 to the 17th

of March 2020, when the lockdown was announced in Switzer-
land [27]. Finally, for the third case (monitoring of a second
outbreak) we assume that

β(t) =


b0, 0 ≤ t ≤ δ1
b1, δ1 < t ≤ δ2
b2, δ2 < t ≤ δ3
b3(t), δ3 < t

, θ(t) =


θ0, 0 ≤ t ≤ δ1
θ1, δ1 < t ≤ δ2
θ2, δ2 < t ≤ δ3
θ0, δ3 < t

.

(15)
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As in equation 14, b0 is the transmission rate before the inter-
vention while b1 = c1 b0 and b2 = c2 b0 with c1, c2 ∈ [0, 1] are
the transmission rates after the two interventions. Similarly,
θ0 is the mobility factor before any interventions took place,
while θ1 = c3 θ0 and θ2 = c4 θ0 with c3, c4 ∈ [0, 1] are the mo-
bility factors after the two interventions. Moreover, δ1 and δ2
correspond to the days of the interventions. The day when the
measures are loosened is denoted by δ3. After that day, the
transmission rate is gradually increasing

b3(t) = min(b2 + λ(t− δ3), b0) , (16)

with λ ∈ [0, 0.03], while the mobility factor regains its initial
value of θ0.

Estimation of the Expected Information Gain The cal-
culation of the expected utility from equation 7 is performed
with Monte-Carlo integration. Samples from the prior distri-
bution are denoted by ϑ(i) ∼ p(ϑ) and by ϑ̃(i) ∼ p(ϑ̃), while
samples on the measurement space are denoted by y(i,j) ∼
p(y|ϑ(i), ϑ̃(i), s), where i ∈ {1, . . . , Nϑ} and j ∈ {1, . . . , Ny}.
With these samples, an estimate of the expected utility is com-
puted as

Û(s) =
1

NϑNy

i=Nϑ
j=Ny∑
i=1
j=1

log

(
p
(
y(i,j)|ϑ(i), ϑ̃(i), s

)
p(y(i,j)|ϑ̃(i), s)

) ,
p(y(i,j)|ϑ̃(i), s) :=

1

Nϑ

Nϑ∑
n=1

p
(
y(i,j)|ϑ(n), ϑ̃(i), s

)
,

(17)

In our implementation the samples ϑ(i) and ϑ̃(i), (i =
1, . . . , Nθ), remain the same for different values of s. Thus,

the model evaluations g(s,ϑ(i), ϑ̃(i)) are only carried out once
and are stored and used in the iteration process involved in the
optimization. This allows to separate the computational cost
of the model evaluation from the cost of computing the utility,
which scales as O(N2

ϑNy).

Optimal Location and Time of Testing We define the
optimal survey times and locations as

s∗ = arg max
s1,...,sMy

Û(s) , (18)

where s∗ = (s∗1, . . . , s
∗
My

) with s∗i = (k∗i , t
∗
i ) denote the lo-

cations k∗i and times t∗i for the optimal surveys with i ∈
{1, . . . ,My}. For a grid search, the associated computational
cost isO((KT )My ) and thus grows exponentially with the num-
ber of surveys. This curse of dimensionality is avoided by using
a sequential optimization method [18,28,29] to approximate the
global optimum by iteratively solving

s∗n = arg max
s

Ûn(s) , ∀n = 1, . . . ,My , (19)

where s = (k, t) is the location and time to be estimated se-
quentially starting with n = 1 and

Ûn(s) = Û
(
s
)
, s = (s∗1, . . . , s

∗
n−1, s) . (20)

Following this, we define the expected information gain for sur-
vey n as

∆Ûn(s) =

{
Û1(s), n = 1

Ûn(s)− Ûn−1(s∗n−1), n > 1.
(21)

Quantification of Uncertainty A data informed prior
p(ϑ|d) of the model parameters ϑ can be computed from avail-
able data d =

(
d1, . . . , dMd

)
, collected at Md locations and

days. Here, available data d refer to the daily number of re-
ported infectious individuals and they are contrasted from the
data y of the number of unreported infectious individuals. The
latter are obtained from testing strategies at selected popula-
tions using optimal experimental design. The data is mapped
via a distinct model output f(s,ϑ, ϑ̃) through the following
error model

p(di|ϑ, ϑ̃, ν) = NB
(
di | f(si,ϑ, ϑ̃), ν

)
(22)

where NB is the negative binomial distribution with mean f
and dispersion ν. Also, si = (ki, ti) is the location and time
the data di for i = 1, . . . ,Md was collected. The choice of a
different error model, compared to equation 1, is based on the
assumption that the data are independent and identically dis-
tributed. Such an assumption would not be acceptable in the
measurement model in equation 1, as it may result in uncor-
related measurements that can become clustered in small time
intervals [19,20].

The data d =
(
d1, . . . , dMd

)
are the daily number of reported

infections per canton in Switzerland [30] which corresponds to
the following model quantity

f(si,ϑ, ϑ̃) :=

∫ ti+0.5

ti−0.5

α

Z
Eki(τ)dτ ≈ α

Z
Eki(ti) . (23)

The posterior distribution that will be used subsequently as a
data informed prior is obtained using Bayes’ theorem

p(ϑ, ϑ̃|d) =
p(d|ϑ, ϑ̃) p(ϑ, ϑ̃)

p(d)
, (24)

and is sampled with a nested sampling algorithm [14]. Note
the difference to equation 6 and the optimal testing method-
ology, where we are interested to reduce the uncertainty in
p(ϑ|y, ϑ̃, s), which excludes the nuisance parameters ϑ̃. For
the dispersion parameter in equation 22, it is assumed that
ν = r f(si,ϑ, ϑ̃). The coefficient r is unknown and included in
the parameter set, where r ∼ U([0, 2]).

The three inferences performed are summarized in table S5,
which shows the involved model parameters in each case. The
histograms for the found samples are shown in figures S1, S2,
and S3.

We remark that, using the present methodology, the inferred
date for the beginning of the intervention is δ1 = 22.5, which
is the 18th of March 2020, corresponding well with the 17th of
March 2020 on which the lockdown was introduced in Switzer-
land [27]. Moreover, we infer a significant reduction in the
mobility factor, which indicates that traffic between cantons
was also minimized. For the inference III we plot the fit us-
ing the inferred parameters in figure S4. The daily reported
cases per canton are shown, together with the data used for
the inference.

Results

Optimal allocation of limited testing resources
(OPALITS) during the COVID-19 pandemic

We present the optimal test-kit allocation strategy for three
stages of the epidemic: (i) starting phase (blue), (ii) contain-
ment after enforcement of interventions (red) and (iii) relaxing
of interventions and monitoring for a possible second outbreak
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Figure 1: Testing scenarios for the COVID19 outbreak
in Switzerland. Daily reported Coronavirus cases in Switzer-
land are plotted as gray bars. The period before (blue), during
(red) and after (green) imposing non-pharmaceutical interven-
tions are marked with color.

(green) (fig.1). The strategy relies on Bayesian experimen-
tal design and can operate when no data are available (as in
the start of the epidemic), as well as when data have been
accumulated, as in the last two stages of the epidemic. Test-
ing campaigns rely on acquiring randomized samples from a
population. The collected data, together with epidemiological
models, help determine quantities of interest, such as the basic
reproduction number of the disease [14]. By suitably adapting
the testing campaign, the data can help to reduce the model
uncertainty, thus enabling improved estimates regarding the
severity of the epidemic.

A testing campaign consists of a set s of surveys si = (ki, ti)
which are labeled by i = 1, . . .My and performed in locations ki
∈ C and on days ti∈ T , where C and T are the set of all available
locations and days, respectively. In this paper, a survey aims
to determine the number of unreported infectious individuals
in a particular location on a particular day. In the following we
assume limited testing resources, where N test kits are available
and each test kit corresponds to testing one person. The goal
is to allocate these test kits in different times and locations so
that we maximise the information gain regarding forecasts of
the epidemiology model. The locations are the different Swiss
cantons, and C := {ZH,BE,LU, . . .} is the set of the strings
with canton name abbreviations.

The results of the survey in a canton enable the estima-
tion of a desired quantity of interest, such as the size of the
unreported infected population (Iu). The number of samples
needed to estimate population proportions within a given con-
fidence interval, error tolerance, and probability of proportion
is given by Cochran’s formula [9] corrected for a finite popula-
tion size. Using Cochran’s formula with confidence level 99%,
error tolerance 1% and probability of infection 0.1 we find that
the samples that would be required to survey the largest Swiss
canton (Zurich) are approximately 5950. All the other can-
tons need up to 14% fewer samples, with the exception of the
smallest canton that needs 27% fewer samples (supplementary
fig. S7 in appendix 1). Hence we assume the minimum sample
size is the same for all cantons. Assuming random sampling
of a population with higher probability (up to 0.9) of infec-
tion or requiring tighter error bounds would have implied even
more samples according to Cochran’s formula. We note that
as of October 2020, 1500 tests per one million people are per-
formed on a daily basis in Switzerland [31]. This amounts to
approximately 460 individual tests per canton, which is about
an order of magnitude less than what would be required from
Cochran’s formula for informative random sampling. In turn,
by using the proposed OPALITS, we can compensate for this

lack of test kits with an optimal and systematic process.

We outline the application of the proposed approach to a
country with distinct administrative units (cantons in the case
of Switzerland) (see figure 2). First, we determine how many
cantons will be surveyed, given the number of available test-kits
N . Then, the sequential optimisation of the expected utility
function is performed (see Materials and methods) to identify
optimal survey locations (cantons). We then distribute the test
kits to the identified cantons and test a random subset of their
population on the suggested day. After collecting the results
from all the surveys we update the prior distributions of the
model parameters. The collected data lead the maximal infor-
mation gain in the model parameters. This in turn translates
into minimal uncertainty in predictions made with the model
for quantities, such as the number of unreported infections.

The expected information gain of a particular strategy for
selecting the survey locations/times s is quantified by a utility
function Û(s) [15]. The maximum of this function corresponds
to an optimal strategy that yields the most information about
the quantities of interest. The expected utility function can
be understood as a measure of the difference between prior
knowledge of the model parameters and the posterior knowl-
edge, after surveys have been conducted in a set of locations
and dates. Given such a set, the utility function estimates the
expected difference, the equivalent information gain, by taking
the expectation over all possible survey results.

The OPALITS relies on forecasts by suitable epidemiological
models. In turn, these forecasts rely on prior information and
their predictions are further adjusted as data become available
in a Bayesian inference framework [32]. The set of ordinary dif-
ferential equations (ODEs) describing the SEIrIuR model [13]
are integrated to produce the model output. The uncertainty
of the model output and its discrepancy from the available
data is quantified through a parametrised error model. The
resulting stochastic model and its quantified uncertainties are
then used to identify the optimal spatiotemporal allocation of
limited test resources.

Case 1: Beginning of the epidemic – optimal test-
ing without data At the start of an epidemic, there are
no data and we assume no other prior information regarding
the spread of the pathogen in a country. The initial conditions
for the number of unreported infections (IuIC) were selected
with non-zero values for the cantons of Aargau, Bern, Basel-
Landschaft, Basel-Stadt, Fribourg, Geneva, Grisons, St Gallen,
Ticino, Vaud, Valais and Zurich based on their populations and
their large number of interconnections. Because of the lack of
any prior information and relevant data, all the parameters are
assumed to follow uniform prior distributions (see table S5 in
appendix 1 for details).

The first infectious person in Switzerland was reported on
25 February in the canton of Ticino (IrTI = 1) with no ini-
tial reported infections in any other canton. The initial num-
ber of exposed individuals is set proportional to the number
of unreported infections Ek = 3Iuk in accordance with the
value of R0 ≈ 3 reported in [33] in the initial stage of the
disease. The rest of the population is assumed to be suscepti-
ble. The methodology involves parameters of interest (ϑ =

(β, µ, α, Z,D, θ, c)) and nuisance parameters (ϑ̃ = (IuIC, τ))
that the testing strategy does not aim to determine (see Ma-
terials and methods section for definitions).

The estimated expected utility functions Û(s) for up to four
surveys in the cantons of Switzerland for a time horizon of 8
days is shown in Figure 3, T = {Feb 25, . . . ,Mar 3}. Higher
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0. Initialization of  Epidemiology Model 
a. Select epidemiology model (SEI2R). 
b. Initialize probability density functions 

(PDF) for model parameter uncertainties. 

2. Optimize Test Allocation (Locations/Dates) 
a. Model predictions are used to compute a utility function 

 (Eq. 13).  quantifies the  gain of information in 
different locations/dates for unreported infections. 

b. Identify locations/dates maximizing  (Eqs. 14,15).

U U

U

3. Test and Update Model Parameters 
a. Deploy test-kits in optimal locations/dates from Step 2b. 
b. Process results and use data for a Bayesian update of 

the model parameter PDFs (Eq. 6). Return to Step 1.

1. Infection Predictions with Epidemiology  Model 
a. Sample parameter PDFs and use model (Eq. 9) to 

get infection predictions for all locations/dates. 
b. Test-kits available ?  

i. YES:  proceed to Step 2  
ii. NO: STOP

Figure 2: Schematic for the deployment of the Optimal Allocation of Limited Testing Resources (OPALITS) methodology

values for expected utility are estimated in cantons with larger
population, reflecting the larger relative uncertainty for can-
tons with only few reported cases. This implies that smaller
cantons, with lower mobility rates, are less preferred for per-
forming tests since their contribution to the information gain
is not significant. This reflects the fact that the assumed co-
variance matrix is shared among cantons (see Materials and
methods). This implies a smaller relative error when survey-
ing larger cantons with consequently higher number of infec-
tions. The Bayesian analysis allows the inference of the partic-
ular cantons and days on which a survey should be performed
in order to maximise the information gain. Accordingly, the
most informative survey should have been made in Zurich on
2 March. The optimal location and time for the second survey
is determined to be canton of Vaud on the 27 February. As ex-
pected, the information gained from tests in the canton of Vaud
is less than the information gained from the canton of Zurich.
The information that would have been gained by surveying the
next two selected cantons of Vaud and Basel-Landschaft on 3
March and 28 February, respectively, is progressively reduced
to a small level that, given the testing costs, does not justify
carrying out surveys in more than four cantons. The values of
the optimal times are listed in table S1 in appendix 1.

The results indicate that the proposed OPALITS method-
ology selects certain populous and well interconnected cantons
at specific times to acquire the most information for estimating
the model parameters.

Case 2: Exponential spreading and optimal test-
ing strategy during nonpharmaceutical interventions
When the spreading of the coronavirus entered an exponen-
tial growth stage, several governments (including the Swiss)
decided to make nonpharmaceutical interventions, such as re-
questing social distancing, closing schools and restaurants, or
ordering a complete lockdown in order to contain the epidemic.
Here, the goal of the OPALITS is to propose surveys that would
help to better assess the effectiveness of these interventions.

In this case, probability distributions of model parame-
ters are informed using data from the existing spread of the
COVID-19. The daily reported infections in Switzerland [30]
from the 25 February up to the 17March 2020 are used to
update the distributions specified in the previous phase by us-
ing Bayesian inference. The marginal posteriors are plotted in
figure S1 (appendix 1). The SEIrIuR models the nonpharma-
ceutical interventions with a time-dependent transmission rate
β and mobility factor θ. These parameters are calibrated by

the data and provide an estimate of the timing and effective-
ness of the interventions [8].

Figure 4 shows the maximum values of the information gain
for each survey for T = {Mar 17, . . . ,Mar 30}. For cantons
with a small population and low connectivity to other cantons,
a low information gain is found. The opposite can be observed
for cantons with large population and strong connections to
other cantons. The values for the maximum utility in time for
the measurements are listed in table S2 (appendix 1). If only a
single canton were to be selected (due to limited availability of
test kits in the country), then a survey in the canton of Vaud
carried out on the 30 March would be preferred over surveys
in the cantons of Zurich, Bern or Geneva (blue in fig. 4).
If two surveys could be afforded, the OPALITS methodology
proposes them in the same canton (Vaud) on the 17 and on the
30 March (blue and green in fig. 4). Note that the canton of
Zurich, ranked as the next preferred canton for a single survey
(blue in fig. 4), is not selected by the methodology since part
of the information that would be gained from testing is already
contained in surveys performed in Vaud. If more test kits were
available, in addition to the two tests in Vaud, the optimal
location and time for a third survey would have been the canton
of Grisons on the 30 March (yellow in fig. 4). The canton of
Zurich is proposed as the fourth location to be surveyed also on
the 30 March. However, the information gain from the fourth
survey in the canton of Zurich is approximately 10% of the
total information gained from the surveys carried optimally in
the first three cantons.

The results suggest that surveys at two locations/times pro-
vide significant information for assessing the effectiveness of
interventions. Further tests on more locations/times did not
add substantial information. It is evident that a trade-off be-
tween the required information gain and cost of testing are
decisive for the number of necessary surveys and test kits.

Case 3: Optimal monitoring for a second outbreak Af-
ter the relaxation of measures that assisted in mitigating the
initial spread of the disease, it is critical to monitor the popu-
lation for a possible second outbreak. The OPALITS method-
ology supports such monitoring with surveys of the population
based on data up to and after the release of the measures.

First, Bayesian inference is performed with data available
from 25 February to 6 June, to update the uniform priors the
resulting marginal posteriors are shown in figure S2 (appendix
1). This date is in accordance with the first stage of the major
release of measures in Switzerland [27]. The effects of interven-

Swiss Medical Weekly Swiss Med Wkly. 2020;150:w20445 Page 6 of 13

Published under the copyright license ”Attribution - Non-Commercial - No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

http://emh.ch/en/services/permissions.html


Original article Swiss Med Wkly. 2020;150:w20445

Feb
 25
Feb

 26
Feb

 27
Feb

 28
Feb

 29
Ma
r 0
1
Ma
r 0
2
Ma
r 0
3

Days (t)

0

2

4

6

Û
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Û
(t,
BS

)

Canton BS

Feb
 25
Feb

 26
Feb

 27
Feb

 28
Feb

 29
Ma
r 0
1
Ma
r 0
2
Ma
r 0
3

Days (t)

0

2

4

6

Û
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Figure 3: Expected information gain during start of epidemic. The blue curve corresponds to the utility of making one
survey. The green curve is the utility when a second survey is added, provided that the location and time of the first survey
correspond to the maximum of the blue curve (found in the canton of Zurich on 2 March). Similarly, the yellow and red curves
show the utilities for a third and fourth survey, when the locations and times of the previous surveys are fixed to their optimal
values. The fixed dates and location of each survey are plotted with black dashed lines. The shaded areas indicate the difference
from the expected information gain of the previous survey, which becomes thinner as additional surveys do not yield a further
significant information gain.
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Figure 4: Optimal testing strategy for effect of non-pharmaceutical interventions. The maximum gain of information
is plotted on the map of Switzerland using an exponential colour map. Here blue corresponds to taking one survey, green to
adding a second, yellow to a third and red to a fourth. Below the map we plot the magnitude of the expected information gain
of each survey, along with the optimal measurement dates per canton.
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Figure 5: Optimal testing strategy to monitor a second
outbreak. Bayesian inference determines the parameters of
the first infection wave using the data (black dots) of the daily
newly reported infections up to the 6 June (upper plot) and
to the 9 July (lower plot). The 99% confidence intervals are
plotted in grey. The proposed testing strategy is plotted with
vertical bars at the optimal days found. Here blue indicated
the utilities for the first survey. The green bars correspond to
the gain in utility when adding a second survey assuming the
first was chosen in the optimal location, where the yellow and
red correspond to adding a third and fourth survey.

tions are modelled by a parametrised time-dependent trans-
mission rate and mobility factor (see Materials and methods).
The inferred probability distributions of these additional pa-
rameters are taken into account as the OPALITS maximises
the information gain. Note that T = {Jun 7, . . . , Jun 14} in
this case.

Subsequently, data from 25 February to 9 July are included,
repeating the Bayesian inference and estimating the marginal
distributions and predictions shown in supplementary figures
S3 and S4 (appendix 1), T = {Jul 10, . . . , Jul 17}. The re-
sults indicate that the relaxation of measures correlates with
an increase in the number of reported infections (fig. 5). The
information gain for each canton indicates that the most infor-
mative surveys should be performed a week after performing
the inference. The provided information could then assist in
estimating the severity of a second outbreak, as indicated by
the maximum of the utility in time (tables S3 and S4). Given
that tests should be carried out in four locations and times, the
methodology promotes optimal surveys for two different times,
within a week, in the cantons of Zurich and Vaud. First, sur-
veys should be performed in Zurich, providing high information
gain for both considered cases. The next two surveys are to be
performed in Zurich and Vaud, with a rank that depends on
the considered case, and the fourth test should be performed
in Vaud. We find that the information gain from the last test
is approximately 10% of the cumulative information gain from
the first three surveys. The number of surveys can be then
selected according to the available test-kits N .

Case 4: Effectiveness of optimal testing We demon-
strate the importance of following the OPALITS by compar-
ing it with a non-specific testing campaign that is based on
heuristics. We first re-examine the situation at the start of an

epidemic and assume that the available resources allow for two
surveys. Surveys are simulated by evaluating the epidemiolog-
ical model with the maximum a-posteriori estimate (MPE) of
the parameters obtained from the inference in phase II (expo-
nential growth) of the epidemic. We used data for the first 21
days of the infection spread in Switzerland [30] (25 February
to 17 March). After evaluating the model, artificial surveys are
obtained by adding a stochastic error term.

For the optimal strategy, data are collected by consulting
figure 3. Thus, the two surveys are performed in the cantons
of Zurich and Vaud, on the 2nd of2 March and the 27th of27
February, respectively. For a non-specific strategy, the cantons
of Ticino and Bern were selected, on the 28th of28 February.
We remark that this isthese are the canton where the first
infection was reported and the capital of the country, respec-
tively. These artificial data, obtained for the two strategies,
are added to the real data of the daily reported cases from the
first 8 days after the outbreak in Ticino. For the expanded
data-set D the posterior distributions p(ϑ|ϑ̃MPE,D) are found
by sampling the model parameters using nested sampling [14].

The resulting one- and two-dimensional marginalised poste-
rior distributions for both strategies are shown in figure 6. We
note that the dispersion coefficient r (defined in the Materials
and methods) in the error model for the real data (the reported
infections) and the correlation parameter are almost the same
for both strategies. However, the model parameters show sig-
nificant differences even when only two new data-points are
added to a set of 208 data-points. The posterior distributions
of the parameters of interest are propagated through the epi-
demiology model to provide the uncertainties in the number of
unreported infectious individuals. In figure 7 the model out-
put for the total number of unreported infections is plotted
together with a 99% confidence interval along with the true
value of the unreported cases obtained by using the selected
parameters. The predictions from the OPALITS have a much
higher certainty with a confidence interval that is up to four
times narrower than the one from a non-specific strategy. The
same figure also shows the relative histogram plots for the ef-
fective reproduction number, which for the employed model is
given from Rt = βDα+ βDµ(1− α) [13]. Not only is the his-
togram more peaked, when data are optimally collected, but
also the mean value of the two histograms is different. When
data are optimally collected, the found mean value for the effec-
tive reproduction number is 2.1, whereas when the non-specific
strategy is followed the average value is 3.2. A mean value of
3.2 could lead to more strict non-pharmaceutical interventions,
which might prove unnecessary and harmful for the economy.

Further comparisons, demonstrating the value of the OPAL-
ITS, include model predictions with higher certainty, as indi-
cated by confidence intervals that are narrower than the ones
obtained from a non-specific strategy (figs S5 and S6, appendix
1). Narrower uncertainty bounds provide higher confidence for
decisions related to possible interventions to contain the epi-
demic.

Discussion

We introduce a systematic approach to identify optimal times
and locations for epidemiological surveys to quantify infectious
individuals in a country’s population during the COVID-19
epidemic. The proposed OPALITS methodology exploits prior
information and available data to maximise the expected in-
formation gain in quantities of interest and to minimise uncer-
tainties in the forecasts of epidemiological models.
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Figure 6: Marginal posterior distributions for two strategies. The diagonal shows the histogram for the marginal
distribution for every parameter. Purple indicates posterior for the survey following the optimal testing strategy, gray the one
for the non-specific strategy. The lower half and upper half show the samples of the joint distribution of two parameters for the
optimal and the non-specific strategy respectively. Here black indicates low density and yellow high density.
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Figure 7: Prediction uncertainty for different testing
strategies. Up: The black dots show the actual unreported
infectious for an artificial spread in Switzerland. The error
bounds show the 99% confidence intervals of the model output
for samples of the parameters with data obtained by optimal
(purple) and non-specific testing (gray). Down: Relative fre-
quency histograms for effective reproduction number, predicted
with data obtained by optimal (purple) and non-specific testing
(gray).

The present study addresses the need for an accurate assess-
ment of COVID-19 infections [34] and it is shown to be far
more accurate than the currently applied random testing. The
proposed methodology is, to the best of our knowledge, the first
method to propose an optimal spatiotemporal allocation of lim-
ited test kit resources. A first study of the estimation of unob-
served COVID-19 infections [5] in the USA indicated that early
testing would have decreased the surveillance gap during a crit-
ical phase of the epidemic. More recently, a number of studies
have emerged that address the optimal allocation of resources.
The “Test and Contain” process suggested in [7] addresses an
idealised population of 10,000 and solves an allocation prob-
lem using predictions of the SIR model. They assume isolation
of the positively identified individuals and showed that just
one test a day can reduce the peak of infected individuals by
27%. This study is similar to ours in casting the test allocation
problem in an optimisation framework, using linear program-
ming in contrast to information maximisation that we propose.
However, their approach is not data informed and does not ad-
dress a realistic country scenario. Another study [35] focused
on test kit allocation in the Philippines. They use a statis-
tical approach and non-linear programming to determine the
optimal percentage allocation of COVID-19 test kits among
accredited testing centres in the Philippines, aiming for an eq-
uitable chance for all infected individuals to be tested. Their
goal of optimal percentage allocation differs from ours, which
is optimal space and time allocation of test kits.

The proposed method is demonstrated by focusing on the
outbreak of the epidemic in Switzerland. We compare OPAL-
ITS with random testing and demonstrate its advantages in
producing forecasts with far reduced uncertainties. We note
that the existing testing capacity of 1500 tests per million peo-
ple in Switzerland can be better allocated than the ongoing
random testing. Moreover we show that the present methodol-
ogy will be of particular importance to countries with testing
capacity that is far lower than that of Switzerland [31].

The methodology relies on Bayesian experimental design us-
ing prior information and available data of reported infections
along with forecasts from the SEIrIuR model. We compute
the optimal testing strategy for three phases of the epidemic.
At the onset of the epidemic the method identifies the most
crucial dates and locations for randomised tests in the coun-
try’s population. The deployment of OPALITS at this phase
would have allowed authorities to perform randomised testing
in a period of high uncertainty, well in advance of the disease
outbreak. Moreover, the presented approach is applicable to
any newly arising epidemic and can be used to identify im-
portant surveying locations and a general protocol of action,
whenever an unknown disease starts to spread. In the case of
COVID-19, such course of action would limit early inaccurate
estimates of metrics such as the virus mortality rate, estimated
around 3% in early March 2020 by the World Health Organi-
zation [36] and currently believed to be lower than 1% [37].

During the period of nonpharmaceutical interventions, the
proposed strategy would help quantify their effectiveness, as-
sisting decision-making for further interventions or retraction
of measures that may be harmful to the economy. In this study,
available data for the daily reported infections prior to any
interventions, combined with the proposed methodology, indi-
cated that conducting two surveys after measures are imposed
is sufficient. This can help to identify the new virus dynam-
ics quickly and adjust interventions accordingly. Similarly, the
OPALITS can assist monitoring for a recurrence of the disease
after preventive measures have been relaxed and help guide
further planning of interventions. Since massive testing for a
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new disease might not be a possibility during its first outbreak
and cheap individual tests might become available only later,
applying the proposed methodology at this point provides a
useful guideline on how to use the individual tests to conduct
large-scale surveys. For instance, in Switzerland it was not be-
fore mid-April 2020 that rapid COVID-19 tests were released
on the market [38]. Collecting data for the reported cases be-
fore that and using it to inform the proposed approach to find
an OPALITS (after cheap individual tests become available)
that will be applied during a possible lockdown would be the
suggested course of action in this case.

There are a number of issues that the model should be able
to accommodate in the future. These include accounting for
virological test sensitivity, delays in the reporting of the test
results and bias in the estimate of the unreported infected in-
dividuals (Cochran’s formula). Further developments may in-
clude models that account for different transmission dynamics
in cantons, and the classical Bayesian inference methods may
be replaced with Hierarchical Bayesian Method to account for
heterogeneous data.

We remark that the proposed OPALITS does not depend on
a particular type of data/model or to the country of Switzer-
land. The open source code is modular, scalable and readily
adaptable to different scenarios for the epidemic and countries
around the world. We believe that the present work can be
a valuable tool for decision makers to allocate resources effi-
ciently for testing the population, providing a reliable quan-
tification of the spread of the disease and designing effective
interventions. Finally the accurate estimation of the spread of
the disease can guide the timely distribution of vaccines.
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Gärtner B, et al. Pooling of samples for testing for SARS-
CoV-2 in asymptomatic people. The Lancet Infectious
Diseases. 2020;20(11):1231 – 1232.

[5] Perkins TA, Cavany SM, Moore SM, Oidtman RJ, Lerch
A, Poterek M. Estimating unobserved SARS-CoV-2 in-
fections in the United States. Proceedings of the National
Academy of Sciences. 2020;117(36):22597–22602.

[6] Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH,
Koepsell SA, Iwen PC. Assessment of Specimen Pooling
to Conserve SARS CoV-2 Testing Resources. American
Journal of Clinical Pathology. 2020 04;153(6):715–718.

[7] Jonnerby J, Lazos P, Lock E, Marmolejo-Cosśıo F, Ram-
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