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Summary

The reproduction number is broadly considered as a key
indicator for the spreading of the COVID-19 pandemic. Its
estimated value is a measure of the necessity and, even-
tually, effectiveness of interventions imposed in various
countries. Here we present an online tool for the data-dri-
ven inference and quantification of uncertainties for the
reproduction number, as well as the time points of inter-
ventions for 51 European countries. The study relied on
the Bayesian calibration of the SIR model with data from
reported daily infections from these countries. The mod-
el fitted the data, for most countries, without individual
tuning of parameters. We also compared the results of
SIR and SEIR models, which give different estimates of
the reproduction number, and provided an analytical re-
lationship between the respective numbers. We deployed
a Bayesian inference framework with efficient sampling
algorithms, to present a publicly available graphical user
interface (https://cse-lab.ethz.ch/coronavirus) that allows
the user to assess and compare predictions for pairs of
European countries. The results quantified the rate of the
disease’s spread before and after interventions, and pro-
vided a metric for the effectiveness of non-pharmaceutical
interventions in different countries. They also indicated
how geographic proximity and the times of interventions
affected the progression of the epidemic.

Keywords: COVID-19, Bayesian inference, SIR model,
interventions

Introduction

The forecasting of the evolution of the ongoing coron-
avirus disease 2019 (COVID-19) and the effects of non-
pharmaceutical interventions are critical components for
decision makers across the world. A broad range of data
analysis tools and forecasting models have been deployed
since the beginning of 2020 to assess the spread of the
disease, as well as the expected number of infections and
numbers of deaths [1–3]. A metric that is often deployed
to quantify the progress of the disease is the reproduction

number, which is the expected number of secondary cases
caused by a single infected individual over the infectious
period. The beginning of the epidemics is characterised by
the basic reproduction number R0, whereas the effective re-
production number Rt describes its progression in time. Rt

exhibits significant complexity [4], but it is broadly con-
sidered that values of Rt above 1.0 indicate a rapid expan-
sion of the infections. To reduce this number below 1.0,
governments have applied various kinds of measures, such
as social distancing, travel restrictions, closing of public
places, schools and nonessential production. The estima-
tion of Rt hinges on the forecasting model and the data
used to infer their parameters [5]. Moreover, an often over-
looked fact is that the method by which inference is made
plays an important role in these estimates. A well-estab-
lished technique for such inference is Bayesian inference
[6]. However, even though Bayesian inference is a very
potent method to estimate uncertainties in model structure
and parameters, model parameters may be unidentifiable
for the chosen type and amount of data, as well as the
choice of priors [7, 8]. In particular for epidemic models,
we believe that inferences for which the sampling algo-
rithm has not converged may indicate a mismatch between
the model and the data and need to be reported.

In this work we deployed Bayesian inference to quantify
the evolution of Rt, as well as the time-points of interven-
tions for 51 European countries. The study relied on the
Bayesian calibration of the simple, well-established SIR
model [9] extended to account for interventions, with da-
ta from reported daily infections. We present an online in-
terface that allows for entry of customised data and com-
parisons between countries. The parameters of the model
included the reproduction number, the day of the first in-
tervention and a reduction factor for the reproduction num-
ber. By inferring these parameters from data, we identified
when interventions became effective and determined the
reproduction number before and after the measures had be-
come effective. This indicates how well the imposed re-
strictions were able to slow down the spread of the disease.
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Very recently a related work [10] inferred the intervention
points and the evolution of Rt in Germany. In the present
work we applied our model to 51 European countries. Our
model was able to fit the data for the majority of the coun-
tries without individual tuning of the parameters or the in-
ference method for each country. Our results are in ex-
cellent agreement with the work previously mentioned for
Germany [10]. Moreover, our results indicated that captur-
ing accurately the results for one country does not gener-
alise well with the same accuracy to all countries. We vi-
sualised the inferred quantities on a map and ranked the
countries by the disease’s spread rate and the effectiveness
of the interventions. We found that the results of our model
were consistent with those from related studies in Switzer-
land [11]. The results suggest that at the current stage of the
pandemic, countries can be categorised according to the in-
ferred Rt. Most countries imposed their restrictions within
the first weeks of the epidemic starting in March 2020, and
since then about 80% of them have managed to bring their
country specific Rt below 1.0, which indicates a decaying
epidemic. Other countries, such as Armenia, Sweden and
Moldova, remain at a stage with larger Rt.

Methods

Data: daily confirmed cases
We calibrated the well established SIR model using data
from daily confirmed cases reported in the open source
repository Humanistic GIS Lab, University of Washington
[12], whose main data source for European countries is the
World Health Organization [13]. To avoid the stochastic
regime of the system, for each country we considered da-
ta only after the total number of confirmed cases exceeded
five and the number of cases per million of population ex-
ceeded two. Population figures for countries are retrieved
from the open repository [14]. The analysis in this paper
considers data up to 18 May 2020. Official times of inter-
ventions that we use for comparison in the section “Infer-
ence of interventions for 51 European countries” are taken
from reference [15], which aggregates the official begin-
ning of non-pharmaceutical interventions by various gov-
ernments.

Epidemic modelling using the SIR
The SIR model describes the evolution of susceptible (S),
infected (I), and removed (R) population

dS
dt = −

Rt γ

N SI

dI
dt =

Rtγ

N SI – γI

dR
dt = γI

S(0) = N − I0, I(0) = I0, R(0) = 0, (1)

where Rt is the reproduction number, γ is the removal rate
(including recovery and mortality), I0 is the initial number
of infected individuals and N is the size of the population.
To model an intervention or a series of measures taken by
the government, we consider Rt to be a piece-wise linear
function of time split into three phases

Rt(t) = {
R0, t ≤ tint −

1
2 δint ,

linear, tint −
1
2 δint ≤ t ≤ tint +

1
2 δint

Kint R0, t ≥ tint +
1
2 δint .

, (2)

The three phases are: (i) uncontrolled disease outbreak be-
fore the first intervention takes place (t ≤ tint − ½ δint, (ii)
an adoption phase during which one or multiple measures
take place (tint − ½ δint ≤ t ≤ tint + ½ δint), and (iii) the pe-
riod after all interventions have become effective (t ≥ tint +
½ δint).

In the first and last regime we assumed that the reproduc-
tion number Rt remained constant, and during the adoption
phase we assumed a linear transition from R0 to kintR0. The
intervention time tint, the reduction factor kint ∈ (0,1) and
the duration of transition δint were inferred from the data.

Bayesian inference and sampling algorithms
We quantified the uncertainty in the extended SIR model,
as described above, using data of daily confirmed cases for
each country. We denoted this data with Îi corresponding to
day ti. From the SIR model, the daily incidence was com-
puted as

f(ϑ, ti) = ∫
ti − 1

ti
Rt(τ)γ

N S(τ)I(τ)dτ = S(ti − 1) − S(ti) , (3)

where ϑ = (R0, γ, kint, tint, δint) are the model parameters
of the SIR model including an intervention as described
above. The initial number of infected individuals was set
from the available data so that I0 = Î0. We consider the fol-
lowing generative model for the daily incidence data

Îi ∼ NB (f(ϑ, t), g(ϑ, t)) , (4)

where NB is the negative binomial parametrised by the
mean f(ϑ,t) and the dispersion g(ϑ,t). Notice that using this
parametrisation, the variance of an observation Îi is giv-
en by f(ϑ,ti) + f(ϑ,ti)2/g(ϑ,ti). Here, the dispersion function
is constant, i.e., g(ϑ,t) = r, where the parameter vector has
been extended to include the dispersion parameter r, ϑ =
(R0, γ, kint, tint, δint, r).

We denoted the collection of observations by the vector Î
= (Î1,...,ÎN) and the corresponding observation times by t =
(t1,...,tN). For the estimation of the probability of ϑ condi-
tioned on the data, we apply Bayes’ theorem,

p (ϑ ∣ Î; t) =
p(Î ∣ ϑ; t)p(ϑ)

p(Î; t)
(5)

where p(Î|ϑ;t) is the likelihood function, p(ϑ) is the prior
probability distribution and p(Î;t) is the model evidence.

Assuming the observations are independent, the likelihood
function is given by

p(Î ∣ ϑ; t) =

N

∏

i = 1

NB (Îi ∣ f(ϑ, ti), g(ϑ, ti)) (6)

We assumed uninformative priors for the model parameter

p(ϑ) = ∏
i = 1
N p(ϑi). The lower and upper bounds of the

priors are summarised in table 1. We assumed that the re-
moval rate γ was the same in all countries and set it to γ−1

= 5.2 days following [16].
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The inference of ϑ was performed using Korali [17, 18],
a high-performance framework for uncertainty quantifica-
tion and optimisation of computational models. The pos-
terior distribution was estimated with Bayesian Annealed
Sequential Importance Sampling (BASIS), a reduced vari-
ant of the Transitional Markov Chain Monte Carlo (TM-
CMC) algorithm [19], run with 5000 samples and default
parameters taken from [20].

Graphical user interface for model predictions
We provide an online interface for real time evaluation
of our predictive model. The interface allows for side-
by-side comparison of two countries with default input
data obtained from [12]. Modification of individual data
points or substitution of different data sets can be achieved
by changing the data in the input form. The accuracy of
the Bayesian inference can be improved by increasing the
number of samples used by the solver. User requests are
forwarded from the web server to a remote workstation
where the runs are executed. The back-end code of our
model evaluation was implemented in Python and perfor-
mance-critical parts were implemented in C++. The mean
and confidence interval of the computed prediction for to-
tal and new daily infected cases were displayed together
with input data. The inferred intervention date, tint, was
highlighted by the vertical line with corresponding repro-
duction number before and after the intervention. Figure 1
shows a screenshot of our online interface comparing the
predictions for Switzerland and Sweden. Interventions in-
troduced by the Swiss government starting on 17 March
2020 have been more successful in stopping the epidemic
than the less strict approach of Sweden. The samples
drawn from the posterior distribution are further shown in
the columns of the selected countries.

Results and discussion

SIR model verification
We verified the presented intervention model using the re-
sults of a recent related study [10] that reported the results
of a similar SIR model with interventions. The investiga-
tors performed Bayesian inference of the model parame-
ters applied to Germany. That model had more parame-
ters to described multiple interventions and considered a
periodic modulation of the daily reported cases to account
for trends such as under-reporting at weekends. We com-
pared our results to this study in figure 2, where the report-
ed quantities are the effective growth rate λ∗(t) = γ(Rt(t)−1),
the number of new daily cases and the total number of cas-
es. The effective growth rate relates to one limiting case
of the SIR model where the total number of infected indi-
viduals is small compared to the population such that S/N
→ 1 and the model reduces to an exponential growth I(t)

Table 1: Parameters and the prior distributions for the model dis-
cussed in the section “Epidemic modelling using the SIR”.

Parameter Type Value Unit

R0 Inferred Uniform(1,4) –

γ Fixed 1/5.2 [16] 1/days

kint Inferred Uniform (0.1,1) –

tint Inferred Uniform (0,80) Days

δint Inferred Uniform (1,30) Days

r Inferred Uniform (0,50) –

Figure 1: Screenshot of the online interface comparing predictions
for Switzerland and Sweden on 2 July 2020 with 2000 samples
https://cse-lab.ethz.ch/coronavirus.

Figure 2: The effective growth rate (top), the number of new infec-
tions per day (middle) and the total number of infections in Ger-
many (bottom) fitted by present model (blue lines and shades)
compared to median predictions from [10] (green crosses). The
solid lines show the mean prediction and the shades are the 90%
confidence intervals.

Original article Swiss Med Wkly. 2020;150:w20313

Swiss Medical Weekly · PDF of the online version · www.smw.ch

Published under the copyright license “Attribution – Non-Commercial – No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

Page 3 of 9

https://www.cse-lab.ethz.ch/coronavirus/
https://cse-lab.ethz.ch/coronavirus


∝ exp(λ∗t), which is valid at early stages of the epidemic.
Figure 3 shows the corresponding parameters drawn from
the posterior distribution.

We want to highlight that our model was simpler and had
fewer parameters than the one suggested in [10]. Also we
observed that the fitted model agreed well with the report-
ed data and provides an estimate for the intervention time
in Germany.

Inference of interventions for 51 European countries
We applied our framework to 51 countries of the European
continent and infer the model parameters for each country
separately. The inferred reproduction number before and

Figure 3: Inferred parameters (the basic reproduction number R0,
intervention time tint, reduction factor after intervention kint, duration
of the transition δint and the dispersion parameter r of the negative
binomial distribution [4] for Germany: samples drawn from the pos-
terior distribution (upper triangle), marginal distributions of the indi-
vidual parameter (diagonal) and likelihood heat map (lower trian-
gle).

after intervention is shown in figures 4 and 5. The map and
the scatter plot reveal the differences in the values of Rt

and effects of interventions among various countries. Cer-
tain countries showed strong similarity in the inferred pa-
rameters. For example, the neighbouring Switzerland and
Austria both have Rt dropping from 2.3 to 0.7 after inter-
ventions, even though the latter imposed more constrain-
ing measures. The same was evident for other pairs such as
Italy and France, and also Poland and Ukraine. However,
no single explanation for these similarities and differences
can be suggested. Physical proximity of the countries did
not always lead to similar progression of the epidemic. One
example is Poland, where the epidemic started slower but
the imposed restrictions proved less efficient than in ad-
jacent Lithuania. The disease’s development depended on
the types of measures taken by governments, as well as the
demographics and the particular features of the social in-
teractions in the population. For instance, the UK and Swe-
den initially decided against imposing strict measures and
therefore underwent a longer epidemic with more infec-
tions than their neighbors, Ireland and Norway, which cor-
responded to larger inferred values of Rt.

For Switzerland, one study with a more complex model
[22] fitted on heterogeneous data for reported infections,
hospitalisations and deaths, reported R0 = 2.8 (95% confi-
dence interval [CI] 2.1–3.8); our model gives a comparable
estimate of R0 = 2.25 (90% CI 2.16–2.37).

Another inferred parameter was the intervention time. Fig-
ure 6 shows the relation between the reproduction number
and the intervention time measured from the beginning of
the epidemic in each country. One trend is apparent from
the values of R0 before intervention: countries with larger
R0 tend to introduce the restrictions earlier.

The inferred times of the start of interventions tint − ½ δint

are shown in figure 7 and listed in table 2 together with
the times when the restrictions were officially announced.

Figure 4: Inferred reproduction number Rt before (right) and after interventions (left) shown in color on a map of Europe [21].
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The countries are ordered by the inferred intervention time,
which helps to identify countries with similar inferred pa-
rameters. For certain countries, such as Switzerland, Ger-
many and Greece, the inferred intervention time matched
the first official announcements with a delay of at most one
week. In other cases, the delays reached up to one month.
This may indicate that the measures were imposed gradu-
ally and did not show an immediate effect.

A comparison of the SIR and SEIR models
A limitation of the SIR model is that its calibration is per-
formed only on confirmed cases, which may be only a
fraction of those infected in a certain population. More
complex models also account for hospitalised cases and
reported deaths. However, such data were not be readily
available for all 51 countries examined in this study. Nev-
ertheless, we provide a comparison of the dynamics of the
SIR model with the more complex SEIR model that also
accounts for an incubation period, during which an infect-
ed individual is not yet infectious [23].

Figure 5: Inferred reproduction number Rt. Mean values (circles) and 90% confidence intervals (gray shades). The countries are ordered by
the value of Rt after interventions.

Figure 6: Inferred mean reproduction number before (R0, right) and after intervention (Rt, left) vs the time of the start of interventions tint − ½
δint measured from the beginning of the epidemic in each country. The dots have the same colours as in figure 5 and the country codes are
listed in table 2. The red dashed line shows the linear regression of the intervention time with respect to R0 and Rt.
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We used the data of infected individuals in Switzerland and
the results indicated that the SIR and the SEIR model have
very similar fits for the daily infections and exhibit sim-
ilar dynamics. At the same time, the SEIR model result-
ed in a value of Rt larger than the one estimated by SIR.
This difference can also be quantified by a simple relation-
ship (equation 7) that hinges on the fact that while mod-
els have the same definition of Rt they estimate different

growth rates of I(t) and therefore of N – S(t). Compared
with SIR (equation 1), the SEIR model adds a parameter α

dS
dt = −

RtγIS

N ,

dE
dt =

RtγIS

N − αE,

dI
dt = αE − γI,

Table 2: Inferred time of the start of interventions tint − ½ δint (mean and standard deviation) compared to the official beginning of non-pharmaceutical interventions [15] in each
country.

Country Inferred Official Inferred − Official

Albania (AL) 2020-03-19 ± 5.5 2020-03-13 +6

Andorra (AD) 2020-03-17 ± 3.9

Armenia (AM) 2020-03-16 ± 2.5 2020-03-24 −8

Austria (AT) 2020-03-16 ± 3.5 2020-03-16 +0

Azerbaijan (AZ) 2020-03-29 ± 4.5 2020-03-31 −2

Belarus (BY) 2020-04-21 ± 7.2

Belgium (BE) 2020-03-14 ± 1.5 2020-03-18 −4

Bosnia and Herzegovina (BA) 2020-03-26 ± 5.1

Bulgaria (BG) 2020-03-15 ± 5.3

Croatia (HR) 2020-03-26 ± 3.4 2020-03-18 +8

Cyprus (CY) 2020-03-22 ± 4.2

Czech Republic (CZ) 2020-03-18 ± 5.5 2020-03-16 +2

Denmark (DK) 2020-03-05 ± 4.6 2020-03-11 −6

Estonia (EE) 2020-03-13 ± 2.9

Finland (FI) 2020-03-13 ± 4.3 2020-03-27 −14

France (FR) 2020-03-18 ± 3.2 2020-03-17 +1

Georgia (GE) 2020-04-11 ± 5.4 2020-03-31 +11

Germany (DE) 2020-03-18 ± 1.8 2020-03-23 −5

Greece (GR) 2020-03-17 ± 7.6 2020-03-23 −6

Hungary (HU) 2020-04-08 ± 7.3 2020-03-28 +11

Iceland (IS) 2020-03-20 ± 2.8

Ireland (IE) 2020-03-25 ± 3.1 2020-03-12 +13

Italy (IT) 2020-03-06 ± 2.0 2020-03-09 −3

Kazakhstan (KZ) 2020-04-08 ± 8.4

Kosovo (XK) 2020-04-21 ± 15.8 2020-03-14 +38

Latvia (LV) 2020-03-16 ± 4.7

Liechtenstein (LI) 2020-03-22 ± 6.4

Lithuania (LT) 2020-03-20 ± 3.3 2020-03-16 +4

Luxembourg (LU) 2020-03-15 ± 3.6 2020-03-18 −3

Malta (MT) 2020-03-17 ± 6.9

Moldova (MD) 2020-03-30 ± 4.9

Monaco (MC) 2020-04-02 ± 5.9

Montenegro (ME) 2020-03-27 ± 4.3 2020-03-24 +3

Netherlands (NL) 2020-03-13 ± 1.5 2020-03-16 −3

North Macedonia (MK) 2020-03-23 ± 3.7

Norway (NO) 2020-03-07 ± 2.1 2020-03-12 −5

Poland (PL) 2020-03-24 ± 5.0 2020-03-13 +11

Portugal (PT) 2020-03-20 ± 4.7 2020-03-19 +1

Romania (RO) 2020-03-27 ± 5.1 2020-03-25 +2

Russia (RU) 2020-04-11 ± 1.8 2020-03-28 +14

San Marino (SM) 2020-03-29 ± 20.1 2020-03-14 +15

Serbia (RS) 2020-03-31 ± 2.3 2020-03-15 +16

Slovakia (SK) 2020-04-03 ± 5.6 2020-03-16 +18

Slovenia (SI) 2020-03-09 ± 2.9

Spain (ES) 2020-03-14 ± 4.2 2020-03-14 +0

Sweden (SE) 2020-03-06 ± 2.2

Switzerland (CH) 2020-03-14 ± 1.8 2020-03-17 −3

Turkey (TR) 2020-03-21 ± 3.0 2020-04-23 −33

Ukraine (UA) 2020-04-01 ± 4.4 2020-03-17 +15

United Kingdom (UK) 2020-03-24 ± 1.6 2020-03-23 +1

Vatican City (VA) 2020-03-27 ± 5.9
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dI
dt = γI.

Given that the total number of reported infections in most
countries does not exceed 1%, the models are well approx-
imated respectively by the linearised SIR

dS
dt = − RtγI,

dI
dt = (Rt − 1)γI,

dR
dt = γI,

and the linearised SEIR

dS
dt = − RtγI,

dE
dt = RtγI − αE,

dI
dt = αE − γI,

dR
dt = γI.

By solving these equations, we obtained two asymptotic
growth rates for I(t) ∼ eλt

λSIR = γ(Rt − 1)

λSEIR = −
α
2 −

γ
2 +

√4Rtαγ + α2 − 2αγ + γ2

2
Fitting these linearised models to the same data implies
equal growth rates, i.e., λSIR = λSEIR. In turn this leads to a
simple analytical relationship between the respective Rt

R
t
SEIR = R

t
SIR (1 +

(Rt
SIR − 1)γ

α ) (7)

An example in figure 8 shows that both models can
achieve the same growth rates before and after interven-
tions, but for the SEIR model that requires a larger R0 (2.25

Figure 7: Inferred mean time of the start of interventions tint − ½
δint (circles) with 90% confidence intervals (gray shades) com-
pared with the offcial beginning (vertical bars) of non-pharmaceuti-
cal interventions [15] in each country. Empty circles indicate miss-
ing data for the offcial time. The countries are ordered by the
inferred intervention time such that countries with similar parame-
ters are located closer.

for SIR and 3.82 for SEIR) and a smaller reduction factor
kint (0.27 and 0.124, respectively). Likewise, the inference
with both models on data for Switzerland in figure 9 gives
similar predictions and intervention times, but different es-
timates of R0: 2.25 for SIR and 4.0 for SEIR. For the incu-
bation period in the SEIR, we used α−1 = 2.9 days [24]. Re-
sults in figure 9 were obtained using the nested sampling
algorithm [25] implemented in Korali.

Outlook

The present Bayesian inference framework integrated data
from reported daily infection cases with a simple, well-
established epidemiology model, to provide forecasts for
the evolution of the disease with quantified uncertainties.
Moreover, it provided data-driven estimates for the time-

Figure 8: Solutions of SIR and SEIR models. Parameters of SIR:
R0 = 2.25, γ−1 = 5.2 days, tint = 25, δint = 25, and kint = 0.27. Para-
meters of SEIR: R0 = 3.82, γ−1 = 5.2 days, α−1 = 2:9 days [24], tint =
25, δint = 25, and kint = 0.124. Values of R0 and kint were chosen to
match the growth rates of both models before and after interven-
tions following (7). Black dashed lines show the transition range tint

± ½ δint.

Figure 9: Inference with SIR (left) and SEIR (right) on data for
Switzerland: predictions (top) and sampling (bottom). Inferred pa-
rameters are R0, tint, δint and kint. The incubation period in the SEIR
model is 2.9 days.
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point of interventions across different countries that are
in agreement with the first announcement of interventions
for a number of European countries. Although the model
was able to infer accurately timepoints of interventions for
some countries (for example, Austria, Azerbaijan, Den-
mark, Greece, France, Luxembourg, Norway, Switzer-
land), it did not capture the correct date for others (for
example, Georgia, Ireland, Poland, Russia, Serbia). Under-
standing the success and failures of the model is a subject
of our ongoing investigations. Such differences may lead
to a better integration of models and data that may need to
account for factors such as demographics, social interac-
tions and geographical proximity between countries.

The present study relied on the SIR model using as the only
type of data the reported infections. Models with more pa-
rameters fitted on heterogeneous datasets, such as hospital-
isations and reported deaths, may provide a more detailed
description of the epidemic at the cost of added complexi-
ty. At the same time, such data are not readily available for
all countries examined in this study. Moreover, increasing
the complexity of models does not necessarily lead to more
useful predictions [26].

The present framework is modular and can be easily mod-
ified to incorporate advanced epidemiology models [11,
27], different types of data [28] and advanced sampling
methodologies [29]. Our ongoing efforts include the han-
dling of heterogeneous data to inform agent-based models
for the evolution of COVID-19 as well as studies for opti-
mal testing in order to increase the quantity and veracity of
the data regarding the reported cases.

We believe that the present study indicated the need for
Bayesian inference, with properly integrated data, models
and sampling algorithms, to forecast of the evolution of
COVID-19. Forecasts based on models with quantified un-
certainties help to better assess the risk involved by the
spreading of the disease and guide future interventions.
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