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Summary

The cellular prion protein (PrPC), a cell surface glycopro-
tein originally identified for its central role in prion diseases
(also called transmissible spongiform encephalopathies),
has recently been implicated in the pathogenesis of other
neurodegenerative disorders, such as Alzheimer’s and
Parkinson’s diseases, by acting as a toxicity-transducing
receptor for different misfolded protein isoforms, or in
some case by exerting neuroprotective effects. Interest-
ingly, PrPC has also been reported to play unexpected
functions outside the nervous system, for example by con-
tributing to myelin homeostasis, regulating specific
processes of the immune system and participating in vari-
ous aspects of cancer progression. Collectively, these ob-
servations point to a much broader role for PrPC in physio-
logical and disease processes than originally assumed. In
this manuscript, we provide an overview of what is known
about the role of PrPC beyond prion disorders and discuss
the potential implications of targeting this protein in differ-
ent diseases.
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Introduction

Aging is accompanied by molecular, cellular and function-
al changes, which particularly affect the nervous system.
Among the physiological processes known to be altered
by aging is the protein folding quality control machin-
ery, deputed to monitor and ameliorate protein misfolding.
Once present, misfolded proteins typically acquire alterna-
tive conformations that can lead to their aggregation and
accumulation intracellularly or extracellularly, and eventu-
ally initiate a cascade of toxic molecular events, ultimate-
ly resulting in cellular dysfunction [1]. A wide range of
age-related disorders is indeed linked to protein misfold-
ing and aggregation in the brain. Examples include high-
ly prevalent disorders such as Parkinson’s and Alzheimer’s
diseases, as well as rarer disorders such as prion diseases.
Alzheimer’s disease is the most common form of dementia
in the elderly population, currently affecting almost 40 mil-
lion individuals worldwide. The number will increase dra-

matically in the coming decades as the population ages,
producing challenging medical and socioeconomic conse-
quences [2].

According to the amyloid cascade hypothesis, Alzheimer’s
disease is a consequence of the accumulation in the brain
of the 40−42 amino acid Aβ peptide, a cleavage product
of the amyloid precursor protein (APP). The Aβ peptide
spontaneously forms polymers ranging from small, soluble
oligomers to large, insoluble fibrils [3]. Multiple pieces of
evidence suggest that soluble Aβ oligomers, rather than
fibrillar aggregates, are primarily responsible for the
synaptic dysfunction underlying the cognitive decline in
Alzheimer’s disease [4]. Aβ oligomers are believed to act,
at least in part, by binding to cell surface receptors that
transduce their detrimental effects on synapses. Recently,
a novel candidate has emerged as a receptor for Aβ
oligomers: the cellular form of the prion protein (PrPC) [5].

PrPC, an endogenous, cell-surface glycoprotein, plays a
central role in transmissible neurodegenerative disorders
commonly referred to as prion diseases. These diseases,
which can be sporadic, inherited or acquired, are caused
by the conformational conversion of PrPC into a misfolded
isoform (called scrapie form of PrP or PrPSc) that accu-
mulates in the central nervous system of affected individ-
uals. PrPSc is an infectious protein (constituting “prions”)
that propagates itself by binding to PrPC triggering its con-
formational rearrangement (“templating”) into new PrPSc

molecules [6]. A great deal of evidence indicates a distinc-
tion between prion infectivity and toxicity, and suggests
that a physiological function of PrPC may be altered up-
on binding to PrPSc, to deliver neurotoxic signals [7]. In
fact, the presence of PrPC on the neuronal surface has been
shown to be critical not only for supporting PrPSc propaga-
tion, but also for transducing its neurotoxicity [8–10]. This
conclusion recently found unexpected support from da-
ta involving other pathogenic protein oligomers. Different
studies provided evidence that PrPC could mediate the tox-
icity of oligomeric assemblies of Aβ, alpha-synuclein and
other β-sheet-rich protein conformers [5, 11–14]. These re-
sults indicate that misfolded assemblies of several different
pathogenic proteins could exert their effects by blocking,
enhancing or altering the normal activity of PrPC [15]. This
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conclusion highlights a close connection between the role
of PrPC in several neurodegenerative diseases and its phys-
iological function. What is this function? Several activities
have been attributed to PrPC in the nervous system, most-
ly based on subtle abnormalities detected in mice or cells
depleted of PrPC [16]. These include roles in neuroprotec-
tion, synaptic integrity, neuronal excitability and memo-
ry formation. However, most of these observations have
not been reproduced in subsequent studies, found little or
no physiological or pathological correlates, or were later
shown to arise from genetic impurities of the employed
mouse models [17, 18]. In fact, a number of previous lines
used to study the physiological function of PrPC were non-
co-isogenic Prnp(-/-) mice, in some case leading to arti-
factual conclusions [18]. Curiously, some of the clearest
observations regarding PrPC function have been collected
by studying the protein outside prion diseases. These in-
clude roles in the regulation of myelin homeostasis [19],
immune processes [20] and in the progression of cancer
[21]. Although it seems unlikely that a single protein could
be involved in such a wide range of physiological process-
es, particularly in light of the relatively small number of
phenotypic changes observed in PrPC-deficient mice, the
lack of a clear understanding of the activity of this protein
forces us to remain open minded. Thus, in this manuscript
we review the most compelling data suggesting a putative
role for PrPC beyond prion diseases and discuss potential
therapeutic implications arising from such observations.

A role for PrPC in other neurodegenerative
disorders

Despite the lack of consensus around the normal func-
tion(s) of PrPC in the central nervous system (CNS), mis-
folding of PrPC with accumulation of altered conformers
(PrPSc) in the brain is considered the fundamental path-
ogenic event in prion diseases [22, 23], with a potential
role for PrPC in the development of other neurodegenera-
tive diseases such as Alzheimer’s disease and the α-synu-
cleinopathies increasingly described.

Alzheimer’s disease
In early studies predominantly relying on cell culture mod-
els, PrPC was described as favourably regulating the activ-
ity of β-secretase (β-site APP cleaving enzyme; BACE1),
whereby production of neurotoxic Aβ peptides was re-
duced [24]. This reported capacity of PrPC appeared to re-
quire PrPC localisation in cholesterol-rich lipid rafts and
the N-terminal polybasic region [24] thereby allowing di-
rect interaction with Golgi-localised, immature forms of
BACE1 causing trapping within the Golgi and reduced
BACE1 levels at the cell surface and in endosomes [25].
Of interest, a mutant form of APP (carrying the Swedish
mutation) was reported to escape this beneficial regulatory
effect of PrPC, in keeping with a potential protective effect
for sporadic Alzheimer’s disease but probably not for at
least some types of genetic Alzheimer’s disease. Unfor-
tunately, the translational relevance and validity of these
early observations has become less clear with the passage
of time. In one follow-up study from the same laboratory,
Whitehouse and colleagues reported that human brains
demonstrated an ~50% reduction of PrPC expression in
sporadic Alzheimer’s disease frontal cortex compared with

age-matched controls, with PrPC levels inversely correlat-
ed with BACE1 activity, Aβ load, soluble Aβ levels and
the Braak neurofibrillary tangle stage of disease [26]. In
contrast however, a more recent report from this group, pri-
marily utilising PrPC gene ablated (PrP0/0) transgenic mice
expressing wild-type human APP, the absence of PrPC ap-
peared to have no effect on BACE1 activity, with levels
of APP proteolytic fragments, cognate Aβ peptides and
histopathological findings in the brains of these mice un-
altered compared to controls [27]. Further potentially link-
ing PrPC to the processing of APP and the generation of
deleterious Aβ peptides, another group has reported that
the genes influenced by the amyloid intracellular domain
transcription regulation fragment produced through γ-sec-
retase processing of β-APP includes the gene encoding
PrPC (Prnp) through a p53-dependent pathway [28], possi-
bly constituting a negative feedback loop. In a subsequent
report employing a combination of experimental approach-
es, however, this putative role for the amyloid intracel-
lular domain in influencing PrPC expression levels could
not be reproduced, once again leaving uncertainty about
the biological validity of the original observations [29].
Additional observations suggesting a potential neuropro-
tective effect of PrPC in Alzheimer’s disease have been
provided by Rial and co-workers [30]. Utilising a mouse
model centred on the effects of a single intracerebroven-
tricular injection of 400 pmol of Aβ1-40 peptide on spa-
tial learning and memory, these authors demonstrated re-
duced cognitive impairment in transgenic Tg-20 mice (that
overexpress PrPC five-fold) compared with wild-type and
transgenic PrP0/0 mice, with the Tg-20 mice also display-
ing less evidence of apoptosis and cell damage in the hip-
pocampus. The mechanism of neuroprotection was not ex-
plored by the authors but other reports raise the possibility
that glutamate excitotoxicity may be relevant with PrPC

able to directly attenuate excessive N-methyl-D-aspartate
receptor (NMDAR) activity in a copper-dependent man-
ner, including that induced by the presence of Aβ1-42 pep-
tide [31–33]. In contrast to any potential neuroprotective
effects afforded by PrPC in Alzheimer’s disease, there is
considerable evidence supporting a likely deleterious role
in Alzheimer’s disease pathogenesis. PrPC, through direct
binding to residues 95-113, may act to disassemble amy-
loid fibrils composed of Aβ peptides thereby trapping con-
stituent peptides into an oligomeric state effectively en-
riching the concentration of putative neurotoxic oligomers
[34], but most evidence suggests the harmful behaviour of
PrPC is through acting as a receptor to transduce the tox-
ic signal of soluble Aβ peptides. Such deleterious effects
of this PrPC mediated toxic signal transduction include
impairment of hippocampal long-term potentiation (LTP),
dendritic spine retraction and disruption of rodent spatial
memory. In their seminal report, Lauren and co-workers
exploited expression cloning to determine that PrPC binds
with nanomolar affinity to soluble Aβ oligomers (prin-
cipally through the charge cluster residues 95−110) sub-
serving blockade of hippocampal slice LTP, with synap-
tic function rescued by anti-PrP antibodies [5]. Despite the
inability of early follow-up reports to replicate this im-
plicated pathogenic role for PrPC [35–37], subsequent re-
ports have re-affirmed and elaborated this apparent cru-
cial transduction role for mediating soluble Aβ oligomer
toxicity. After Aβ oligomers bind PrPC at dendritic spines
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(possibly also inhibiting constitutive endocytosis and caus-
ing clustering of PrPC on the cell surface [38]), the Aβ
oligomer-PrPC complex associates with Fyn causing acti-
vation of this Src kinase leading to tau hyperphosphory-
lation [39], as well as phosphorylation of the NR2B sub-
unit of NMDARs. The kinase activity of Fyn on NMDARs
culminates in depletion of these glutamatergic ion chan-
nels at the synaptic surface in parallel with loss of den-
dritic spines [40–42]. In addition to deleterious synaptic
changes, axonal and neuronal loss are reported as down-
stream pathophysiological consequences of Aβ oligomers
binding to PrPC along with impairment of spatial learning
and memory [43, 44]. As a sequitur to these various reports
of the importance of PrPC as a key transducing mediator
of soluble Aβ neurotoxicity, anti-PrP antibodies primarily
directed against an epitope within the oligomer binding
site have been described as ameliorating or rescuing rodent
hippocampal LTP and cognitive function [5, 45–48].

Alpha-synucleinopathies
Beyond a likely participation of PrPC in Alzheimer’s dis-
ease pathogenesis, the normal form of the prion protein
has also recently been suggested to contribute to the patho-
genesis of α-synucleinopathies, such as Parkinson’s dis-
ease and diffuse Lewy body disease, although discrepan-
cies in findings across reports is noteworthy. Harnessing
in vivo and in vitro models, Ferreira and colleagues re-
ported a deleterious interaction of α-synuclein oligomers
(but not α-synuclein monomers or fibrils) with PrPC at the
NMDAR causing a failure of LTP in wild-type mouse hip-
pocampal slices; this putative role for PrPC was supported
by the abrogation of LTP impairment when utilising PrP0/

0 hippocampal slices [12]. Moreover, attempts to block the
interaction of α-synuclein oligomers with PrPC using an-
tibodies targeting specific PrPC amino acid segments re-
vealed that the integrity of the 93−109 (charge cluster) re-
gion was necessary to observe such LTP impairment. The
PrPC mediated inhibition of synaptic plasticity was also
prevented with the use of a specific Fyn inhibitor when co-
incubated with the α-synuclein oligomers, suggesting that
an interaction of the α-synuclein oligomer-PrPC complex
promotes phosphorylation of the NMDAR through Fyn,
thereby causing excessive Ca2+ influx at the post-synaptic
terminal. The interaction between complexes of glycosyl-
phosphatidyl-inositol (GPI)-anchored PrPC and α-synucle-
in oligomers with cytosolic Fyn appears possible through
metabotropic glutamate receptor 5 (mGluR5), as using
specific inhibitors of mGluR5-mediated phosphorylation
of NMDAR was also able to rescue LTP and cognitive
deficits in these mice to levels equivalent to controls. In-
terestingly, an analogous molecular pathophysiological
mechanism has also been observed in ex vivo and in vivo
models of Alzheimer’s disease assessing synaptic impair-
ment driven by soluble Aβ oligomers, with blockade of
the adenosine A2A receptors responsible for mGluR5 ac-
tivation resulting in the inhibition of the deleterious NM-
DAR phosphorylation via Fyn [40, 41]. Apparently incon-
gruous with the aforementioned study showing that PrPC

selectively bound only to α-synuclein oligomers to sub-
serve their detrimental effects, Aulić and co-workers re-
ported that PrPC mediated the cellular uptake and spread
of recombinant α-synuclein amyloid fibrils, with this ac-
tivity attenuating the propagation of misfolded PrPSc in in

vitro and in vivo scrapie infection models [11]. Although
supporting a role for PrPC in mediating the movement
of α-synuclein, another group suggested that although the
pathological spreading of α-synuclein may be facilitated
by PrPC, it is not exclusively dependent on PrPC [49]. De-
spite the reported inability of α-synuclein oligomers to in-
duce LTP impairment in PrP0/0 mouse hippocampal slices,
the role of PrPC in directly mediating neurotoxicity and
any direct interaction between α-synuclein oligomers and
PrPC are still a matter of controversy. Employing a range
of biophysical techniques to assess an intimate interaction
between α-synuclein and PrPC, including surface plasmon
resonance, La Vitola and colleagues were unable to con-
firm any direct association of PrPC with recombinant α-
synuclein oligomers [50], as well as α-synuclein
monomers and fibrils, although α-synuclein monomers ap-
peared to suppress PrPC concatenation through inhibiting
nucleation. In addition, La Vitola and colleagues observed
that primary neuronal cultures derived from wild-type and
PrP0/0 mice were equally susceptible to α-synuclein
oligomer neurotoxicity in a dose-dependent manner [46].
Finally, employing an in vivo model using intracere-
broventricular injection of α-synuclein oligomers, they al-
so reported that PrP0/0 mice displayed similar memory
deficits and hippocampal gliosis to wild-type controls. Al-
though the influence of differences in methodology cannot
be ruled out, these findings support the likelihood of α-
synuclein oligomer mediated neurotoxicity independent
from PrPC. Clearly, whereas any role of PrPC in non-prion
neurodegenerative diseases remains incompletely under-
stood and a subject of contention (especially in α-synucle-
inopathies), it appears likely that the normal form of the
prion protein may play some part in these other diseases,
which for Alzheimer’s disease may involve both protective
and pathogenic contributions.

PrPC in the immune system and related dis-
eases

Over the last few years the interest of immunologists in
PrPC and immune diseases has vastly increased. Two main
pieces of evidence may justify such interest: firstly, PrPC

has extensively been studied in the central nervous system
but is also widely expressed in cells of the immune system
[51]; secondly, immune tolerance to PrPSc has been doc-
umented [52–54]. Indeed, immune tolerance may prevent
robust immune responses to prions; accordingly, PrP-spe-
cific antibodies have not been detected in animals infected
with prions. In addition, other studies reported that the im-
mune system may also actively contribute to prion disease
pathogenesis, by amplifying prion load in lymphoid com-
partments, transferring the pathogenic PrPSc to cells and
facilitating efficient neuroinvasion [20, 52]. Although it
is clear that components of the immune system can con-
tribute to the spread of prions, none of these pieces of
evidence have been extensively validated at the molecu-
lar level, and conflicting results have often been reported
[20, 55]. Overall, based on these observations, two specific
roles of the immune system in prion diseases can be identi-
fied: immune cells may perform, when properly activated,
as a protective shield against prions but, at the same time,
they may be involved in the accumulation and spreading
of pathogenic PrPSc [56]. For these reasons, manipulation
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of the immune system has been envisioned as a potential
therapeutic option for prion diseases [57]. Immunothera-
py strategies have reported promising results in vitro and
in vivo. In particular, three main approaches have been
undertaken so far: (i) treatment with antibodies targeting
PrPSc [58–61]; (ii) vaccines with antigen-loaded dendrit-
ic cells [62, 63]; and (iii) adoptive transfer of PrP-spe-
cific CD4+ T lymphocytes [64]. Although more research
into mechanism and safety of these approaches is still re-
quired, these immunotherapies may offer potential novel
tools to clear the pathological form of PrP. However, be-
cause the function of cellular PrPC in the lymphoid system
and in the CNS remains to be fully elucidated, it is not yet
clear how therapies targeting PrPSc, which shows similar-
ities with PrPC, will affect immune or other specific en-
dogenous functions. For this reason, uncovering the role of
PrPC in cells of the immune system may provide novel in-
sights both into its role in the pathogenesis of prion dis-
eases and in specific functions of immune cells in general.

PrPC in immune cells: expression and functions
Its high evolutionary conservation suggests that PrPC ful-
fils ancient and still essential biological functions [65–67].
Notably, PrPC is abundantly expressed in neural cells, in-
cluding neurons and glia [68], as well as in subsets of cells
of haematopoietic origin (e.g., myeloid dendritic cells,
DCs, and T cells) [69]. In particular, data suggest that
PrPC is involved in specific immune functions, including T
cell development, DC activation, inhibition of macrophage
phagocytosis and immunological quiescence [70, 71]. In
addition to DCs and T cells, PrPC has been detected also
in B lymphocytes, natural killer cells, platelets, monocytes
and in follicular DCs [72–75]. Within lymphoid cells, B
cells express lower levels of PrPC compared with T cells
and natural killer cells [76]. In addition, it has long been
known that PrPC is present on the surface of lymphocytes
and it is rapidly upregulated upon their activation [77]. Fol-
lowing T cell activation, PrPC is redistributed in specif-
ic structures such as lipid rafts, together with signalling
molecules, leading to immunomodulation [78]. It has been
shown that GPI-anchored PrPC is enriched at the immuno-
logical synapse and can interact with components of the T
cell receptor , such as the Fyn tyrosine kinase and the ze-
ta chain-associated protein kinase 70 (ZAP-70), leading to
the modulation of T cell receptor signalling cascade [75,
77, 79]. Moreover, PrPC expression was reported to be
higher in T cells than in B lymphocytes, with CD8+ cell
subsets expressing slightly more PrPC than CD4+ cells [76,
80]. PrPC expression is also higher in CD45RO+ mem-
ory compared with CD45RA+ naive T lymphocytes [75,
81]. Interestingly, data from gene arrays have revealed the
murine Prnp gene to be up-regulated in T cell [82], via a
Stat6-dependent mechanism, during interleukin (IL)-4 dri-
ven Th2 differentiation [83] and in CD8+ memory T cells
[84]. In addition, it has been reported that regulatory CD4+
CD25+ T cells (Tregs) expressed 4.5 fold higher levels of
PrP messenger RNA and showed a 10-fold higher intensi-
ty of surface PrPC than effector CD4+ CD25− T cells, de-
spite no loss-of-function phenotypes could be recognised
in Treg cells from PrP0/0 mice [85]. Hence, PrPC may be
more important in certain types of functionally differentiat-
ed lymphocytes that operate in particular immune environ-
ments. Outside the nervous system, the antigen-presenting

cells, DCs display the highest expression levels of PrPC, in
both humans and mice [69, 86]. Studies on myeloid DCs
showed that PrPC levels particularly increase during dif-
ferentiation and maturation of these cells, in parallel with
molecules involved in antigen presentation, such as major
histocompatibility complex type II (MHC-II) and costim-
ulatory molecules [69]. Interestingly, it has been demon-
strated that important differences of PrPC expression exist
between different DC subpopulations either analysed after
ex vivo isolation or differentiated in vitro. DCs can be clas-
sified in two major categories: conventional DCs (cDCs),
which include at least two different DC subsets (e.g., cDC1
and cDC2) and plasmacytoid DCs (pDCs) [87, 88]. PrPC

was found on the surface of bone marrow-derived human
and mouse conventional DCs generated in vitro or isolated
from the spleen, but not in pDCs [88]. PrPC expression
in these cDCs was strongly up-regulated after maturation
by TLR ligands, such as bacterial lipopolysaccharide and
CpG. Interestingly, a study from Ballerini et al. showed
that membrane PrPC on DCs enhanced the stimulation of
specific naïve T cells both in vitro and in vivo [89]. High
expression of PrPC was also found on the surface of CD8+
cDC subset, both in the spleen and the lymph-nodes [88].
Although the different PrPC expression between cDCs and
pDCs could be related to the specific developmental pro-
gramme of these two cell types, the specific role of PrPC in
cDC functions still remains to be explored. Related to these
issues, specific evidence suggests that absence of PrPC in
T cells and DCs had different outcomes in T-cell prolifer-
ation. Specifically, T cells devoid of PrPC exhibited a nor-
mal allogenic antigen response, while DCs lacking PrPC

significantly reduced proliferation of interacting T cells,
suggesting that PrPC might serve different signalling roles
in the two cell types [90]. Another class of dendritic cells,
the follicular dendritic cells (FDCs), express high levels of
the PrPC, although its function in these cells is still uncer-
tain. In fact, it has been shown that PrPC is dispensable
for the maturation of FDCs and for maintaining antigen-
specific antibody responses [91]. PrPC has also been found
in macrophages and its expression is associated with both
the inflammatory M1 phenotypes and with the immuno-
suppressive M2 types. Interestingly, recent studies have
demonstrated that PrP0/0 mice produce reduced amounts of
the anti-inflammatory cytokine IL-10 in response to sys-
temic lipopolysaccharide, potentially suggesting a role for
PrPC in promoting IL-10 production in M2 macrophages
[92]. Moreover, again in macrophages, it has been demon-
strated that PrPC plays important role in phagocytosis [93,
94]. In particular, Wang and colleagues demonstrated that
mouse bone marrow-derived macrophages infected with
Escherichia coli express high levels of Prnp mRNA, lead-
ing to inefficient phagocytosis. Conversely, macrophages
devoid of PrPC internalised bacteria and increased the ex-
pression of cytokines such as interleukin-1β, decreasing
bacterial proliferation [95]. These data reveal a potentially
important role of PrPC as a negative regulator of phago-
cytosis, phagosome maturation, cytokine expression, and
macrophage microbicidal activity. Further studies are re-
quired to determine how PrPC regulates vesicular traffick-
ing associated with phagocytosis and cytokine secretion.
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PrPC in immune disorders
The role of PrPC in health and homeostatic cell functions
is still obscure, but several potential roles have been at-
tributed to this protein in the immune system. Specifically,
several studies suggest that PrPC may act as a modulator
of innate immune responses in pathologies beyond prion
diseases [96–98]. The detailed molecular means by which
PrPC modulates immune signalling pathways contributing
to immune modulation are not yet clarified and stand out
as a necessary area of future research. Interestingly, PrPC is
expressed in various organs that, by multiple mechanisms,
are relatively protected from inflammation (i.e., immuno-
privileged sites) such as the brain, eye, placenta, the preg-
nant uterus and testes [99, 100]. This high expression in
immuno-privileged organs suggest that PrPC has an impor-
tant protective role under inflammatory stress and/or tis-
sue damage [90, 101]. Accordingly, specific reports have
shown that the absence of PrPC increases inflammatory
damage in different models of inflammation such as ex-
perimental brain ischaemia, brain trauma and experimental
autoimmune encephalomyelitis [102]. For example, exper-
imental autoimmune encephalomyelitis, the animal mod-
el for human multiple sclerosis, is worsened in mice lack-
ing PrPC. In particular, in the acute stage, the spinal cords,
cerebellums and forebrains of Prn-p-deficient mice were
shown to be more heavily infiltrated with leucocytes and
exhibited stronger proinflammatory cytokine gene expres-
sion, as compared with those seen in wild-type mice. Re-
markably, the persistence of leucocyte infiltration in the
forebrain and cerebellum was accompanied by increased
pathogenic cytokines, such as interferon (IFN)-γ and IL-17
[103]. In this particular model, disease exacerbation has
been attributed to T cells that would differentiate into more
inflammatory (i.e., Th1 and Th17) and behave more ag-
gressively against the CNS effectors, when deprived of
PrPC [104]. Thus, based on these results, attenuation of
T cell-dependent neuroinflammation may represent a po-
tential novel function of PrPC. In addition to experimen-
tal autoimmune encephalomyelitis, PrPC also appears to
be protective in autoimmune colitis. Inflammatory bow-
el disease, induced by dextran sodium sulphate (DSS), is
more severe in PrP0/0 mice than in wild-type mice. Accord-
ingly, overexpression of PrPC greatly attenuates DSS-in-
duced colitis [105]. Again, depletion of PrPC was able to
skew T cells toward more pronounced Th1 and Th17 in-
flammatory phenotypes [79]. Based on these data, varia-
tions in the human PRNP gene or its sequence [106] might
have effects on disease susceptibility or the clinical course
of autoimmune diseases; however, these specific studies
have not yet been performed. Another interesting obser-
vation is that PrPC may act as antimicrobial peptide. It
was demonstrated that synthetic peptides derived from the
N-terminal region of PrPC are cytotoxic to several bacte-
rial species, including E. coli, Pseudomonas aeruginosa,
Bacillus subtilis and Staphylococcus aureus [107]. In addi-
tion, in 2013 Ding and co-workers showed that PrPC par-
ticipates in the regulation of microglial response to My-
cobacterium bovis infection, through the upregulation of
pro-inflammatory cytokines and the modulation of apop-
tosis [108]. In particular, they found a significant increase
of Prnp mRNA expression upon microglial cell infection
with M. bovis, and Prnp silencing did not alter the ex-
pression pattern of anti-inflammatory cytokines IL-10 and

transforming growth factor (TGF)-β. PrPC was also shown
to possess antiviral properties by inhibiting the replication
of the human immunodeficiency virus type 1 (HIV-1) and
the murine leukaemia virus [109]. In these studies, PrPC

was able to bind the viral genomic RNA of HIV-1 nega-
tively affecting its translation. Moreover, PrPC was found
to co-localise with the virus assembly machinery at the
plasma membrane and at the virological synapse in infect-
ed T cells. Depletion of PrPC in infected T cells and mi-
croglia favoured HIV-1 replication [109]. Within this con-
ceptual framework, it has been suggested that PrPC may
serve two principal roles in immune system: to modulate
the inflammatory potential of immune cells, and to protect
vulnerable parenchymal cells against noxious insults gen-
erated through inflammation. The mechanisms lying be-
hind the role of PrPC and their significance for pathogen-
esis and its regulatory roles in specific immune disorders
require further investigation.

PrPC and cancer

The first hint of a link between PrPC and cancer dates back
to the early 2000s when PRNP was identified as one of
the 30 genes most overexpressed in pancreatic cancer cell
lines as compared with normal cells [110]. At the same
time, PrPC was reported to be upregulated in a drug-resis-
tant gastric cancer cell line as compared with the parental
cell line [111]. That elevated PrPC may confer resistance to
anticancer agents was soon confirmed by Diarra-Mehrpour
and colleagues, who demonstrated a causal relationship be-
tween increased PrPC expression and resistance to tumour
necrosis factor-α (TNFα) in a breast cancer cell line [112].
Thereafter, de Wit and colleagues came across PrPC when
screening for cell surface molecules associated with ade-
noma to carcinoma transition in colon cancer [113]. Fol-
lowing these pioneering findings, further studies have con-
solidated the involvement of PrPC in four main aspects
of cancer biology: proliferation; resistance to anticancer
agents; cell migration and invasion; and epithelial to mes-
enchymal transition. More recently, links between PrPC

and cancer stem cells (CSCs) (see below), as well as aneu-
ploidy, were also uncovered [114]. Furthermore, although
scarce, studies featuring patients globally point to an asso-
ciation between high PrPC expression and poor prognosis
[115–120]. It is now well established that PrPC may sustain
cancer cell proliferation in various types of cancers: gastric
[121], pancreatic [120] and colon cancer [116, 122, 123],
as well as glioblastoma [117, 124] and schwannoma [125].
From a mechanistic point of view, PrPC was shown to pro-
mote the recruitment of a PI3 kinase (PI3K)-AKT pathway,
itself controlling the transcription of CyclinD1 in gastric
cancer cells [121] and to activate the MAP kinases ERK1/2
upon interaction with the STI1 chaperone in glioblastoma
[117, 126]. In pancreatic cancer cells, the pro-proliferative
action of PrPC appears to involve activation of the Notch
pathway [127]. Moreover, the capacity of PrPC to sustain
cell proliferation in colon cancer cells may relate to en-
hanced glucose uptake, as PrPC-dependent signalling leads
to transcription of the GLUT1 gene [123]. Overall, the con-
tribution of PrPC to cancer cell proliferation fully fits with
a gain of its physiological function in normal cells where it
controls the activation of several effectors associated with
cell growth [128, 129].
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A second field of investigation focuses on the correlation
between PrPC and chemo-resistance. High PrPC expression
levels is indeed associated with increased resistance to var-
ious types of agents in glioblastoma [130], gastric [111,
121, 131, 132], breast [112, 133–135], and colon cancer
[122, 136, 137]. According to several studies, the
PrPC-PI3K-AKT pathway could contribute to drug resis-
tance by enhancing the expression of MDR1 (multidrug-
resistance protein 1) [138]. Very recently, PrPC was found
to confer resistance to doxorubicin in breast cancer cells
by directly binding and sequestering the drug via its N-ter-
minal domain [119]. Consistently, the authors found a sig-
nificant correlation between PRNP gene expression levels
and resistance to treatment in breast cancer patients, ar-
guing that PRNP monitoring could help stratify patients
for adequate therapy. A third process to which PrPC takes
part in cancer cells is invasion/migration. Elevated PrPC

was shown to confer enhanced migratory and/or invasive
properties to glioblastoma [126], gastric [118], breast [133,
139], pancreas [127], colon [140] lung [141] and
melanoma [142] cell lines. In pancreatic cancer and
melanoma, PrPC, which is present as pro-PrP (an isoform
retaining its C-terminus instead of a GPI anchor), appears
to exert its pro-migratory action by interacting with filamin
A, itself connected with the actin cytoskeleton [142, 143].
In colon cancer cells, this is triggered by the binding of
PrPC with its ligand STI1 [140]. Of note, the pro-invasive
and pro-migratory role of PrPC extends to the in vivo sit-
uation in animal models. Indeed, Du and colleagues found

that among colon primary tumour cells, only those positive
for PrPC were able to promote liver metastasis after injec-
tion in the caecal wall of immunocompromised mice [115].
Whether this holds true for other types of cancer remains
to be investigated.

Metastatic dissemination is highly correlated with epithe-
lial‐to‐mesenchymal transition (EMT), a process whereby
cells lose epithelial markers and cell-cell and cell-matrix
contacts, remodel their actin cytoskeleton and acquire mes-
enchymal hallmarks, favouring cell migration [144]. At a
molecular level, EMT induction is controlled by various
transcription factors, including ZEB1, ZEB2, SNAIL,
SLUG and TWIST [144]. The expression of PRNP is high-
ly associated with and EMT signature in colon cancer pa-
tients, and PrPC controls the expression of ZEB1 in colon
cancer cells [116]. Interestingly, EMT appears to be inti-
mately connected with CSC properties [145]. Accordingly,
Du and colleagues documented that PrPC-positive prima-
ry colon cancer cells express high levels of the EMT-asso-
ciated markers TWIST and N-cadherin and low levels of
the epithelial marker E-cadherin and exhibit CSC proper-
ties such as expression of the CSC marker CD44 and tu-
mour-initiating capacity [115]. In line with this, PrPC was
shown to interact with CD44 in multi-resistant breast can-
cer cells [133]. Furthermore, in primary glioblastoma cells,
PrPC silencing reduces the expression of the CSC mark-
ers SOX2 and NANOG, as well as self-renewal and tu-
morigenic potential [124]. Similar findings were obtained
by Iglesia et al working on glioblastoma cell lines grown

Figure 1: The physiological and pathological processes in which PrPC (PDB 2LFT) may play a role. In addition to serving as a substrate
for PrPSc replication (model depicted in A from [149]), the protein has also been reported to act as a receptor for Aβ oligomers (B, PDB 6RHY)
and misfolded α-synuclein (C, PDB 2N0A). Surprisingly, PrPC has also been involved in myelin homeostasis (D), immunoregulatory processes
(E) and cancer, mainly at the levels of cell cycle regulation (F), drug resistance (G) and epithelial-to-mesenchymal transition (H), among oth-
ers.
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as neurospheres [126]. As with proliferation, the contribu-
tion of PrPC to CSC self-renewal may be envisioned as
a diversion of its physiological role in normal stem cell
maintenance [146]. Collectively, the involvement of PrPC

in various aspects of cancer progression may be viewed
as directly related to its physiological role in normal cells.
From a therapeutic perspective, reducing PrPC expression
through antisense oligonucleotide-based strategies [147]
may prove beneficial, as documented for glioblastoma
[148] or colon cancer [115]. Besides, alternative opportu-
nities may ensue from a better knowledge of the signals
upregulating PrPC expression in cancer cells.

Conclusions

After more than three decades of intense research across
numerous research laboratories around the planet there is
still much to learn about the biology of PrPC. A large
amount of data provides solid experimental support for the
notion that the simple accumulation of PrPSc in nerve tis-
sues may not explain the whole spectrum of neurotoxic
events occurring in prion diseases, which instead is likely
to require some poorly understood subversion of PrPC

function upon binding to PrPSc. Such a role for corruption
of PrPC as a mediator of prion toxicity has received un-
expected support from research in other neurodegenerative
disorders, showing that PrPC can bind disease-associated
misfolded proteins, such as oligomers of Aβ and alpha-
synuclein. Research in even more distant fields of biology
supports expanded and surprising roles for PrPC in several
physiological and disease contexts outside the brain, such
as myelin homeostasis, immunoregulatory processes and
cancer (figure 1). These approaches, which might not ap-
pear directly relevant to prion biology and patho-biology,
are nevertheless laying the groundwork for a more com-
prehensive understanding of the physiological function(s)
of PrPC, and the likelihood of achieving novel insights that
could elucidate some fundamental cytotoxic mechanisms
potentially shared by prion disorders and several other dis-
eases.
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