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Summary

Human leucocyte antigen (HLA) alleles and single nu-
cleotide polymorphisms (SNPs) lying in the HLA region
are known to be associated with several infectious dis-
eases among which acquired immunodeficiency syn-
drome, hepatitis B, hepatitis C, tuberculosis, leprosy and
malaria are highly prevalent in many human populations
worldwide. Distinct approaches such as case-control com-
parisons, immunogenetic analyses, bioinformatic peptide-
binding predictions, ancient DNA and genome-wide asso-
ciation studies (GWAS) have contributed to improving this
knowledge during the last decade, although many results
still need stronger statistical and/or functional support. The
present review updates the information regarding the main
HLA allele and SNP associations observed to date for six
of the most widespread and some other infectious dis-
eases, and provides a synthetic illustration of these find-
ings on a schematic HLA genomic map. It then discusses
these results by stressing the importance of integrating in-
formation on HLA population diversity in disease-associa-
tion studies.
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Introduction

Human leucocyte antigen (HLA) molecules are encoded
by a set of 21 protein-coding loci lying amongst many oth-
er genes and pseudogenes at region 6p21 of our genome
[1, 2]. The HLA transmembrane proteins encoded by the
classical (A, B, C, DR, DQ and DP) HLA genes are prin-
cipally involved in the presentation, at the cell surface, of
small pathogen-derived peptides to T cells, which triggers
an immune response [3]. HLA class I (A, B, C) molecules
are composed of a single α chain non-covalently bound to
a small β2-microglobulin polypeptide encoded by anoth-
er chromosome (15q21). Their α1 and α2 domains form
the peptide-binding site where small peptides of 8 to 10

amino acids derived from viral proteins produced by an in-
fected cell are presented to cytotoxic CD8+ lymphocytes,
with the effect of destroying that cell. HLA class II (DR,
DQ, DP) molecules are heterodimers composed of one α
(encoded by DRA, DQA and DPA genes) and one β (en-
coded by DRB, DQB and DPB genes) chain, the α1 and
β1 domains of which form the peptide binding site. These
proteins present longer peptides of 13 to 25 amino acids
derived from endocytosed antigens to helper CD4+ lym-
phocytes. In this case, the recognition of the HLA-peptide
complex by the lymphocytes, via their T-cell receptors, in-
duces the release of cytokines that will orchestrate a tai-
lored immune response against the pathogen, for instance
by helping B cells to secrete high affinity antibodies or by
inducing macrophage activation.

All classical HLA genes except DRA and DPA are highly
polymorphic at their peptide binding site-encoding exons
(exons 2 and 3 for class I and exon 2 for class II genes),
which translates into several thousands of currently known
HLA alleles and high levels of heterozygosity (often
around 90%) in most human populations [1, 4, 5]. This
huge diversity is usually explained by the advantage it
may confer to heterozygous individuals, which would be
capable of presenting a larger variety of peptides than
in homozygous individuals, therefore enhancing their T-
cell repertoire and protection against pathogens. This het-
erozygous advantage model, first described by Doherty
and Zinkernagel [6], was further refined by the considera-
tion that heterozygotes carrying functionally divergent al-
leles would have a higher fitness (ability to survive and
reproduce) than heterozygotes carrying more similar alle-
les, hence the naming of divergent allele advantage [7–9],
also recently extended, under the name of joint divergent
asymmetric selection, to the simultaneous action of multi-
ple HLA loci [10].

The extreme genetic variation observed at classical HLA
genes in human populations is thus principally considered
as the result of an adaptation to pathogen-rich environ-
ments during evolution, although other mechanisms have
been proposed as well [11]. This population heterozygote
advantage is a global effect of HLA allelic variation that
does not necessarily indicate allele-specific overdomi-
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nance whereby a heterozygote would be more protected
than the homozygotes for the same allele [12]. On the other
hand, protective or harmful effects of specific HLA alle-
les or single nucleotide polymorphisms (SNPs) in the HLA
region have been suggested through several epidemiolog-
ical approaches, a number of them relating to infectious
diseases, as documented below. Such diseases are char-
acterised by the fact that they can be passed directly or
indirectly from one individual to another through sever-
al categories of infectious agents (viruses, bacteria, para-
sites and fungi), with the dramatic consequences that they
may quickly affect and kill hundred thousands or even
millions of individuals each year (table 1). This is why
there is an urgent need to understand better how each in-
dividual reacts against different kinds of infections, taking
into account their HLA genotype. From an evolutionary
genetics perspective, a fascinating issue is also to under-
stand how specific HLA markers evolved in relation to the
spread of infectious diseases worldwide. For example, in
the case of a severe epidemic leading to a reduction in
size of a given population (i.e., a population bottleneck),
we may expect highly protective alleles to be maintained
in the population through positive selection and suscepti-
bility alleles to be eliminated through purifying selection
or selective sweep, as revealed in the major histocompati-
bility complex (MHC) genes of chimpanzees following pu-
tative simian immunodeficiency virus epidemics [13–15].
This partly explains why genetic differences are observed
at HLA genes between populations (if the latter underwent
distinct disease outbreaks during evolution) despite a gen-
eral effect of population heterozygous advantage [16]. In
the present paper, we first review the associations that have
been best documented between markers at classical HLA
genes and six of the most prevalent infectious diseases in
human populations, and we then discuss these findings in
a population genetics and evolutionary perspective.

HLA allele and SNP associations with infec-
tious diseases

Causal relationships between host genetic variation and
infectious disease susceptibility have been found at dif-
ferent genes across the genome, one of the best docu-
mented examples being CCR5 Δ32, which impairs the pen-
etration of human immunodeficiency virus (HIV) into the
cells [17]. In addition, although precise causal determi-
nants have not been identified, for about half a century
HLA genes have been reported to be associated with dis-
eases including many different autoimmune disorders and
infections, as well as several kinds of cancers (reviewed
in [2, 18–25]). Genome-wide association studies (GWAS),

which explore putative associations between genetic mark-
ers and particular phenotypes across the whole genome,
have identified significant signals of positive selection in
that region (e.g., [26]) and a large number of SNPs within
the HLA region have been found to be associated with
viral infections, as recently reported in several reviews
[27–29]. To date, HLA associations have been more par-
ticularly documented for acquired immune deficiency syn-
drome (AIDS), hepatitis B, hepatitis C, tuberculosis, lep-
rosy and malaria, as described below (note that regarding
HLA alleles, we focused this review on alleles defined at
the second-field level of resolution that corresponds to spe-
cific HLA proteins [1] except when presenting the histori-
cal backgrounds of some findings).

Acquired immune deficiency syndrome

One of the best documented associations of markers in the
HLA region with viral infections is for the acquired im-
mune deficiency syndrome (AIDS) due to infection by the
human immunodeficiency virus (HIV) [30], which is one
of the major global public health issues today (table 1).
Earliest studies suggested that AIDS progression was ac-
celerated in homozygotes at HLA class I genes compared
with heterozygotes [31, 32] and in HLA-B*35 [32, 33]
and/or HLA-C*04 carriers [32]. B*35 subtypes differing in
their peptide-binding specificity at position 9 of the pep-
tide binding site were also considered, and it was shown
that changes at a single amino acid position of the HLA
molecules could lead to differences in terms of HIV dis-
ease progression [34]. A significant negative correlation
was also observed between the rapidity of AIDS progres-
sion and the number of viral epitopes recognised by HLA
class I types, suggesting a direct relationship between HLA
alleles and the progression of the disease [35]. More re-
cently, Pereyra et al. [36] performed GWAS in a multi-
ethnic cohort of HIV-1 controllers (infected people who
show ability to control HIV replication without any thera-
py and who do not develop clinical disease) and progres-
sors (used as controls): in the largest European group, they
identified 313 SNPs reaching genome-wide significance in
HLA and none in other genomic regions. Four indepen-
dent markers lie in proximity to HLA class I, among which
are rs4418214 close to MICA and rs2395029 related to the
HLA Complex P5 gene (HCP5) coding for a long non cod-
ing regulatory RNA associated with several diseases [37].
The G variant of rs2395029 is itself in linkage disequilib-
rium with allele HLA-B*57:01 [38–40] protecting against
HIV progression to AIDS in populations of European an-
cestry [41], although also found to confer hypersensitivi-
ty to abacavir, an antiretroviral drug used to treat HIV-in-
fected patients [42–45]. However, as reported by Kulski et

Table 1: Six of the most prevalent infectious diseases according to the World Health Organization.

Category Disease Infecting agent Number of cases worldwide* Number of deaths worldwide*

Viral Acquired immunodeficiency
syndrome

Human immunodeficiency virus 37.9 million in 2018 770,000 in 2018

Viral Hepatitis B Hepatitis B virus 257 million in 2015 887,000 in 2015

Viral Hepatitis C Hepatitis C virus 71 million in 2015 399,000 in 2016

Bacterial Tuberculosis Mycobacterium tuberculosis 10 million in 2018 1.5 million in 2018

Bacterial Leprosy Mycobacterium leprae >200,000 new cases in 2018 −

Parasitic Malaria Plasmodium falciparum and vivax 228 million in 2018 405,000 in 2018

* Reported in the last years

Review article: Biomedical intelligence Swiss Med Wkly. 2020;150:w20214

Swiss Medical Weekly · PDF of the online version · www.smw.ch

Published under the copyright license “Attribution – Non-Commercial – No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

Page 2 of 14

https://www.who.int/


al. [37], the association of HCP5-rs2395029 with HIV vi-
ral load set point has not been confirmed in African popu-
lations, where HLA-B*57:03 is found in place of B*57:01.
Actually, the closely related HLA-B*57:02, HLA-B*57:03
and HLA-B*58:01 alleles are all found to be protective
against HIV disease progression by presenting several p24
Gag-specific epitopes [46], although Env protein-derived
epitopes also likely play an important role in HLA-HIV re-
striction involving HLA-B*57:01 and HLA-B*58:01 [47].
As reviewed by Bardeskar and Mania-Pramanik [48], an-
other SNP located 35 kb upstream of HLA-C, rs9264942
(termed −35Kb), was putatively associated with both
HLA-C expression levels and HIV control (variant C being
associated with higher expression and slower disease pro-
gression) [39, 49], the causal variant being however an
in/del located at position 263 of HLA-C 3’-UTR
(rs67384697, in linkage disequilibrium with rs9264942)
regulating the binding of a micro-RNA (miR-148a)
[50–55]. In the African American group, Pereyra et al. [36]
identified 33 significant SNPs (none in common with Eu-
ropeans) among which rs2523590 2kb upsteam of HLA-
B in common with the (so-called by the authors) Hispanic
group, as well as the intronic rs2523608, also observed
by Pelak et al. [56] to be associated with HLA-B*57:03,
which was previously suggested to be involved in slower
HIV-1 disease progression in populations of African de-
scent [57]. Pereyra et al. [36] also identified (through
amino acid imputation) six significant amino acid positions
among which five within the PBR, more particularly posi-
tion 97 (C-pocket) in HLA-B that would mediate the pro-
tection or susceptibility to HIV progression. Finally, be-
sides HLA-B*27:05 [36, 38], HLA-B*27:02 was recently
identified as another protective factor in HIV-1 (slow dis-
ease progression) [58], which confirms the implication of
the formerly proposed HLA-B*27 allele [59]. More recent-
ly, bioinformatic peptide-binding predictions have again
stressed the putative advantage of HLA heterozygotes in
HIV-1 control [60].

Hepatitis B

Viral hepatitis includes a set a diseases due to different
viruses (A, B, C, D, E) [61], among which HBV and HCV
cause 96% of hepatitis mortality in humans [62] (table
1). Former association studies focusing on the HLA re-
gion (partly reviewed in [63–65]) suggested that homozy-
gosity, as well as specific alleles at HLA class II loci
(DQA1*05:01, DQB1*03:01, DPB1*09:01,
DRB1*11:02), increased the risk of HBV infection or pro-
gression [66–68], whereas both HLA class I (A*03:01)
and class II (DRB1*13:01, DRB1*13:02, DQB1*02:01,
DPB1*02:01) alleles were associated with protection or vi-
ral clearance [68–72]. More recently, GWAS studies iden-
tified HLA-DP as the locus most strongly associated with
chronic HBV infection [73, 74]. In the 3′-UTR region of
both DPA1 and DPB1, 11 SNPs were found to be as-
sociated with chronic hepatitis B in Asian populations,
the strongest associations being found for rs3077 and
rs9277535, respectively (A alleles conferring protection in
both cases) [73].

Based on these results, two protective
(DPA1*01:03~DPB1*04:02 and
DPA1*01:03~DPB1*04:01) and two risk

(DPA1*02:02~DPB1*05:01 and
DPA1*02:02~DPB1*03:01) HLA haplotypes were pro-
posed. Further fine-mapping of the MHC region in East
Chinese HBV carriers and controls also revealed a strong
association with chronic hepatitis B infection of HLA-
DPβ1 amino acid positions 84-87 lying in the PBR, them-
selves in high linkage disequilibrium with SNP rs9277535
at HLA-DPB1 and medium linkage disequilibrium with
SNP rs3077 at HLA-DPA1, making these positions possi-
ble causal variants involved in peptide presentation [75].
However, decreased expression of HLA-DPA1 and HLA-
DPB1 has also been associated with rs3077 and
rs9277535, respectively, suggesting that low gene expres-
sion may be a risk factor [76], in line with the more general
idea that associations between HLA markers and diseases
are partly driven by differential expression of HLA alleles
[77]. A different SNP located in the 3′-UTR of HLA-
DPB1 − rs9277534 (or 496A/G), in complete linkage dis-
equilibrium with rs9277530, rs9277531, rs9277533 and
rs9277536 − was found to be associated with either recov-
ery (variant A, in linkage disequilibrium with allele HLA-
DPB1*04:01) or persistence (variant G, in linkage dise-
quilibrium with allele HLA-DPB1*01:01) of HBV in both
Europeans and African-Americans [78]. Here again, the
associations would be due to differences in HLA-DPB1
expression levels rather than in peptide binding properties,
but in this case higher levels of HLA-DP expression (496
GG genotype) would confer HBV persistence [78]. A nov-
el SNP near HLA-DPA3 (rs9366816) was also found to
be significantly associated with persistent HBV infection
in Han-Taiwanese [79] and a SNP near HLA-DPB1
(rs9277542) with protection against chronic HBV and viral
clearance in Japanese and Koreans [80] as well as in Ar-
gentinians [81]. Mbarek et al. [74] also showed that two
SNPs located within the HLA-DQ locus, namely
rs2856718 located in the intergenic region between HLA-
DQA2 and HLA-DQB1, and rs7453920 located in intron
1 of HLA-DQB2, exerted effects on hepatitis B suscepti-
bility (A conferring protection and G susceptibility in both
cases) independently from the effects of the SNPs found
at locus HLA-DP in the studied Japanese cohort. Based on
this study, HLA haplotypes DQA1*01:02~DQB1*03:03
and DQA1*03:01~DQB1*06:01 were associated with risk
and DQA1*01:01~DQB1*05:01 and
DQA1*01:02~DQB1*06:04 to protective effects. Two sig-
nificant SNPs were also identified near the HLA-DQA2
(rs9276370) and HLA-DQB2 (rs7756516) loci [79] and
one SNP (rs9268652) in HLA-DRA [29]. Whereas the
involvement of HLA-DP SNPs rs3077, rs9277534 and
rs9277535 and HLA-DQ SNPs rs2856718 and rs7453920
were confirmed in other studies (e.g., [63, 79–88]), al-
though sometimes contradicted in cohorts of different ori-
gins (e.g., [89]), significant associations of SNPs in the
HLA-DP/HLA-DQ regions were further expanded by Tao
et al. [90], the most significant ones among a total of 76
being again found in HLA-DPB1 3′-UTR. Together with
a large meta-analysis confirming the significant associa-
tions of SNPs rs3077 and rs9277535 [91], this genomic re-
gion thus appears to play a leading functional role in HBV
immunity. Some studies also observed significant associa-
tions between HBV and SNPs in the HLA class I region,
namely rs3130542 near HLA-C (the A allele being asso-
ciated with a low HLA-C expression and increased risk of

Review article: Biomedical intelligence Swiss Med Wkly. 2020;150:w20214

Swiss Medical Weekly · PDF of the online version · www.smw.ch

Published under the copyright license “Attribution – Non-Commercial – No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

Page 3 of 14



developing chronic infection) [85], further found to be in
linkage disequilibrium with HLAC*07:02 [88], as well as
rs2853953, in linkage disequilibrium with HLA-C*06:02
[88].

Hepatitis C

Some studies also suggested associations between HLA
alleles and hepatitis C virus (HCV) persistence, such as
HLA-DRB1*03:01, or spontaneous clearance, such as
HLA-A*02:01, A*11:01, B*57:01, B*57:03, C*01:02,
DQB1*03:01, DRB1*01:01, DRB1*04:01 and
DRB1*11:01, among others [92–99]. However, these asso-
ciations depend on population origin, as stressed in a re-
cent review and meta-analysis of HCV clearance [100] that
reported highly significant associations for alleles HLA-
DQB1*02:01, DQB1*03:01, DRB1*07:01, DRB1*11:01
and/or DRB1*12:01, depending on the ethnicity. SNP
rs4273729 (C allele) associated with HLA-DQB1*03:01
(which would be expressed at higher levels compared to
other DQB alleles) was proposed to be involved in spon-
taneous resolution of HCV infection in individuals of both
European and African ancestry [101]. SNP rs9275572, lo-
cated in the HLA-DQB1 region, showed a significant as-
sociation with chronic HCV in Japanese, however giving
the same signal as SNP rs1130380, a variant specific to
HLA-DQB1*03 that causes an amino acid substitution in
the peptide-binding pocket of HLA-DQB1 (position 55)
[102]. Note also that alleles HLA-B*57:01 and B*57:03,
associated with HCV clearance [92, 95] have also been as-
sociated with slow HIV disease progression [41, 57], that
SNP rs3077 of the HLA-DPA1 region, mentioned above as
associated with HBV infection, has been suggested to in-
crease the risk of chronic HCV infection in a Chinese pop-
ulation [103] and that SNP rs9264942 putatively linked to
HIV control (see above) has been found to be associated
with persistent HCV seronegativity among C/C genotyped
people who inject drugs [104].

Other associations within the HLA region with HBV or
HCV progression towards different diseases have recently
been documented by Sawai et al. [105] and Omae and
Tokunaga [106].

Tuberculosis

Tuberculosis is due to infection by the bacteria Mycobac-
terium tuberculosis. Although curable, it is still the major
cause of death from infectious diseases on the global scale
(table 1). A number of studies have reported significant
associations between HLA alleles and either protection or
susceptibility to several respiratory diseases [107], includ-
ing tuberculosis (review and meta-analysis in [108]), but
with many inconsistencies [107, 109–111]. GWAS stud-
ies have revealed several significant markers in the HLA
class II region: according to Sveinbjornsson et al. [112],
two markers, rs557011 [T] located between HLA-DQA1
and HLA–DRB1 and rs9272785 located in exon 4 of HLA-
DQA1 (a missense mutation p.Ala210Thr which defines
HLA-DQA1*03 alleles) would confer susceptibility to M.
tuberculosis infection in European populations, the former
SNP being also a risk factor for the development of the dis-
ease in infected individuals (note that about one third of
the global population is latently infected by the bacteria,
some 10% of them developing the disease); by contrast,

rs9271378 [G], also located between HLA-DQA1 and
HLA–DRB1, would protect against the development of
the disease. The same authors confirmed the susceptibility
of HLA-DQA1*03:01 to tuberculosis after imputation of
HLA alleles. They suggest that HLA-DQA1*03 molecules
would have a reduced stability and would be less able
to present M. tuberculosis antigens. Other missense muta-
tions classified as probably damaging were found in the
Han Chinese population, namely rs41553512 and
rs1136744 in HLA-DRB5 and rs41553512 in HLA-DQB1,
in addition to a significant association of TB with HLA-
DQB1*02:01 [113]. Because six different M. tuberculosis
strains are unevenly distributed geographically [114], puta-
tive associations between HLA polymorphisms and tuber-
culosis caused by specific strains were investigated, which
revealed higher susceptibility conferred by alleles HLA-
DRB1*09:01 and HLA-DQB1*03:03 (both in linkage dis-
equilibrium) to modern strains in Southeast Asia [115].
The association of HLA-DQB1*03 with tuberculosis was
supported by a recent study [116] that also suggested a
protective effect of HLA-B*58:01 through M. tuberculo-
sis antigens epitopes CFP-10 (ESAT-6-like protein) bind-
ing and a susceptibility effect of HLA-B*58:02, which dif-
fers by 3 amino acids from the former.

Leprosy

Leprosy is due to infection by the bacteria Mycobacterium
leprae. Although the disease is decreasing at the global
level, a high number of new cases are still reported per
year (table 1), India, Brazil, Indonesia, the western Pacific
and some parts of Africa being the most affected. As re-
viewed by Jarduli et al. [117], many studies identified both
protective and risk class I and class II HLA alleles asso-
ciated with leprosy. A case-control study in India revealed
two SNPs, one in the HLA-DRB1 region (rs9270650) and
one within the HLA-DQA1 gene (rs1071630), as major
susceptibility markers [118]. Based on genome-wide stud-
ies, HLA-DRB1 further appeared as a key region for lep-
rosy susceptibility, with SNPs rs9271366, rs602875 [119],
rs9271011 and rs9271100 [120] identified in Chinese Han,
the two latter being in strong linkage disequilibrium with
HLA-DRB1*15:01, another significant variant being
HLA-DQB1*04:01. SNP rs9271011 showed a regulatory
effect, the risk allele [T] being responsible of an increased
HLA-DRB1 expression. By analysing both ancient and
modern DNA, an associated SNP, rs3135388 [T], was
found to be significantly more frequent in a sample of
69 M. leprae-positive individuals showing lesions specific
for lepromatous leprosy in a medieval population from
Denmark than in both ancient and modern randomly sam-
pled individuals from Denmark and north Germany [121].
Based on both direct identification through high-through-
put sequencing of HLA-DRB1*15(01) and
HLADQB1*06:02 alleles in a substantial number of me-
dieval individuals with lepromatous leprosy and a limited
M. leprae peptide-binding capacity predicted for the HLA-
DRB1*15:01 allele, the same study suggested that HLA-
DRB*15:01~DQB1*06:02 was a strong risk haplotype for
this disease. HLA class I alleles may also be implicated
in leprosy pathogenesis, as suggested by the identification
of two class I intergenic SNPs - rs2394885 and rs2922997
- associated with leprosy susceptibility in Vietnamese and

Review article: Biomedical intelligence Swiss Med Wkly. 2020;150:w20214

Swiss Medical Weekly · PDF of the online version · www.smw.ch

Published under the copyright license “Attribution – Non-Commercial – No Derivatives 4.0”.
No commercial reuse without permission. See http://emh.ch/en/services/permissions.html.

Page 4 of 14



Indians, the former one being in strong linkage disequilib-
rium with HLA-C*15:05 [122].

Malaria

According to the 2019 report of the World Health Orga-
nization [123], 228 million cases of malaria were report-
ed worldwide in 2018 (table 1), among which 213 mil-
lion (93%) were in Africa, followed by South-East Asia
(3.4%). Plasmodium falciparum is the most virulent
species and the most widespread in Africa (99.7% of cas-
es), South-East Asia (62.8%), the Eastern Mediterranean
(69%) and the Western Pacific (71.9%), whereas Plas-
modium vivax is the predominant parasite in the Americas
(74.1%). Several genes across the genome have been
shown to display polymorphisms conferring protection
against malaria, namely markers related to haemoglo-
binopathies (sickle-cell trait HbS, HbE, HbC, α- and β-tha-
lassemias), erythrocyte antigens (ovalocytosis SLC4A1,
Duffy DARC), enzymopathies (glucose-6-phosphate de-
hydrogenase [G6PD], pyruvate kinase [PKLR]) and im-
munogenetic variants (complement receptor-1 CR1, HLA)
(reviewed in 124]). Besides the putative role of HLA-
G variation in the regulation of the response to P. fal-
ciparum infection [125, 126], several alleles of classical
HLA genes have also been suggested to be protective to
this form of malaria. The best known of them is HLA-
B*53, first identified, in addition to the HLA class II
DRB1*13:02~DQB1*05:01 haplotype, in a case-control
study in Gambia [127]. HLA-B*53 was shown to recog-
nise a conserved nonamer peptide from liver-stage-specific
antigen-1 (LSA-1) of P. falciparum [128]. Based on their
frequency in populations, several HLA alleles were also
proposed as resistance (B*53:01, DQB1*05:01,
DRB1*01:01 and DRB1*13:02) or susceptibility
(A*30:01, A*33:01, DPB1*17:01 and DRB1*04:01) fac-
tors [129, 130]. The protective effect of HLA-B*53:01
was further supported by a population genetics modelling
showing a clear relationship, after controlling for other
genetic, geographic and environmental variables, between
the frequency of this allele and the prevalence of P. fal-
ciparum in Africa [131]. The same study also identified
HLA-B*78:01 as another possible candidate. Interestingly,
based on peptide binding predictions both HLA-B*53:01
and B*78:01 share a high affinity for peptides with amino
acid proline at position 2 (accommodated by pocket B
of the peptide binding site), a property that is shared by
50% of the most frequent (frequency above 15% in at
least one population) HLA-B alleles found in Africa [131].
Among these alleles, HLA-B*35:01 also revealed a sig-
nificant protective effect against malaria in Ghana [132],
in agreement with a previous finding that two antigenic
octamer peptides of P. falciparum’s circumsporozoite pro-
tein, cp26 and cp29, bind HLAB*35 [133]. Despite the
common idea that HLA class II, rather than HLA class I,
molecules operate at the peptide-binding level in the case
of parasitic infections (although cross-presentation of ex-
ogenous antigens on HLA class I is a well described phe-
nomenon in professional antigen presenting cells), these
findings suggest that several HLA-B alleles from the
standing genetic variation increased in frequency when
malaria expanded in Africa, probably with the develop-
ment of agriculture [134]. This mechanism of soft selective

sweep, which is likely to be a common evolutionary
process in the human genome [135, 136], does not exclude,
however, that pathogen-mediated hard selective sweep also
operates at HLA genes, as recently suggested by the very
high HLA class II allele and haplotype frequencies, pre-
sumably not resulting from rapid genetic drift, observed
in a large West African population [137]. Interaction be-
tween HLA-B*53:01, carrier of the Bw4 epitope, and killer
cell immunoglobulin-like receptor KIR3DL1 has also been
suggested to contribute to its protective effect [138]. Genes
of the HLA region would also be associated with P. vivax
infection [139], although, to our knowledge, no specific
HLA allele defined at the second field level of resolution
nor specific SNP has been proposed so far.

Other infectious diseases

Thanks to GWAS, HLA associations with other infectious
diseases have also been suggested. Regarding viral infec-
tions, numerous SNPs in the HLA-B region (among which
rs114045064) have been associated with herpes zoster
(shingles due to varicella-zoster virus, VZV), likely play-
ing a role in viral suppression [140, 141]. A SNP located
upstream to HLA-DQB1 (rs9357152) has been associated
with human papillomavirus (HPV) seropositivity [142],
while both risk (HLA-DRB1*15:01~DQB1*06:02) and
protective (HLA-DRB1*03:01~DQB1*02:01) HLA class
II haplotypes had previously been suggested for this dis-
ease (cited by the same authors). Regarding bacterial in-
fections, a significant association has been found at SNP
rs7765379 near HLA-DQB1 and HLA-DRB1 for enteric
fever due to infection by Salmonella enterica, pointing to
allele HLA-DRB1*04:05 (after imputation) as a protec-
tive factor [143]. In addition, DeLorenze et al. [144] iden-
tified three SNPs associated with Staphylococcus aureus
infection in HLA-DRA (rs4321864) and close to HLA-
DRB1 (rs115231074, rs35079132). Among parasitic infec-
tions, Leishmaniasis (due to infection by protozoan par-
asites Leishmania donovani or Leishmaniasi infantum
chagasi) was significantly associated with SNP rs9271858
located between HLA-DRB1 and HLA-DQA1 in three dis-
tinct cohorts from India and Brazil [145], more recent
studies also showing that HLA-DRB1*15:01 (with specif-
ic amino acid residues at positions 11 and 13) and HLA-
DRB1*14:04/HLA-DRB1*13:01 were the most signifi-
cant protective and risk alleles, respectively [146, 147]. By
performing GWAS on a large sample of over 200,000 in-
dividuals of European ancestry recorded in the database
23andme, Tian et al. [29] also found new significant asso-
ciations between several infectious diseases and SNPs lo-
cated within the HLA region: chickenpox with rs9266089
within HLA-B; shingles with rs2523591 upstream to HLA-
B (also reported in [141]); cold sores with rs885950 be-
tween HLA-A and HLA-C; mononucleosis caused by the
Epstein-Barr virus (EBV) with SNP rs2596465 within the
HCP5 complex upstream to HLA-B; mumps with
rs114193679 near HLA-A; plantar warts with rs9272050
within HLA-DQA1; streptococcal sore throat with
rs1055821 within HLA-B; scarlet fever with rs36205178
within HLA-DQB1; pneumonia with rs3131623 within the
HCP5 complex; and childhood ear infections with
rs4329147 between HLA-DRB1 and HLA-DQA1.
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Interestingly, these authors identified several associations
with amino acid polymorphisms in the peptide-binding
region, thus involving specific HLA alleles like HLA-
A*02:01 associated with chickenpox and shingles, and
HLA-A*02:05 with mumps.

A schematic HLA genomic map showing the positions of
the main HLA alleles and SNPs (according to the e!En-
sembl [148] and NCBI dbSNP [149] databases accessed
on 9 December 2019 at https://www.ensembl.org and
https://www.ncbi.nlm.nih.gov/snp, respectively) associat-
ed with the diseases mentioned in this review is provided
in figure 1. Interestingly, this figure indicates that, in the
current state of knowledge, specific HLA regions have
been found to be involved in associations with AIDS (B-
C region), tuberculosis (DRB-DQA1), hepatitis C
(DQB1-DQA1) and (to a lesser extent) leprosy (mostly
DRB-DQA1), whereas putative associations with hepatitis
B and malaria are more widespread across the whole HLA
region.

Population genetics in HLA and infectious dis-
ease association studies

This review shows that, in addition to case-control com-
parisons and immunogenetic analyses, new kinds of ap-
proaches such as GWAS, bioinformatic peptide-binding
predictions and ancient DNA studies have helped to im-
prove our knowledge on putative associations between
HLA molecular variation and infectious diseases in the last
decades. Of course, precise identification of causal mark-
ers remains complicated not only because the mechanisms
by which the immune responses to infectious diseases is
modulated are very diverse, as reviewed by Crux et al.
[150] for HIV and HCV infections, but also because the
analysis of the HLA polymorphism itself raises specific
methodological problems and is especially challenging in
a population genetics an evolutionary context [28].

First, HLA genes are particularly polymorphic. SNPs in
the HLA region are often characterised by multiple non-
synonymous substitutions at peptide-binding regions
[151], such as rs1130380 located within HLA-DQB1 and
associated with hepatitis C, and many SNPs are also multi-
allelic in non-coding or intergenic HLA regions, such as
rs9271100, rs557011, rs9275572 and rs7453920 associated
with leprosy, tuberculosis, hepatitis C and hepatitis B, re-
spectively (major and minor alleles of each SNP can be
found at https://www.ncbi.nlm.nih.gov/snp/). As a conse-
quence, HLA variation is still difficult to characterise in
particularly dense polymorphic regions (e.g., SNP array
probes may be difficult to design), unless long-read se-
quencing techniques are applied, which represents a strong
limiting factor for disease-association studies. Although
imputation methods (i.e., methods that infer HLA variation
from SNPs genotyped at sites flanking the highly poly-
morphic regions) are currently used [152], their accuracy
varies greatly among studies because of numerous factors
such as SNP density in the studied HLA region, as well
as which reference panels and bioinformatics methods are
used for imputation [153]. Moreover, the heterogeneous
recombination patterns prevailing in the HLA genomic re-
gion [154–157] are a source of confounding effects, as
many genetic markers in linkage disequilibrium may
cosegregate in association to the same disease phenotypes

without all being instrumental as protective or suscepti-
bility factors. As an example, the rs9264942 (or -35Kb)
SNP was first considered as modulating HLA-C expres-
sion levels with direct consequences on HIV control before
the linked rs67384697 in/del SNP was identified as a mi-
cro-RNA binder acting as a real regulatory factor. Also,
nonadditive effects such as interactions among loci within
the HLA region, recently investigated for a number of au-
toimmune diseases (e.g., [158–160]) may complicate the
identification of one among several alternative models ex-
plaining the effects of HLA variation on disease pheno-
types. Finally, the extreme HLA molecular variation ob-
served within populations requires very large sample sizes
to be satisfactorily characterised and for the statistical tests
to reach sufficient power, avoid false positives and allow
replication of the results, in particular because the large
number of comparisons needed to consider all possible al-
leles and SNPs may fail to reach significance after correc-
tion for multiple tests (e.g., odds ratios are often close to 1
and/or p-values borderline, e.g., in [66]).

Besides the specificity of the HLA region in terms of high
molecular variation within populations, HLA allele or SNP
frequencies, as well as linkage disequilibrium across the
HLA region, greatly differ between populations from dif-
ferent geographic regions [4, 5, 161]. Examples are given
in figure 2, which displays global frequencies of the main
HIV and malaria protective alleles, as well as those of two
DQB1*03 subtypes that have been associated with hepati-
tis B, hepatitis C and/or tuberculosis (all data were taken
from published articles and the allelefrequencies.net data-
base [162]). This partly explains why given disease asso-
ciations are often not observed in populations of distinct
origins (e.g., for HBV-HCV [163]). A dramatic example
is that of African populations, which are known to exhib-
it much higher levels of genetic diversity and much low-
er levels of linkage disequilibrium than populations from
other continents both at the genome level [164] and across
the HLA region [161]. This necessarily handicaps the dis-
covery of significant disease associations, whereas Africa
is one of the world regions where the greatest burden of
infectious disease exists today (e.g., this region accounted
for 68% of the world’s people living with HIV in 2018)
while being still largely underrepresented in genetic vari-
ation studies [165–168]. A better characterisation of HLA
molecular diversity in populations worldwide and the in-
tegration of population genetics data in disease-association
studies are clearly essential.

HLA genetic differences between populations result from
both selective effects due to the prominent role of HLA
genes in immunity and to human history of migration since
the emergence of modern humans from Africa, that likely
happened between 300,000 and 200,000 years ago [169,
170]. Disease-association studies thus need to be con-
trolled for population structure, for example by comparing
HLA with genome-wide neutral variation in the same pop-
ulations [16, 171]. If selective and demographic factors
are correctly disentangled, differences in HLA frequencies
between populations living in distinct environments may
be more easily interpreted in terms of local adaptations to
pathogens. However, selective signals may also be weak
and difficult to identify because multiple alleles at a given
HLA locus (e.g., through soft selective sweep) and/or sev-
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eral (HLA and non-HLA) loci across the genome may
jointly confer susceptibility or protection to the same dis-
eases, malaria resistance probably being the best example
of polyallelic and polygenic adaptation [127, 131,
172–174]. Moreover, host-pathogen interaction is a dy-

namic process where host molecules may drive changes in
pathogens molecules and vice versa, leading to nonperma-
nent protective or susceptibility effects as a result of fluctu-
ating or frequencydependent selection [175]. Simultaneous
analyses of host genome versus pathogen genome diver-

Figure 1: Schematic map of the HLA genomic region showing the positions of the HLA alleles and SNPs associated to six of the most preva-
lent infectious diseases in human populations.(A): AIDS, in red; (B): Hepatitis B, in blue; (C): Hepatitis C, in grey; (L): Leprosy, in orange; (M):
Malaria, in pink; (T): Tuberculosis, in green. Protective HLA alleles are in bold, susceptibility HLA alleles are in italics.The genomic regions
shown at the right as putatively involved in disease associations are only based on SNP information, except for malaria (dashed line).The ge-
nomic positions (GRCh38) of the HLA genes and SNPs have been determined by using the e!Ensembl [148] and NCBI dbSNP [149] databas-
es accessed on 9 December 2019 at https://www.ensembl.org/index.html and https://www.ncbi.nlm.nih.gov/snp/, respectively.
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sity in relation to specific diseases (e.g., [176]) may thus
help to better understand the evolution of the HLA poly-
morphism in relation to its pathogenic environment.

Of course, the evolutionary timeframe is not the same for
all disease. Some infectious diseases are known to be much
more recent than others, making more difficult the explo-
ration of host-pathogen co-evolution through time. For ex-
ample, it has been suggested that the last common ances-

tor of HIV-1 pandemic strains dates back to the beginning
of the 20th century [177], with a likely transmission of
the disease through zoonotic infections from simian reser-
voirs and an early spread among humans from the region
of Kinshasa in the Democratic Republic of Congo [178].
This corresponds to about four or five human generations,
a very short time for protective factors to be positively se-
lected and for susceptibility variants to be eliminated un-

Figure 2: Worldwide population frequency maps of some of the HLA-B alleles suggested to confer protection against AIDS (B*57:01, B*57:02,
B*57:03, B*58:01) and malaria (B*53:01, B*35:01) as well as of two HLA-DQB1*03 alleles suggested to be associated to hepatitis B suscepti-
bility (DQB1*03:01 and DQB1*03:03), to hepatitis C protection (DQB1*03:01) and to tuberculosis susceptibility (DQB1*03:03) (see text for ref-
erences).In each map, the sizes of the pie charts are proportional to the frequencies of the allele in the corresponding populations, but pie
charts are not at the same scale in the different maps. The maximum size of the pie charts in each map correspond to the following frequen-
cies: B*57:01 = 0.082 (Tamil from South India; South Asia); B*57:02 = 0.042 (Xhosa from South Africa, sub-Saharan Africa); B*57:03 = 0.057
(Lusaka from Zambia, sub-Saharan Africa); B*58:01 = 0.170 (Han, China, East Asia); B*53:01 = 0.244 (Angolan, Sao Tome Island, sub-Saha-
ran Africa); B*35:01 = 0.485 (Seri, Mexico, North America); DQB1*03:01 = 0.896 (Gila River Amerindian from Arizona, North America);
DQB1*03:03 = 0.313 (Jehai from Malaysia, Southeast Asia).In each map, the crosses represent HLA-tested populations where the allele was
not observed.All HLA population frequency data were taken from both published articles and the allelefrequency.net database [162].
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der selective pressure, in contrast to the long timeframes
for diseases that disseminated in much earlier times (e.g.,
before or during the Neolithic), such as tuberculosis, lep-
rosy or malaria [179]. This probably explains, for exam-
ple, why AIDS protective alleles are found at low frequen-
cies (<10%), whereas some malaria protective alleles reach
higher frequencies (>20%) in regions where these diseases
are highly prevalent (fig. 2), even though soft rather than
hard selective sweep mechanisms were at work.

Actually, distinct signals of selection resulting from differ-
ent evolutionary processes and corresponding to either re-
cent or ancient selective pressures are expected to be ob-
served through population genetic studies. For example,
long-term balancing selection likely decreased population
differentiation, such as at the HLA-B locus [131, 180],
whereas local adaptations to specific diseases probably
drove adaptive HLA markers to high frequencies and led to
marked genetic differences among populations, as at some
HLA class II loci [137]. Such signatures are detectable
through comparisons of HLA with neutral genomic varia-
tion [16, 181], computer simulations mimicking the evo-
lution of the HLA polymorphism during human migration
history with variable intensities of selection [182, 183] and
other population genetics approaches taking into account
the functional properties of the HLA molecules [184]. This
is what makes population genetics approaches powerful
to decipher the signatures of pathogen-driven selection on
HLA molecular variability. Clearly, the identification of
genetic markers involved in disease protection or suscepti-
bility in the HLA region would largely benefit from a bet-
ter integration of population genetics, with its demographic
and evolutionary perspectives, in disease association stud-
ies.
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