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The SIR model introduced in equations 1 describes the
fraction of susceptible S(t), exposed E(t), and infected
individuals I(t) in a population. The fraction of recov-
ered individuals R is R = 1 − S −E − I. An illustration
of the model is presented in figure 1.

Figure S 1 Illustration of the SEIR model used with its pa-
rameters.

When simplifying the model even further and combin-
ing the categories of exposed and infectious into one class
of infected individuals, the model can be solved analyti-
cally. The simplified system has a steady state

S0 =
ν + b

β
=

1

R0

I0 =
b(R0 − 1)

β

(1)

where ν now is the inverse of average time from exposure
to recovery. This steady state exists when the parameter
R0 > 1. For cases where R0 < 1 the epidemic dies out as
each infected person generate less than one subsequent
infection.

For our analysis of seasonal CoVs, it is instructive to
study the stability of this steady state of the simplified
SIR (not SEIR) model. It is easy to show that the quan-
tities [S, I] tend to show damped oscillations around the
fixed points in Eq. 1 with a period

T =
4π√

4b(ν(R0 − 1) − b) −R2
0b

2
(2)

This behavior is intrinsic to the system and holds when-
ever transmissibility is constant.

SIR models can show resonance phenomena when the
period is about one or two years (Chen and Epureanu,
2017; Dushoff et al., 2004). Resonance is less likely when
the period is much longer than the the period of annual
forcing. Fig. 2 shows the intrinsic period for the parame-
ter range considered and two durations of immunity (left:
10 years, right: 5 years). Our parameters choices for ν β
lie in the center of the graphs in Fig. 2. For b = 0.1/y, we
expect an intrinsic period is around 3 years, suggesting
that resonance is unlikely and if it occurs would lock into
3 year patters. For b = 0.2/y, the intrinsic period is closer

to 2 years and biennial resonance is possible. The data,
however, don’t suggest strong biennial patterns such that
we don’t think resonance is a major contributor to sea-
sonality.

Similarly, in the simplified SIR (not SEIR) model,
the initial growth of the number of cases can be ex-
pressed analytically. In a fully susceptible population,
the number of infected individuals initially grows as
I(t) ∼ e(β−ν−b)t = e(R0−1)t/(ν+b). The doubling time
is τ2 = (ν + b) log(2)/(R0 − 1). Since b � ν, we can
safely neglect b in the early phase of the pandemic, but
it is important when interpreting endemic seasonal CoV
data. For detailed discussion of the effect of generation
times and incubation periods on the initial exponential
growth, see (Wallinga and Lipsitch, 2007).

Migration between subpopulations

In the model for seasonal CoVs, we account for the
exchange of CoVs with the rest of the world through
an additional transition of susceptibles to the exposed
category with a rate that is the product of a migation rate
and the probability of being exposed abroad. Beyond
that, no additions to Eq. 1 are necessary.

For the multipopulation models of SARS-CoV-2 pan-
demics, we model migration as loss terms to each cate-
gory with a population specific migration rate, followed
by redistributions of the pooled migrants to random pop-
ulation according the population specific migration rate.
Such migration is operating in Figures 3, 4 and 5.

Effect of infection control measures

The SIR model as formulated in Eq. 1 accounts for sea-
sonality but otherwise assumes the transmission dynam-
ics is constant. In reality, individuals change their behav-
ior when they are aware of a contagious disease. This in
particularly true for the current SARS-CoV-2 outbreak
where tens of millions of people are under quarantine
measures and travel restrictions. In order to account for
such behavioral changes, we add a factor H to equation
1 that modulates transmission:

d

dt
I = −(ν + b)I + (1 −H)βSI + i (3)

where H = c· I3

(K3+I3) with c the value of the containment

parameter. The term H is a Hill function of order 3 and
inflection point K. We use this to model a decrease in
the rate of new infection smoothly decrease by a factor
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Figure S 2 Length of the intrinsic period of the SIR model for β and ν values in the range explored in this paper. The duration
of immunity is assumed to be 10 years in the panel on the left and 5 years in the panel on the right. The dark blue region
corresponds to R0 < 1.
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Figure S 3 Seasonal variation of HKU1/OC43 CoV positive
tests in Stockholm, Sweden.

c. We used c = 0.5 and K = 0.03, implying that once a
disease is at a prevalence of 3%, containment measures
reduce transmission by 50%. The effect of prevention and
control is difficult to assess at present and will certainly
vary in time and space.
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Figure S 4 Model predictions for SARS-CoV-2 case numbers in temperate zones for a pandemic scenario, with
varying 〈R0〉 and migration. This is the same plot as shown on the left of Figure 3 with ε = 0.5, however here 〈R0〉 varies
from 1.3 - 3 and Migration varies from 0.1% to 10% per year. Higher migration rates (towards the bottom of the figure) result
in earlier introductions and higher likelihood of a peak in early 2020. The scenarios with low 〈R0〉 are clearly counter-factual.
Similarly, higher 〈R0〉 (towards the right of the figure) results in more rapid growth and a higher likelihood of an early peak.
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Figure S 5 Model predictions for SARS-CoV-2 case numbers in temperate zones for a pandemic scenario, with
varying R0 and migration. This is the same plot as shown on the left of Figure 4 but with ε = 0.15. All scenarios result in
a single peak.
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Figure S 6 Ratio of first and second peak in temperate zone pandemic scenarios, with varying seasonal forcing.
This figure is the same as plotted on the right of Figure 3, but here seasonal forcing (ε) is shown at ε = 0.3 (left) and ε = 0.7
(right). Figure 3 uses ε = 0.5.
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Figure S 7 Extended circulation through overlapping epidemics in variable subpopulations, with varying R0

values. The same parameter values as in Figure 4 are used here, except the average 〈R0〉 is 1.4 (top) and 2.7 (bottom). The
lower R0 shifts the peak in case numbers to late 2020 and early 2021, while a higher R0 leads to a peak in early-mid 2020.
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Figure S 8 Transition to an endemic seasonal virus, with varying R0 values. These figures are plotted in the same
manner as Figure 5, but with R0 values of 1.5 (left) and 2.7 (right). A lower R0 allows for a relatively smoother transition to
seasonality, particularly for Northern temperate regions, while a higher R0 leads to a longer period of comparatively depressed
circulation before the establishment of stable seasonality.
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