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Summary

With the emerging advances made in genomics and func-
tional genomics approaches, there is a critical and growing
unmet need to integrate plural datasets in order to identify
driver genes in cancer. An integrative approach, with the
convergence of multiple types of genetic evidence, can
limit false positives through a posterior filtering strategy
and reduce the need for multiple hypothesis testing to
identify true cancer vulnerabilities. We performed a pooled
shRNA screen against 906 human genes in the oral can-
cer cell line AW13516 in triplicate. The genes that were
depleted in the screen were integrated with copy number
alteration and gene expression data and ranked based
on ROAST analysis, using an integrative scoring system,
DepRanker, to compute a Rank Impact Score (RIS) for
each gene. The RIS-based ranking of candidate driver
genes was used to identify the putative oncogenes AU-
RKB and TK1 as essential for oral cancer cell proliferation.
We validated the findings, showing that shRNA mediated
genetic knockdown of TK1 or pharmacological inhibition
of AURKB by AZD-1152 HQPA in AW13516 cells could
significantly impede their proliferation. Next we analysed
alterations in AURKB and TK1 genes in head and neck
cancer and their association with prognosis using data on
528 patients obtained from TCGA. Patients harbouring al-
terations in AURKB and TK1 genes were associated with
poor survival. To summarise, we present DepRanker as a
simple yet robust package with no third-party dependen-
cies for the identification of potential driver genes from a
pooled shRNA functional genomic screen by integrating
results from RNAi screens with gene expression and copy
number data. Using DepRanker, we identify AURKB and
TK1 as potential therapeutic targets in oral cancer. De-
pRanker is in the public domain and available for down-
load at http://www.actrec.gov.in/pi-webpages/AmitDutt/
DepRanker/DepRanker.html.
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Introduction

Cancer is a disease defined by several genetic alterations,
such as mutations, gene expression changes and copy num-

ber changes, in addition to epigenomic alterations [1].
While most of the alterations are passenger alterations with
no significant effect on cellular phenotype, cancer cells are
dependent on a few driver genes for the constitutive acti-
vation of the signalling pathways which aid cellular pro-
liferation, a phenomenon described as oncogene addiction
[2]. Targeting oncogenic-dependent genes has resulted in
success, as demonstrated in several cancer types [3, 4].
Often, the discovery or identification of a cancer-associ-
ated driver oncogene based on a genomics approach re-
quires screening for significant genetic alterations using
stringent statistical methods, followed by functional vali-
dation. On the other hand, a complementary functional ge-
nomics approach using RNAi or CRISPR effectively uses
this structural knowledge of the cancer genome to define
the functional consequences of the alterations in an unbi-
ased manner, and may be performed in a pooled or arrayed
format [5]. Methods which perform genome-wide RNAi
screens on human cancer cell lines using a pooled human
shRNA library as experimental models offer a powerful
methodology for the identification of those genes essential
for the survival of the cells. These efforts provide a new
opportunity to fundamentally alter the extent to which we
are able to understand and validate molecules that, when
targeted, lead to therapeutic benefits in cancer patients.

ABBREVIATIONS:

AURKB aurora kinase B

CR copy number alteration rank

DepRanker dependency ranker

DR depletion rank

FC fold change

GR gene expression rank

GUI graphic user interface

MOI multiplicity of infection

RIS Rank Impact Score

RNAi RNA interference

RR ROAST rank

TCGA The Cancer Genome Atlas

TK1 thymidine kinase 1

W weight
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Typically, a pooled RNAi screen analysis involves a qual-
ity assessment and normalisation of the data, followed by
differential shRNA/sgRNA representation. The differential
analysis is performed either by custom scripts or by pack-
ages like edgeR [6]. The “tags” (shRNA) are ranked ac-
cording to their differential effects among classes of sam-
ples, and are further organised into a ranked list of genes
by packages like RIGER [7], RSA [8], ROAST [9], camera
[10] and others. Moreover, there are specialised algorithms
like DEMETER2 [11] which measure the on/off-target ef-
fect and also estimate gene-dependency by deriving ‘es-
sentiality scores’ from the RNAi experiments. The genes
obtained from these experiments may be further validated,
either by performing specific knock-down experiments or
by extended secondary screens.

An alternative approach used to define dependency from
pooled screen experiments is the integration of genomic
data with the gene essentiality results. A classic example of
this approach is the cancer dependency map [12], which in-
tegrates genomic features such as expression, copy number
and mutation information with the gene dependencies ob-
tained from screens performed on cancer cell lines repre-
senting various tumour types. Few computational methods
incorporate such genomic features when predicting driver
or essential genes for pooled RNAi screen experiments
[13]. Building on this integrative approach, we have devel-
oped a gene ranking or scoring method, DepRanker, which
incorporates other genomic datasets like gene expression
and copy number information of the same cell line to pri-
oritise genes from pooled screen results for their essential-
ity. DepRanker consists of two modules that can be exe-
cuted using a single, user-friendly GUI. Module I analyses
the pooled screen data to calculate the depletion of the tags
and prioritise the genes. Module II integrates the results
obtained from Module I with the genome-wide datasets
to compute the Rank Impact Score (RIS) for individual
genes.

We performed a functional kinome screen using pooled
shRNA, comprised of 5419 constructs targeting 906 hu-
man kinases in AW13516 cells, in two independent
screens. The genes depleted in the screen were integrated
with copy number alteration data and gene expression data
for the AW13516 cells using DepRanker, allowing us to
identify AURKB and TK1 as potential therapeutic targets in
oral cancer.

Materials and methods

Cell lines and cell culture
Indian patient-derived head and neck cancer cell lines –
AW13516 cells and other cells used in the study, namely
293FT, HCT116 and SiHa cells – were maintained in Dul-
becco’s Modified Eagle Medium (Gibco) supplemented
with 10% FBS (Gibco) and 1% Penicillin-Streptomycin
solution (Sigma). Cells were grown at 37°C in a 5% CO2

incubator. Cells were treated with Mycoplasma elimination
kit (EZKill solution, Himedia) prior to use.

Lentivirus production and transduction in HNSCC
cell line
Lentivirus comprised of 5419 pZIP-SFFV pooled shRNA
constructs (8.1 Kb) targeting 906 human kinases were ob-

tained from TransOMIC Technologies, USA. For the
pooled shRNA screen, 18 million AW13516 cells were
seeded in T-150 flasks at 60-70% confluency. Lentivirus
was transduced at an MOI of 0.3 in the presence of 8 µg/
ml Polybrene (Sigma) at 1000-fold representation of each
shRNA in the screen. Cells were grown at 37°C for 16
hours post virus addition, and the medium was replaced.
Cells were selected in the presence of 1 µg/ml puromycin
(Sigma). Half the cells were harvested within 3-4 days af-
ter selection and this sample was termed the day 0 (con-
trol) sample. The remaining cells were further expanded
and maintained at 37°C, and collected as test samples at
the day 10 and day 20 time points.

PCR amplification of shRNA and barcode sequencing
by NGS
Genomic DNA was extracted from the day 0, day 10 and
day 20 samples of the AW13516 cells using a QIAamp
DNA blood kit (Qiagen). DNA concentration estimation
was done using a Nanodrop 2000c spectrophotometer
(Thermo Fischer Scientific). Instructions provided in the
TransOmics manual for performing PCR for shRNA am-
plification were followed, with some modifications. To
provide a 1000-fold representation of shRNA, 36 µg of ge-
nomic DNA was used to amplify the shRNA cassette as
per the calculation, and primary PCR was performed (se-
quence information in supplementary table S1 in appendix
1) as follows: 10 µl of 5X HF buffer, 1.5 µl of each of
the forward and reverse primary PCR primers at concen-
trations of 10 µM, 1 µl of 10 mM dNTP mix, 5% DMSO,
3 mM MgCl2, 0.5 µl of Phusion High-Fidelity Polymerase
Enzyme (Thermo Fischer Scientific) and 850 ng of genom-
ic DNA in a total reaction volume of 50 µl. Primary PCR
was performed at thermocycler conditions: 98°C for 5 min,
25 cycles of 95°C for 30 sec, 57°C for 30 sec and 72°C for
30 sec, and a final extension at 72°C for 5 min. The PCR
product was separated on 1.5% agarose gel to visualise
an amplicon of 406 bp. Next, the primary PCR product
was pooled and purified using Nucleospin Gel and a PCR
clean-up kit (Macherey-Nagel) and quantified using the
Nanodrop 2000c spectrophotometer. 2 µg of purified pri-
mary PCR was used for setting up nested secondary PCR
(primer sequence information in supplementary (table S1)
with indexed reverse primers that add a unique barcode
sequence to each sample to facilitate sample pooling dur-
ing NGS sequencing. The secondary PCR reaction mixture
was comprised of 10 µl of 5X HF buffer, 1.5 µl of each of
the forward and indexed reverse secondary PCR primers at
concentrations of 10 µM, 1 µl of 10 mM dNTP mix, 5%
DMSO, 0.5 µl of Phusion High-Fidelity Polymerase En-
zyme (Thermo Fischer Scientific) and 500 ng of primary
PCR product in a total reaction volume of 50 µl. Secondary
PCR was performed at thermocycler conditions: 98°C for
5 min, 15 cycles of 94°C for 30 sec, 52°C for 30 sec and
72°C at 30 sec, and a final extension at 72°C for 5 min. The
secondary PCR product was separated on 1.5% agarose gel
to visualise a band of 408 bp. It was then pooled and sub-
jected to purification using Agencourt Ampure XP beads
(NEB) and quantitated using a Qubit Fluorometer (Thermo
Fischer Scientific). About 8-20 pM of purified secondary
PCR product (indexed library) was loaded on an Illumina
HiSeq 2500 platform and 50 bp single-end sequencing was
done.
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Data analysis of pooled shRNA using the edgeR
pipeline
Raw data was obtained as fastq files and further processed
using the edgeR package [6] for analysis of pooled shRNA
data. Counts per sample were obtained for each shRNA by
mapping reads with the kinase shRNA sequence library.
For screen 1 data, shRNA with control sample (day 0)
counts less than 1000 were excluded, since the experiment
was performed at 1000-fold representation. For screens 2
and 3, a cut-off of 100 shRNA in the control sample (day
0) was used for further analysis. Data normalisation was
performed within and across the control and test samples.
The screen data was analysed using the classical method
of two group comparisons. Statistical analysis was done
to estimate the significance of the observed changes in
shRNA abundance. The edgeR package provided a list
of depleted shRNAs by calculating the log fold change
(logFC). Based on these results, the top enriched and de-
pleted shRNAs from the screen were identified and further
converted to a gene-level ranking using the gene set analy-
sis tool ‘ROAST’ [9]. Kinases represented by at least two
shRNAs were considered for further analysis. A list of the
kinases that were depleted in cells at day 20 compared to
day 0 was obtained. Data from screens 1, 2 and 3 were
not considered as data in triplicate because the screen 1
data output was enormous and captured existing shRNA
uniformly, whereas the screen 2 and screen 3 data outputs
were comparatively lower, suggesting that some of the
shRNAs were not captured (table 1). Therefore, the screen
2 and screen 3 data were used as replicates. Hence, the
combined results of screen 2 and screen 3 are referred to as
screen 2 data hereafter.

DepRanker assigned impact score for the identifica-
tion of potential kinases using genomic alteration data
To further prioritise the candidate kinases obtained from
the RNAi screen analysis, we developed a scoring method
named DepRanker (Dependency Ranker). DepRanker cal-
culates a Rank Impact Score (RIS) for the individual kinas-
es, which are derived from the kinome screen, by integrat-
ing gene expression and copy number data from the same
sample. The RIS is derived using the following equation:

RIS (Kinase A) = DR (Kinase A) + RR (Kinase A) + GR (Kinase A) +
CR (Kinase A)

(where DR = depletion rank, RR = ROAST rank, GR =
gene expression rank and CR = copy number alteration
rank).

We used a mean-rank method to calculate the scores for
each feature as described below. The DR is derived by con-
verting the logFC values obtained from the edgeR deple-
tion analysis into rankings. The kinase showing the high-
est depletion in the screen is assigned the highest rank and
the one showing the lowest depletion is assigned a rank of
‘1’. The RR is based on the ranking given by the ROAST
algorithm, in which those genes which are represented by
at least three shRNAs are considered, and the kinases are
sorted based on their p-value. The gene which is least pri-
oritised by ROAST is given a rank of ‘1’ and the most
prioritised gene is assigned the highest rank. To calculate
GR and CR, gene expression and copy number alteration
data for all the kinases showing significant depletion in
the pooled screen analysis is extracted for the relevant cell

line, AW13516 cells in this analysis (as described previ-
ously [14]). The log transformed FPKM gene expression
levels were extracted for this subset of kinases (all those
showing significant depletion in the pooled screen), and
the kinase showing the lowest gene expression was as-
signed a rank of 1 while the gene with the highest expres-
sion was assigned the highest rank. Similar rankings were
assigned to the copy number levels for individual kinases
from the AW13516 cells in order to derive CR. All four
scores (DR, RR, GR, CR) were added together to compute
the RIS. This scoring approach enabled us to identify po-
tential kinases with biological roles from the list. To com-
bine the results obtained from two screens performed on
the same cell line, we converted the RIS for an individual
kinase into a weight (range between 0 and 1) based on its
relevance in a particular screen.

Furthermore, to combine the results from both screens, we
assigned a weighting to each of the kinases by consider-
ing their RIS for both screens. The weights were calculat-
ed using the formula W = (RIS for kinase A) / (sum of
RIS for all the kinases). The results from both screens were
combined and sorted based on the assigned weightings. In
the case of kinases with overlap in both screens, the kinase
with the higher weight was retained.

Implementation of DepRanker and graphical user in-
terface
This scoring system is implemented as a python-based
package. DepRanker takes the output from edgeR analysis
of pooled shRNA screens and the results provided by
ROAST, along with gene expression data and copy number
variation data for individual genes belonging to the cell
line, and outputs the list of candidate kinases with their
Rank Impact Scores. The package is available at
http://www.actrec.gov.in/pi-webpages/AmitDutt/De-
pRanker/DepRanker.html, along with complete installation
instructions and a user manual. The GUI was designed us-
ing the Tkinter python package. A detailed user manual for
the GUI is available. The GUI provides two modules for
analysis. The first module is the pooled shRNA screen
analysis module, which takes in the fastq, hairpin and sam-
ple information file to perform the depletion analysis. The
depletion analysis can be performed using either a gener-
alised linear model (GLM) or an exact-test based method.
The users are advised to refer to the screen analysis manual
of Zuber et al. (http://bioinf.wehi.edu.au/shRNAseq/
pooledScreenAnalysis.pdf) for guidance on selecting a
suitable method for their screen data analysis. Internally,
the GUI calls the Bioconductor packages edgeR and
ROAST to perform the depletion analysis and the gene
prioritisation respectively. The results from this module
(edgeR toptags result and ROAST result file), along with
the copy number and gene expression data for the cell line
analysed, should be provided to the DepRanker module.
This module provides the rank-based scores for the indi-
vidual kinases identified from the pooled screen. The De-
pRanker GUI package is freely available for download.

Survival analysis of HNSCC datasets
Genomic alteration data from TCGA provisional HNSCC
datasets from cBioPortal [15], consisting of 528 samples
with gene expression, copy number and mutation infor-
mation, was assessed. Kaplan-Meier survival plots were
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generated for patients with alterations in AURKB and TK1
genes.

Real time PCR for amplification of shRNA
Real time primers were designed for each shRNA of AU-
RKB and TK1 wherein the forward primer sequence was
complementary to the kinase shRNA sequence and the re-
verse primer was common for all, binding to the 3′ miR
vector sequence. PCR was performed using purified pri-
mary PCR product as a template. An amplicon of 100 bp
was expected. Primer sequences are provided in supple-
mentary table S1 (appendix 1)

MTT assay for functional validation of hit obtained
from screen
An MTT assay was performed using the AURKB inhibitor
AZD1152-HQPA (Sigma). The colon cancer cell line
HCT116 (sensitive) and the cervical cell line SiHa (resis-
tant) were used as control cells for the MTT assay. In brief,
1000 cells of AW13516, 1500 cells of HCT116 and 2000
cells of SiHa were seeded in 96 well plates. The cells were
treated with AZD1152-HQPA inhibitor for 72 hours before
the MTT (0.5 mg/ml) reagent was added and the cells were
incubated for 3 hours at 37°C in a CO2 incubator. DM-
SO was used for developing and a reading was obtained at
570 nm using a microplate reader (iMark microplate read-
er, Biorad). The percentage cell viability was calculated
with respect to the untreated control cells. The assay was
performed three times.

Generation of TK1 knockdown clones of AW13516
pZIP-hCMV shRNA constructs targeting TK1 genes and a
scrambled control (TransOmics Technologies, USA) were
used along with Lipofectamine 3000 transfection reagent
(Invitrogen) for lentiviral production in 293FT cells.
Lentivirus was harvested at 48 and 72 hours and filtered
using a 0.4 µM filter. AW13516 cells were transduced with
virus in the presence of 8 µg/ml concentration of polybrene
and selection was done using 1 µg/ml puromycin for 4-5
days. The cells selected were positive for GFP expression.
The shRNA sequences are as follows: TK1 sh1 – AAGCA-
GACAAGTACCACTCCG and TK1 sh2 – CCCAGGT-
GATTCTCGGGCCGA.

Western blotting
The cells were lysed in RIPA lysis buffer (Sigma) supple-
mented with 1 mM dithrothreitol (DTT) and protease in-
hibitor cocktail (Calbiochem, Merck), and quantitated us-
ing the BCA protein estimation method. 40 µg of protein
was loaded on 12% SDS-PAGE gel and transferred onto
PVDF membrane (Amersham Hybond, GE healthcare) by
electro blotting. The membrane was stained with Ponceau
to confirm protein transfer. Blocking was done in 5% BSA
(prepared in 1X Tris Buffered Saline buffer with
Tween-20) and blots were incubated with primary antibody
overnight at 4°C, and then with secondary HRP conjugated
antibody for one hour at room temperature. Blots were then
washed in 1X TBST buffer and developed using Pierce
ECL western blotting substrate (Thermo Fischer Scientif-
ic). Luminescence was captured on a Chemidoc System
(Biorad). Primary antibody for TK1 (cell signalling) was
used at a dilution of 1:1000 and secondary HRP conjugated

goat anti-rabbit antibody (Santa Cruz Biotechnologies)
was used at 1:2000 dilution.

Cell proliferation assay
Twenty thousand cells/well were seeded in a 24 well plate.
Cell growth was assessed at 24 and 96 hours and the cells
were counted using a haemocytometer. The percentage cell
proliferation was calculated with respect to the scrambled
control cells. The experiments were repeated in triplicate.

Results

A pooled kinome shRNA screen to identify oncogenic
dependency in head and neck cancer cells
In order to identify essential genes in head and neck cancer,
we performed a pooled kinome shRNA screen in the head
and neck cancer cell line AW13516, derived from a tongue
cancer patient from India, using 5419 pooled shRNA con-
structs targeting 906 human kinases. About 14 million cells
were transduced with lentiviral particles harbouring
shRNA against kinases at an MOI of 0.3. Following trans-
duction, the cells were subjected to puromycin selection (1
µg/ml) and half the cells were harvested 3 or 4 days post
selection. These cells were called the day 0 sample and
served as a control. The remaining cells were passaged for
20 days in culture and collected at day 10 and day 20. Ge-
nomic DNA was extracted, shRNA amplification was per-
formed, and barcode sequences were added by PCR (fig.
1). Each sample was tagged with a unique barcode to allow
identification of the shRNAs belonging to each sample in
order to enable sample multiplexing during sequencing.

Data deconvolution was performed using the edgeR pack-
age. Briefly, reads with shRNA sequences were mapped to
the human kinome library and the percent mapping was es-
timated. Data QC revealed that about 75% of reads mapped
to kinome references in AW13516 (table 1). shRNA hair-
pins with low counts (less than 0.5 counts per million) at
day 0 were excluded from the analysis since the screen
was performed at 1000-fold representation. The relative
shRNA abundances in the day 0, day 10 and day 20 sam-
ples were estimated after performing within- and across-
sample normalisation. A list of enriched and depleted
shRNA hairpins was obtained by comparing the day 20
samples with the day 0 control samples. For screen 1, a
time series analysis of the kinases enriched and depleted
at day 10 and day 20 was done using the day 0 sample as
a control. Data from screen 2 and screen 3 were used as
replicates to identify shRNA hairpins that were enriched
and depleted at day 20 compared to day 0. Gene-level
information was derived for these shRNAs using the
‘ROAST’ module, and kinases that were de-regulated were
ranked according to their depletion (supplementary table
S2 in appendix 2). Kinases that are lost from the screen
over time have potential roles as oncogenes, since deple-
tion of these kinases by shRNA in cells is inducing a
cell death phenotype, whereas kinases that get enriched
may be acting as tumour-suppressors. Knockdown of these
enriched kinases tends to promote cell proliferation, and
therefore enrichment of shRNA is observed over the time.
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Figure 1: Schematic representation of pooled shRNA screen in AW13516 cells. AW13516 cells were transduced with pooled shRNA
lentivirus targeting 906 human kinases at an MOI of 0.3. Cells were selected in puromycin and half the cells were collected as the day 0 sam-
ple, which was used as the reference or control sample, as it represents all the shRNA after transduction. The remaining half of the cells were
passaged for up to 20 days in culture and collected as the day 20 sample. Genomic DNA was extracted from both samples and shRNA se-
quences were amplified by primary and secondary PCR. Then the indexed library, secondary PCR product was sequenced and shRNA counts
were obtained for both samples. The shRNA sequences which were depleted in the day 20 compared to the day 0 ones were considered. De-
pleted kinases are those which have an oncogenic role in these cells.

Table 1: QC data from sequencing showing the percentage of the reads mapping to the kinome library for all three samples for each of the three screens of the AW13516 cell
line.

AW13516 Screen1 AW13516 Screen2 AW13516 Screen3

Sample Day 0 Day 10 Day 20 Day 0 Day 10 Day 20 Day 0 Day 10 Day 20

Total reads 7,306,986 24,734,650 12,806,948 768,023 3,116,132 1,932,070 932,563 1,626,831 929,280

Total reads
mapping to ki-
nome

6,885,742 23,167,685 11,999,717 574,936 1,940,642 1,522,511 635,114 996,063 466,771

Percent map-
ping to Kinome

94.23 93.66 93.69 79.18 65.23 81.89 78.65 81.49 78.58
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An integrated scoring system and analytical package,
DepRanker, to rank biologically relevant genes
The GUI based pooled shRNA screen analysis and gene
prioritisation package DepRanker was used to rank and
identify biologically relevant genes. In screen 1, 127 ki-
nases that were depleted in AW13516 cells and had avail-
able gene expression and copy number data were identi-
fied, while 146 such kinases were identified in screen 2
(table S3 in appendix 2). Gene expression and copy num-
ber alteration data for all the kinases showing significant
depletion in the pooled screen were analysed for AW13516
cells [14]. Next, we used DepRanker to integrate genomics
data such as the gene expression data, copy number data,
ranking given by ROAST analysis and average logFC val-
ue of all the shRNAs associated with a gene to calculate
the Rank Impact Score (RIS) for each kinase in the screen
(fig. S1), as described in the methodology. The results from
both screens were pooled together by considering the mean
weight assigned to each kinase as described in the method-
ology (table S4). The kinase rankings for both screens are
shown in table S5.

DepRanker ranked AURKB and TK1 as the top genes after
combining the results from the two screens using the as-
signed weights (fig. 2). Due to the non-inclusion of the
normal immortalised oral cells, the essential role of AU-
RKB and TK1 in oral cancer cells couldn’t be established

exclusively based on the screens performed. However, giv-
en that AURKB and TK1 are overexpressed and show high
copy gain in AW13516 oral cancer cells, the data, along
with the functional screen, suggest their potential onco-
genic role in oral cancer (table S4). To confirm the repro-
ducibility of the results obtained from our bioinformatics
analysis, the counts for each shRNA in the day 0, day 10
and day 20 samples were validated using real time PCR for
the selected candidate kinases. The shRNA counts target-
ing AURKB and TK1 were observed to be depleted in the
day 10 and day 20 samples compared to the day 0 control
sample, suggesting that these kinases confer oncogenic de-
pendence in head and neck cancer cell lines and are essen-
tial for cell survival, as knockdown of these kinases result-
ed in the elimination of the corresponding shRNAs from
the population over time (data not shown). These results
were consistent with our bioinformatics analysis, wherein
we observed a depletion of the shRNA constructs target-
ing AURKB and TK1 in the day 10 and day 20 samples
compared to the day 0 sample. Here, we considered the
mean CPM (counts per million) of each shRNA construct
for both genes across all three screens. The percent shRNA
counts at each time point are plotted in figure 3. All three
shRNAs of AURKB show consistent depletion at day 10
and day 20.

Figure 2: Heatmap representation of depleted kinases in the screen considering overall Rank Impact Score (RIS). Heatmap represen-
tation of the kinases depleted in the screen which have a high impact score according to the ranking assigned by considering ROAST, gene
expression data, copy number data and the average logFC of the depleted shRNA for that kinase. The enlarged view shows the top 10 kinas-
es with the highest impact scores. AURKB and TK1 kinases top the list.

Figure 3: Graph showing percent shRNA counts at day 0, day 10 and day 20 for three shRNAs of AURKB and TK1. The mean CPM
counts of each shRNA construct for both genes across all three screens were obtained and the percent shRNA counts at each time point are
plotted.
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AURKB and TK1 kinases confer oncogenic dependency
in AW13516 cells
AURKB is a chromosomal passenger protein which is crit-
ical for the accurate segregation of chromosomes during
cell division [16]. However, in several cancers over-ex-
pression of AURKB is often associated with poor prognosis
[17]. AURKB-mediated phosphorylation suppresses the ac-
tivity of p53 through several mechanisms [18, 19]. Howev-
er, several studies have also reported that inhibitors of AU-
RKB are effective at inhibiting cell growth in p53 mutant
cell lines [20, 21]. AW13516 cells harbour the p53 muta-
tions p.R273H and p.R72fs*51.

To confirm AURKB as a potential oncogenic kinase con-
ferring cell survival of AW13516 cells, we performed an
MTT assay on AW13516 cells using AZD1152-HQPA in-
hibitor. We observed that the AW13516 cells were sensi-
tive to the inhibitor, with an IC50 value of 40 nM. HCT116
colon cells were used as a sensitive cell line for the assay,
and cervical cancer SiHa cells were used as resistant cells
(fig. 4A). These results suggest that the AURKB-specific
inhibitor AZD1152-HQPA could inhibit the cell viability
of p53 mutant AW13156 cells. The results are consistent
with the sensitivity of this inhibitor to other cells, such as
HT29 cells with the similar p53 mutation p.R273H [20].

Thymidine kinase 1 (TK1) was identified from the screen
as another potential target. TK1 is an enzyme that plays a
role in the first step of the biosynthesis of dTTP during
DNA synthesis in cells [22]. High expression of TK1 in
cancer tissues is associated with disease progression and
poor prognosis [23]. Serum TK1 levels are used as a prog-

nostic biomarker in several cancers, including head and
neck cancer, to predict the outcome of treatment [24]. TK1
is thus an attractive target. To functionally characterise
the role of TK1, we performed knockdown of TK1 in
AW13156 cells and confirmed the knockdown by western
blotting. We performed a cell proliferation assay and ob-
served that proliferation was significantly (p <0.0001) af-
fected in the knockdown clones compared to the scrambled
control cells (figs 4B and 4C).

Patients with AURKB alterations show a poor overall
survival
To assess the impact of AURKB alterations on the survival
of patients, we accessed gene alteration data for AURKB
and TK1 from cBioPortal [15]. TCGA provisional HNSCC
data sets comprising mutations, copy number changes and
mRNA upregulation across 528 samples were analysed.
Survival analysis using Kaplan-Meier plots suggests that
patients with AURKB alteration display a poor survival of
18 months, compared to a survival of 56 months in the
non-altered group (fig. 5A). The survivals of the TK1-al-
tered and the non-altered cohorts were 22 and 56 months
respectively (fig. 5B), suggesting poor survival in the TK1
genetic alteration group.

Discussion

Pooled shRNA screens are a powerful tool for the identi-
fication of specific gene targets that are essential for the
survival of cancer cells. However, heterogeneous data sets
often have limited reproducibility, as indicated by multiple

Figure 4: AURKB and TK1 show oncogenic dependency in AW13516 cells. (A) MTT assay with AZD1152-HQPA inhibitor in AW13156,
HCT116 and SiHa cells. (B) Knockdown confirmation of TK1 in AW13516 cells by western blotting. (C) Cell proliferation assay in control and
TK1 knockdown clones of AW13516 cells.
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studies, and several approaches are adopted to minimise
the noise generated by non-reproducible hits [25]. Other
factors that contribute to the variability and complexity of
screen data are the effective delivery of shRNA, random
integration for the stable expression of shRNA, processing
of shRNA hairpins into silencing complexes, and off-target
effects [26]. Therefore, to overcome these limitations due
to variability in the reproducibility of the data, several
robust computational approaches have emerged [27, 28].
Some analysis methods integrate genomic data such as
gene expression and copy number information to provide
insights into and predict essential genes in cancer [12, 13].

Although several data integration tools and packages for
analysing the dataset from the screen are available, most
have their specific third-party needs and necessitate intense
computational infrastructure that cannot be run by re-
searchers without specialised and advanced computational
expertise. Thus, the lack of a simplified scoring system al-
lowing a functional biologist to rank genes from the screen
data by integrating the genomics data remains a limitation.
To address this, we have developed a scoring system, De-
pRanker, which calculates a Rank Impact Score for each
gene identified in the screen by considering the gene ex-
pression and copy number data.

Two different screens in AW13516 cells were analysed us-
ing different approaches, and were also sequenced at dif-
ferent depths. Because of the major differences in the over-
all capture of the libraries, we expected the results from the
screens to be different. Since neither of the screens were
performed at a high enough saturation, we analysed the da-
ta following separate protocols. The candidate genes AU-

RKB and TK1, identified from both the screens using an
integrated genomics approach, were validated by inhibitor
and knockdown assays. DepRanker is a step towards re-
ducing noise due to differences in the capture of libraries,
sequencing depth and analysis methods. This approach can
be useful specifically for identifying dependencies in cell
lines.

AURKB and TK1 are reported to have oncogenic functions
in several cancer types, including HNSCC. A previous
study on p53 mutant HNSCC cell lines using a kinome
screen was also able to identify certain aurora kinases and
thymidine kinases as therapeutic targets [29], which is con-
sistent with our findings.

AW13516 cells display high copy amplification and gene
expression of the AURKB gene. Overexpression or am-
plification of AURKB has been reported in several cancer
types [16, 18]. AURKB is a chromosomal protein involved
in the segregation of chromosomes and cytokinesis [30],
and its overexpression leads to aneuploidy in the cells. It
is also associated with aggressive tumour progression [31].
There are several pieces of evidence that point towards
the oncogenic role of AURKB in head and neck cancer.
High AURKB expression has been observed to be associat-
ed with increased cell proliferation and lymph node metas-
tasis [32], involved in the activation of the RAS-MAPK
pathway, and contributing to cetuximab resistance [33].
Also, AURKB is one of the essential genes most common-
ly identified from pooled RNAi and CRISPR screens on
cancer cell lines, as identified by a search for this gene in
the DepMap portal [12]. We observed that AW13516 cells
were sensitive to the AURKB inhibitor AZD1152-HQPA.

Figure 5: Kaplan-Meier survival analysis in TCGA-HNSCC dataset.
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In addition, survival analysis of TCGA HNSCC data indi-
cated that patients with AURKB genes alterations display
poor overall survival, which suggests it plays a role in car-
cinogenesis in HNSCC. AURKB is a potential therapeutic
target for the treatment of HNSCC, and several AURKB in-
hibitors are in clinical trials [16, 34].

Similarly, the TK1 target identified in the screen also ex-
hibited high copy gain and increased gene expression in
AW13516 cells. Thymidine kinase 1 (TK1) has a role in
regulating the cell cycle [22]. Serum TK1 levels are used to
determine disease prognoses and to predict treatment out-
comes [23]. A study of head and neck cancer showed that
patients treated with chemotherapy and surgery showed
decreased serum TK1 levels, whereas patients with stable
disease displayed elevated TK1 levels. Hence, TK1 can
be used as a biomarker to evaluate disease outcomes [24,
35]. We functionally validated another target, TK1, using a
knockdown approach. A significant difference in the pro-
liferation rate was observed in TK1 knockdown clones
compared to control cells, suggesting that TK1 is essential
for the survival of cells. Also, a previous study from our
lab identified significant up-regulation of TK1 expression
in tongue tumours [36].

In conclusion, we developed a data integration and scoring
system, DepRanker, which uses the output of shRNA
screen analysis packages (like ROAST, RIGER and
Chimera) and integrates this with other genomics datasets
to compute an integration score, known as a Rank Impact
Score (RIS), for each gene. We performed a pooled RNAi
screen against 906 kinase genes and, using the DepRanker,
integrated the outcome with gene expression and copy
number data for AW13516 cells to identify AURKB and
TK1 as essential genes in oral cancer.
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Appendix 1

The DepRanker scoring system

Appendix 2

Supplementary tables

Table S1: Primary and secondary PCR primer sequences.
Highlighted in bold are the unique 6-base index sequences
of the secondary PCR primers.

Table S2: ROAST ranking of all the depleted kinases in
both screens.

Table S3: Integrated copy number, gene expression and
logFC value data for each kinase for both screens are
shown.

Table S4: A list of the top depleted kinases from the screen,
identified by considering the cumulative effect of four pa-
rameters: gene rank (RS), copy number alteration (CS),
gene expression (GS) and logFC value of shRNA depletion
(DS). The cumulative effect is represented by the Rank Im-
pact Score (RIS) and a weighting.

Table S5: The Rank Impact Scores (RIS) and weightings
(W) of all the kinases in each of the two screens are shown.
The values of all four parameters, rank (RS), copy number
(CS), gene expression (GS) and logFC value (DS) are
shown.

This appendix is available in a separate file at
https://smw.ch/article/doi/smw.2020.20195.

Figure S1: Schematic outline depicting the DepRanker, an automated tool to identify driver genes from pooled functional genomic screens.
CR = copy number alteration rank; DR = depletion rank; FC = fold change; GR = gene expression rank; RR = ROAST rank
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