

Low serum total thyroxine and free triiodothyronine in patients with hepatic encephalopathy due to non-alcoholic cirrhosis

Ertuğrul Kayacetin^a, Gurcan Kisakol^b, Abmet Kaya^b

^a Selcuk University, Meram Medical Faculty, Gastroenterology Division, Konya, Turkey

^b Selcuk University, Meram Medical Faculty, Endocrinology Division, Konya, Turkey

Summary

Principles: We evaluated serum thyroid hormone levels in non-alcoholic cirrhotic patients with and without hepatic encephalopathy.

Methods: 15 consecutive patients with hepatic encephalopathy secondary to non-alcoholic cirrhosis (8 males and 7 females, age 37–75 years) and 33 non-alcoholic cirrhotic patients without encephalopathy (22 males and 11 females, age 36–74 years) were investigated. A control group consisted of 20 healthy subjects (10 men and 10 women aged 26–69 years). The levels of serum triiodothyronine (T₃), thyroxine (T₄), thyrotropin (TSH), free T₃ (FT₃) and free T₄ (FT₄) were studied in serum samples drawn in the morning. Thyroid function tests were set in relation to the severity of hepatic dysfunction and to the presence or absence of hepatic encephalopathy.

Results: Serum levels of FT₃ and total T₄ (but

not total T₃ and FT₄) were significantly lower in patients with hepatic encephalopathy compared to decompensated cirrhotic patients without encephalopathy ($p = 0.006$ for T₄, $P < 0.05$ for FT₃). Prothrombin-time also differed significantly between decompensated cirrhotic patients (Child C) with and without encephalopathy groups ($p = 0.002$).

Conclusions: These results suggest that patients with hepatic encephalopathy secondary to decompensated non-alcoholic cirrhosis are typified by low FT₃ and low total T₄, as well as by a prolonged prothrombin time. Low FT₃ does not obviously put patients at risk for hepatic encephalopathy, and thyroid parameters are secondary and late events.

Key words: cirrhosis; hepatic encephalopathy; thyroid function tests

Introduction

The liver plays an important role in the metabolism of thyroid hormones, being involved in their conjugation, excretion and peripheral deiodination, and in synthesising thyroid binding globulin (TBG) [1, 2]. Evidence of an association between chronic diseases of the liver and thyroid alterations have often been reported, but limited information is available on thyroid function tests in non-alcoholic cirrhotic patients with hepatic encephalopathy. Most studies have been carried out in patients with cirrhosis of alcoholic origin. Studies have revealed that T₄ levels are usually within normal limits, but, as cirrhosis progresses, FT₄ levels increase secondary to decreased serum levels of thyroxine-binding protein [3]. T₃ and FT₃ con-

centrations are usually decreased in correlation with the severity of the disease, but this is still controversial [4]. To our knowledge, there has been no previous study comparing thyroid hormone levels in patients with non-alcoholic decompensated cirrhosis and those with cirrhosis complicated with hepatic encephalopathy.

In this study we investigated thyroid hormone levels in non-alcoholic decompensated cirrhotic patients with and without hepatic encephalopathy. We also attempted to determine whether or not thyroid function tests may be a useful prognostic indicator for the development of hepatic encephalopathy in decompensated cirrhotic patients.

Material and methods

This study was carried out in 15 patients (mean age 51 ± 8.74 years, range 37–75 years) with hepatic encephalopathy due to non-alcoholic cirrhosis, consecutively admitted to the Division of Gastroenterology, and in 33 non-alcoholic cirrhotic patients (mean age 55 ± 7.71 , range 36–74 years) without encephalopathy. 20 healthy subjects (10 male, 10 female, aged 49.7 ± 8.45 years, range 26–69 years) matched for age, height and sex served as control group. None of the patients or controls had a history of alcohol consumption. All the subjects were clinically euthyroid, none was known to have a present or past history of thyroid disease and none was taking any drug known to affect thyroid function. The main characteristics of the patients are summarised in table 1.

The diagnosis of cirrhosis was based on case history, clinical examination, biochemical, endoscopic and ultrasound findings, or liver biopsy. Liver biopsies were not performed if coma, reduced coagulability or extensive ascites was present. The functional severity of the liver injury was determined on the basis of the Child-Pugh grading system [5]. The size of the groups were as follows: Child A: 9 patients, mean age 51.33 ± 8.81 years (range 37–65 years), Child B: 11 patients, mean age 52.72 ± 7.80 years (range 44–75 years), Child C: 13 patients, mean age 57.21 ± 9.40 years (range 51–72 years). 27 patients had positive serological markers for viral hepatitis (19 hepatitis B surface antigen-associated and 8 hepatitis C virus antibody-associated), the remaining 6 having cirrhosis of unknown origin.

The degree of encephalopathy was defined on the basis of previously reported criteria [6] ranked between grade 1 and grade 4. Encephalopathy was related to hepatitis B virus in 10 patients and to hepatitis C virus in 5. Hepatitis B virus infection was assumed if hepatitis B surface antigen was detected in the sera, whereas hepatitis C virus infection was diagnosed when anti-HCV antibodies

were found in an enzyme immunoassay (Anti-HCV Enzyme Immunoassay kit, Diasorin S.A., Madrid, Spain). Encephalopathic patients were further divided into two groups, survivors and non-survivors.

On admission, the following parameters for evaluation of the severity of liver dysfunction were recorded: albumin (n: 3.5–5.2 g/dl); bilirubin (n: 1.3–3.1 mg/dl); serum aspartate transaminase (AST) (n: 10–30 U/L); serum alkaline phosphatase (ALP) (n: 44–155 U/l) and prothrombin time (n: 1.04–1.5 [INR]). These biochemical tests were performed by standard auto-analyser methods. Plasma prothrombin ratios were measured with human brain thromboplastin tissue (STA-Neoplastine CI Plus kits, France). In all cases, blood samples for hormone determinations were drawn in the morning after overnight fasting. FT_3 , FT_4 , T_3 , and T_4 were measured by competitive radioimmunoassay using DPC kit (Diagnostic Products Corporation, United Kingdom). TSH was measured by an immunometric assay method (DPC-UK). On the basis of the patients' and control subjects' thyroid function values we calculated a 95% confidence interval for this parameter.

Statistical analysis

Student's *t* test was used to compare the continued variables between two groups. The analysis of variance (ANOVA) was used to test the significance of continued variables within groups. All values are reported as mean \pm standard deviation. The correlation between serum albumin bilirubin levels, prothrombin time and T_3 , T_4 , FT_3 levels in both groups was assessed by Pearson's correlation coefficient. *P* value <0.05 was considered statistically significant. Normal values in our laboratory are as follows: FT_3 : 1.57–4.71 pg/ml; FT_4 : 0.85–1.78 ng/dl; T_3 : 60–164 mg/dl; T_4 : 4.5–12.1 μ g/dl; TSH: 0.4–4 μ IU/ml.

Table 1
Main features of patients and control subjects.

	cirrhotic patients with hepatic encephalopathy		all cirrhotic patients		control subjects	
	survivors	non-survivors	Child A	Child B	Child C	
Number	9	6	9	11	13	20
Males/females	5/4	3/3	6/3	8/3	10/3	10/10
Age (yr) *	53.4 ± 9.45	57.14 ± 6.95	51.33 ± 8.81	52.72 ± 7.80	57.21 ± 9.40	49.7 ± 8.45
Duration of disease (yr) *	3.8 ± 0.9	4.7 ± 1.4	3.1 ± 0.7	3.4 ± 0.91	3.8 ± 0.52	–

*Data given as mean \pm SEM

Results

The thyroid function tests in non-alcoholic cirrhotic patients with encephalopathy, in non-alcoholic cirrhotic patients without encephalopathy and in control patients are shown in table 2. Compared to controls, patients with hepatic encephalopathy and decompensated cirrhotic patients (Child C group) showed a significant decrease in T_3 and FT_3 levels (98.7 ± 17.4 ng/dl vs 40.66 ± 9.6 , 51.96 ± 8.21 for T_3 and 2.76 ± 0.45 pg/ml vs 1.61 ± 0.38 and 1.15 ± 0.25 for FT_3 , re-

spectively; *p* <0.05), whereas there was no difference in serum T_4 , TSH and FT_4 levels.

Cirrhotic patients with hepatic encephalopathy had significantly reduced serum levels of T_4 , FT_3 and T_3 compared to all cirrhotic patients (*p* = 0.003 for T_4 , *p* <0.001 for FT_3 and *p* = 0.004 for T_3), whereas there was no difference in FT_4 and TSH levels. No significant differences in T_3 , T_4 , TSH, FT_3 and FT_4 levels were observed between survivors and non-survivors with hepatic en-

Table 2

Thyroid hormone levels in patients and control subjects.

Hormone	non-alcoholic cirrhotic patients with encephalopathy			cirrhotic patients				control subjects (n = 20)
	all patients (n = 15)	survivors (n = 9)	non-survivors (n = 6)	all patients (n = 33)	Child A (n = 9)	Child B (n = 11)	Child C (n = 13)	
T3 (ng/dl)	40.66 ± 9.6 ^{a,d}	43.4 ± 8.22	49.2 ± 6.9	69.28 ± 20.8	88.13 ± 17.59	74 ± 10.06	51.96 ± 8.21 [*]	98.7 ± 17.4
T4 (μg/dl)	4.28 ± 1.53 ^{b,e}	4.36 ± 1.22	4.18 ± 1.1	6.96 ± 1.6	7.04 ± 2.67	6.7 ± 1.45	6.38 ± 1.51	7.33 ± 2.68
TSH (pU/ml)	1.22 ± 0.83	1.23 ± 0.74	1.2 ± 0.86	1.22 ± 0.17	0.96 ± 0.74	1.35 ± 0.69	1.53 ± 0.63	
FT3 (pg/ml)	1.15 ± 0.25 ^{c,f} *	1.14 ± 0.21	1.17 ± 0.14	2.08 ± 0.67	2.40 ± 0.79	2.36 ± 0.56	1.61 ± 0.38 ^g *	2.76 ± 0.45
FT4 (g/dl)	0.85 ± 0.28	0.87 ± 0.23	0.83 ± 0.74	0.96 ± 0.28	1.14 ± 0.22	1.04 ± 0.25	0.93 ± 0.21	1.27 ± 0.42

^a p <0.05 (Child C and hepatic encephalopathy vs controls)

^b p = 0.003 (Hepatic encephalopathy vs all cirrhotic patients)

^c p <0.001 (Hepatic encephalopathy vs all cirrhotic patients)

^d p = 0.004 (Hepatic encephalopathy vs all cirrhotic patients)

^e p = 0.006 (Hepatic encephalopathy vs Child C)

^f p <0.05 (Hepatic encephalopathy vs Child C)

^g p <0.05 (Child C vs Child A and Child B)

Table 3

Laboratory data in control subjects and in patients with cirrhosis.

	non-alcoholic cirrhotic patients with encephalopathy			cirrhotic patients				control subjects (n = 20)
	all patients (n = 15)	survivors (n = 9)	non-survivors (n = 6)	all patients (n = 33)	Child A (n = 9)	Child B (n = 11)	Child C (n = 13)	
HBV related	10	7	3	19	6	5	8	
HCV related	5	3	2	8	2	3	3	
Cryptogenic				6	1	3	2	
Albumin (g/dl)	2.61 ± 0.39	2.63 ± 0.42	2.54 ± 0.33	3.17 ± 0.59	3.72 ± 0.5 ^a	3.29 ± 0.54 ^a	2.74 ± 0.31	4.1 ± 0.29
Bilirubin (mg/dl)	3.68 ± 1.8	3.57 ± 1.83	3.71 ± 1.62	2.66 ± 0.39	0.97 ± 0.28 ^b	2.61 ± 1.25	3.8 ± 2.11	0.95 ± 0.18
ALP (U/L)	220 ± 17	214 ± 30	225 ± 32	252 ± 34	265 ± 28	236 ± 19	250 ± 39	145 ± 12
AST (U/L)	47 ± 8	43 ± 6	54 ± 8	54 ± 9	49 ± 12	6 ± 11	51 ± 8	17 ± 6
Prothrombin time (INR)	2.21 ± 0.53	2.19 ± 0.24	2.24 ± 0.42	1.6 ± 0.41	1.21 ± 0.22 ^c	1.58 ± 0.25 ^c	1.86 ± 0.42 ^c	1.12 ± 0.19

^a P <0.03 (Child A and Child B vs encephalopathy)

^b P <0.05 (Child A vs encephalopathy)

^c P <0.001 (Child A, Child B and Child C vs encephalopathy)

encephalopathy (p <0.375). Serum T₄ and FT₃ levels were significantly decreased in patients with encephalopathy compared with decompensated (Child C) cirrhotic patients (p = 0.006 for T₄, p <0.05 for FT₃ respectively). Decompensated cirrhotic patients had significantly lower serum T₃ and FT₃ levels than Child A and Child B groups (p <0.05). No significant differences were observed when serum T₄, TSH and FT₄ levels were compared among Child A, Child B and Child C groups. Cirrhotic patients' and controls' biochemical data which reflect the severity of the liver disease are presented in table 3.

Of cirrhotic patients with encephalopathy, 11 belonged to Child C group and 4 to Child B group. Routine laboratory tests did not significantly differ between survivors and non-survivors.

Statistical analysis revealed a significant in-

verse correlation between serum FT₃ concentrations and the severity of liver dysfunction. An inverse correlation was observed between serum bilirubin and T₃, T₄ levels (r = -0.65, p = 0.014 for T₃, r = -0.298, p = 0.047 for T₄) as well as between prothrombin time and T₃, T₄ and FT₃ levels in both groups (r = -0.594, p <0.01 for T₃, r = 0.476, p = 0.001 for T₄, r = -0.515, p = 0.001 for FT₃). On the other hand, a positive correlation was found between serum albumin levels and T₃, T₄ and FT₃ levels (r = 0.634, p <0.001 for T₃, r = 0.397, p = 0.007 for T₄, r = 0.394, p = 0.011 for FT₃).

Prothrombin time was significantly longer in patients with hepatic encephalopathy than in Child C patients without encephalopathy (p = 0.002). However, no difference was observed between albumin and bilirubin levels.

Discussion

Thyroid dysfunction has been reported previously in a variety of non-thyroid illnesses including liver, pulmonary and renal neoplastic disease, severe systemic illness, fasting, malnutrition, postoperative state, physical trauma and acute infections. Low total and free T₃ with normal total T₄ and thyrotropin concentrations in the absence of clinical hypothyroidism have been frequently reported in patients with non-thyroidal illnesses [7, 8, 9]. Several investigations have been performed to assess the relationship between liver disease and thyroid hormones [1, 2, 7, 10]. Hepner and Walfish reported a significant inverse correlation between serum T₃ concentrations and the severity of liver dysfunction. A progressive decrease in T₃ levels in chronic liver diseases has been described as indicative of a poor prognosis [10-12]. Authors ascribed this finding to diminished conversion of T₄ to T₃ and impaired metabolism of thyroxine-binding proteins. In the present study we demonstrated a fall in FT₃ and T₃ parallel to severity of the disease, and a good correlation between T₃ concentrations, serum albumin and prothrombin time. These results suggest that serum T₃ and FT₃ concentrations may be considered a sensitive index of hepatic function in liver disease. We chose non-alcoholic patients because alcohol is considered to have a direct toxic effect on thyroid parenchyma, as previously described in chronic alcoholics [13].

Borzio et al. compared cirrhotics with normal subjects and chronic hepatitis patients. They suggested that T₃ serum levels inversely paralleled severity of liver dysfunction [2]. Thyroid function tests have also been performed in acute hepatitis [14]. T₄ has been found to be elevated in patients with acute viral hepatitis due to elevation of TBG

(possibly secondary to release from injured hepatocytes).

Our study differs from previous investigations in that we determined the alterations of thyroid hormone level in non-alcoholic decompensated cirrhotic patients with and without hepatic encephalopathy. We found a significant reduction in serum FT₃ in non-alcoholic cirrhotic patients compared with a control group, the lowest values being found in patients with hepatic encephalopathy. Low FT₃ levels may be due to reduced extra-thyroidal T₄-to-T₃ conversion, the mechanism being inversely related to the degree of hepatic dysfunction.

We found no significant difference in functional thyroid parameters between patients surviving and not surviving hepatic encephalopathy ($p < 0.375$), but Guven et al. have reported lower T₃ levels in patients who died than in patients who survived [7, 10, 15]. The reason for this difference is not clear.

In conclusion, patients with decompensated liver disease complicated by hepatic encephalopathy subsequent to non-alcoholic cirrhosis were found to have exceedingly low serum FT₃ and T₄ levels. Depressed serum FT₃ and T₄ levels, together with a prolonged prothrombin-time, therefore appear to be characteristic of a subgroup of decompensated cirrhotic patients prone to develop hepatic encephalopathy.

Correspondence:

Dr. Ertuğrul Kayacetin
Selcuk Üniversitesi Meram Tip Fakültesi
İc Hastalıkları AD, Gastroenteroloji BD
Meram/Konya
Turkey
E-Mail: ekayacetin@mynet.com

References

- 1 Babb RR. Associations between diseases of the thyroid and the liver. *Am J Gastroenterol* 1984; 79: 421-3.
- 2 Borzio M, Caldara R, Ferrari C, Borzio F, Piepoli V, Romussi M. Thyroid function tests in chronic liver disease: evidence for multiple abnormalities despite clinical euthyroidism. *Gut* 1983; 24: 631-636.
- 3 Bianchi GP, Zoli M, Marchesini G, Volta U, Vecchi F, Iervese T, et al. Thyroid gland size and function in patients with cirrhosis of the liver. *Liver* 1991; 11: 71-7.
- 4 Sheridan P. Thyroid hormones and the liver. *J Clin Gastroenterol* 1983; 12: 797-818.
- 5 Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. *Br J Surg* 1973; 60: 646-9.
- 6 Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenbom K, Blei AT. Hepatic encephalopathy definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congress of Gastroenterology, Vienna, 1998. *Hepatology* 2002; 35: 716-21.
- 7 Chopra IJ, Soloman DH, Hepner GW, Morgenstern AA. Misleadingly low free thyroxine index and usefulness of reverse triiodothyronine measurement in non thyroidal illnesses. *Ann Intern Med* 1979; 90: 905-12.
- 8 Kaptein EM, Weiner JM, Robinson WJ, Wheeler WS, Nicoloff JT. Relationship of altered thyroid hormone indices to survival in nonthyroidal illnesses. *Clin Endocrinol* 1982; 16: 565-74.
- 9 Bermudez F, Surks MI, Oppenheimer JH. High incidence of decreased serum triiodothyronine concentration in patients with nonthyroidal disease. *J Clin Endocrinol Metab* 1975; 41: 27-40.
- 10 Hepner GW, Chopra IJ. Serum thyroid hormone levels in patients with liver disease. *Arch Intern Med* 1979; 139: 1117-20.
- 11 Walfish PG, Orrego H, Israel Y, Blake J, Kalant H. Serum triiodothyronine and other clinical and laboratory indices of alcoholic liver disease. *Ann Intern Med* 1979; 91: 13-6.
- 12 Klachko DM, Johnson ER. The liver and circulating thyroid hormones. *J Clin Gastroenterol* 1983; 5: 465-71.
- 13 Hegedus L. Decreased thyroid gland volume in alcoholic cirrhosis of the liver. *J Clin Endocrinol Metab* 1984; 106: 203-8.
- 14 Gardner DF, Carithers RL, Utiger RD. Thyroid function tests in patients with acute and resolved hepatitis B virus infection. *Ann Intern Med* 1982; 96: 450-52.
- 15 Guven K, Kelestimir F, Yucesoy M. Thyroid function tests in non-alcoholic cirrhotic patients with hepatic encephalopathy. *Eur J Med* 1993; 2: 83-5.

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW's impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website <http://www.smw.ch> (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board

Prof. Jean-Michel Dayer, Geneva
 Prof. Peter Gehr, Berne
 Prof. André P. Perruchoud, Basel
 Prof. Andreas Schaffner, Zurich
 (Editor in chief)
 Prof. Werner Straub, Berne
 Prof. Ludwig von Segesser, Lausanne

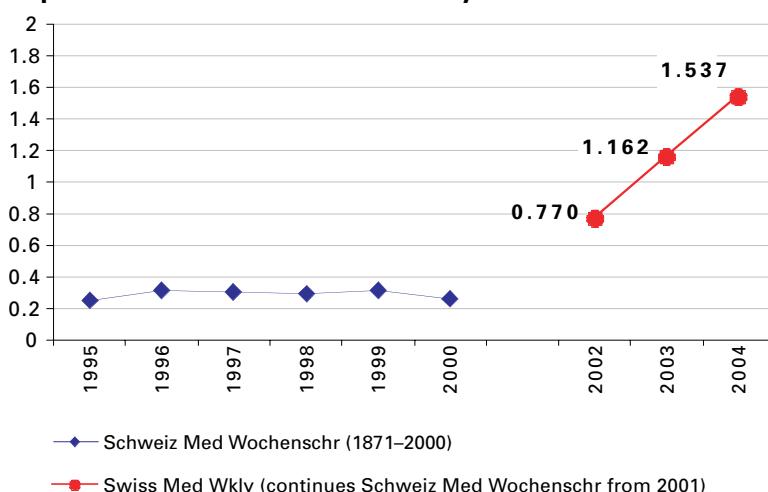
International Advisory Committee

Prof. K. E. Juhani Airaksinen, Turku, Finland
 Prof. Anthony Bayes de Luna, Barcelona, Spain
 Prof. Hubert E. Blum, Freiburg, Germany
 Prof. Walter E. Haefeli, Heidelberg, Germany
 Prof. Nino Kuenzli, Los Angeles, USA
 Prof. René Lutter, Amsterdam, The Netherlands
 Prof. Claude Martin, Marseille, France
 Prof. Josef Patsch, Innsbruck, Austria
 Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html



All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
 SMW Editorial Secretariat
 Farnsburgerstrasse 8
 CH-4132 Muttenz

Manuscripts: submission@smw.ch
 Letters to the editor: letters@smw.ch
 Editorial Board: red@smw.ch
 Internet: <http://www.smw.ch>

Impact factor Swiss Medical Weekly

