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Summary

The relevance of genetic and epigenetic alterations in the
pathogenesis of inflammatory bowel disease (IBD) is still
poorly understood. So far, 240 risk gene loci have been
associated with IBD. They are mainly involved in regulat-
ing innate and adaptive immunity, as well as maintaining
intestinal epithelial barrier function. However, the function-
al consequences of the identified genetic polymorphisms
for IBD pathogenesis in vivo are often unknown. Even
less is known about the role for epigenetic modifications in
IBD pathogenesis. Though a number of epigenetic events
seem to be causatively involved IBD pathogenesis, our
knowledge about the functional relevance of those epige-
netic modifications is scanty. This opens up a broad re-
search field that generates novel insights into the patho-
physiology of intestinal and chronic inflammatory disease.
Patterns of DNA methylation and histone modifications
might serve not only as biomarkers of disease activity or
disease course, but also as new targets in therapeutic in-
terventions in IBD patients.
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Introduction

Crohn’s disease and ulcerative colitis are the main sub-
types of inflammatory bowel disease (IBD). From a clini-
cal perspective, they represent a chronic intestinal inflam-
mation that often begins in young adulthood and is
frequently relapsing. Crohn’s disease represents a discon-
tinuous, transmural inflammation that can occur anywhere
in the gastrointestinal tract, whereas ulcerative colitis is a
continuous inflammation of the mucosal layer of the colon
that always starts in the rectum. In addition to the gastroin-
testinal tract inflammation, so-called extraintestinal symp-
toms are common, affecting the joints, eyes, skin and liver
[1]. In Crohn’s disease, fistulas and stenosis are a severe
clinical problem that often require surgery [2, 3]. Since
IBD is a life-long burden in many patients, it obviously
impacts the quality of life of the affected patients and has
severe socioeconomic consequences [1]. Importantly, the
incidence of IBD is rising in Switzerland and also world-
wide [4, 5].

IBD develops as a result of a combination of complex in-
teractions between the individual’s genetic background, al-
terations in the composition of the intestinal microbiota on
a qualitative as well as quantitative level, a dysregulated
innate and adaptive immune system and environmental
factors, such as diet, drugs and smoking [6]. To date, 240
susceptibility loci have been identified by genome-wide
association studies (GWAS); however, only a minor part
of disease risk and heritability can be explained by genetic
factors alone [7–9]. It was proposed more than a decade
ago that epigenetic regulation of gene expression might
play a role in the development and regulation of IBD [10].
Today, several publications suggest that epigenetic mecha-
nisms might help us to classify and diagnose patients, im-
prove our understanding of IBD and, more importantly,
provide new treatment opportunities.

Genetic factors contributing to IBD pathogen-
esis

Genetic factors have been widely considered as important
risk factors for the onset of inflammatory bowel disease.
GWAS performed in the last few years have been extreme-
ly successful in identifying genes that contribute to IBD
susceptibility. NOD2 (located within the IBD1 locus) was
the first gene to be associated with Crohn’s disease [11,
12]. Since then, several additional genes implicated in IBD
have been identified. The strongest genetic effects were
IL23R in IBD (odds ratio [OR] 2.01), NOD2 in Crohn’s
disease (OR 3.01) and HLA in ulcerative colitis (OR 1.44).
Most gene loci showed the same direction of effect in
Crohn’s disease and ulcerative colitis, but there were some
exceptions. For example, NOD2 and PTPN22 exhibited a
significant protective effect in ulcerative colitis, but were
risk factors for Crohn’s disease. Nevertheless, GWAS have
helped us gain a better understanding of the genetic basis
and their contribution with the pathogenesis of IBD. It is
important to mention that many IBD risk loci are shared
with other autoimmune or chronic inflammatory diseases,
such as rheumatoid arthritis, systemic lupus erythemato-
sus, multiple sclerosis, type 1 diabetes, vitiligo or psoriasis.
Further, there are IBD risk loci that are associated with
both IBD subforms and some that are only associated with
either Crohn’s disease or ulcerative colitis. This is particu-
larly true for genes associated with epithelial barrier func-
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tion (associated with ulcerative colitis) and genes involved
in cellular innate immunity (Crohn’s disease) [8, 13–15].

For example, some genetic variations have been linked to
particular pathways and certain disease phenotypes. Vari-
ations in genes associated with autophagy, phagocytosis
or paneth cell failure, such as NOD2, IRGM, ATG16L1
or NCF4/NCF2 have been associated with segmental, ear-
ly-onset disease or structuring disease [16]. Mutations in
genes of the adaptive immune system, such as within the
interleukin (IL)-10 / IL-10 receptor signalling pathway
have been associated with a severe form of very early onset
IBD [17]. A further challenge nowadays is to bring in-
creasing knowledge about the role of intestinal microbiota
in IBD pathogenesis together with the observed genetic al-
terations in IBD patients on a functional level.

The odds of individual single nucleotide polymorphisms
(SNPs) on the risk of developing IBD have been charac-
terised in some detail in recent years, largely with odds ra-
tios only slightly over 1, indicating a rather mild clinical
effect. However, there is still very little knowledge on the
numbers and potential interplay of these mutations, and ul-
timately their impact on course of disease in patients with
IBD. Although there is robust knowledge on the preva-
lence of individual SNPs in patients with Crohn’s disease
and ulcerative colitis (or IBD overall) as compared with
healthy subjects, we know less about the quantity and com-
position of SNPs in patients with IBD, including the fre-
quency of patients carrying more than one SNP risk-al-
lele. However, understanding of the functional and clinical
consequences of the associated alleles is still an ongoing
process. Some association signals correspond to nonsyn-
onymous coding variations, but the majority of signals do
not. They involve noncoding genetic variations mainly re-
lated to changes in gene expression. Moreover, it has been
shown that many effects seem to be highly cell-type spe-
cific. The integration of genetic, transcriptomic and epige-
netic studies should lead to more insight into IBD patho-
genesis and new future treatment options [18].

A recent study by Cleynen et al. revealed that the genetic
risk score representing all known risk alleles for IBD
showed a strong association with the disease subpheno-
types defined in the Montreal classification system for
IBD. Said classification distinguishes IBD into three sub-
phenotypes: ulcerative colitis, colonic Crohn’s disease and
ileal Crohn’s disease. Furthermore, they found that disease
location is an intrinsic aspect of a patient’s disease, in part
genetically determined, and the major driver for changes in
disease behaviour over time [19].

Interestingly, in twin pair studies only a 40 to 50% con-
cordance in the onset of IBD was detected [20, 21]. On
the one hand, this clearly underlines the importance of ge-
netic susceptibility in the disease development. However,
on the other hand, this also represents a clear limitation in
the concept of a genetic cause of IBD and clearly points
to the (additional) involvement of other factors, such as
the intestinal microbiota and environmental factors, in IBD
pathogenesis. This latter aspect is also supported by the ob-
servation that similar genetic risk factors or risk gene pro-
files for Crohn’s disease, ulcerative colitis and other chron-
ic inflammatory or autoimmune diseases in one individual
result in the development of Crohn’s disease or ulcerative
colitis and in the other individual may result in the devel-

opment of another disease. Further, the fact that the risk in-
crease, namely the odds ratio, which is associated with a
large number of these genetic variations, is only about 1.2,
which means that having such a variant means the chance
of developing this disease is only 20% higher than for any-
body who is not carrying this particular risk variant. One
the one hand, this demonstrates that many people who are
carrying those risk genes are healthy, or at least not affect-
ed by such a disease. On the other hand, it means also that
genetic testing is not likely to be useful for diagnosis of
IBD, even though there is an increasing market for this ap-
proach.

Epigenetics in inflammatory bowel disease

Principles of epigenetic mechanisms
The term “epigenetics” was introduced in 1942 by
Waddington to explain how a phenotype might be pro-
duced by interaction between genes and their environment
[22]. The modern definition refers to heritable alternations
of gene expression events that are caused independently of
genetic information carried by the primary DNA sequence
[23]. The main epigenetic mechanisms controlling gene
expression include DNA methylation, histone modification
that modulates chromatin structure, micro RNA (miRNA)
interference that regulates posttranscriptional steps, and
positioning of nucleosomes [24]. By controlling patterns
of gene expression, epigenetic mechanisms are involved
in correct cell development, differentiation, function and
homeostasis. In addition, all mentioned mechanisms are
influenced by exposure to environmental factors, persists
through mitosis and meiosis, and, more importantly, can be
reversed [25, 26]. It was proposed more than a decade ago
that epigenetic regulation of gene expression might play
a role in development and regulation of IBD [10]. Today,
several publications suggest that epigenetic mechanisms
might help us to classify and diagnose patients, improve
our understanding of IBD and, more importantly, provide
new treatment opportunities.

In the process of DNA methylation a methyl group is co-
valently added to 5′ carbon of cytosines that are part of
cytosine-guanine dinucleotides (CpG) [27]. Full methyla-
tion occurs when cytosine residues on both DNA strands
are methylated [28]. Representing less than 1% of all dinu-
cleotides, CpG dinucleotides are rather rare in the genome,
but are often concentrated in particular regions of the
genome called “CpG islands”. CpG islands are typically,
but not exclusively, associated with gene promoters or first
exons of approximately two thirds of all genes [29]. CpG
islands are mainly protected from methylation and remain
unmethylated, whereas in other regions of the genome,
CpGs are hypermethylated [30]. DNA methylation is catal-
ysed by so-called DNA methyltransferases (DNMTs).
Based on protein sequence homology, the DNMT protein
family consisted initially of five members: DNMT1, DN-
MT2, DNMT3A, DNMT3B, DNMT3L [31]. After it was
recognised that DNMT2 methylates RNA and DNMT3L
lacks 5-cytosine-methyl-transferase activity, DNTM’s
were subdivided into those maintaining DNA methylation
patterns (DNMT1) and de novo methylating DNMTs (DN-
MT3A, DNMT3B) [32]. In general, hypermethylation of
CpG islands in regulatory genetic elements such as pro-
moters is transcriptionally repressive and leads to gene si-
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lencing [33]. Recently, the so-called ten-eleven transloca-
tion (TET) family of enzymes have been identified and
proven to oxidise 5-hydroxymethylcytosine, which is a
crucial step in the demethylation of previously methylated
DNA regions [34].

An additional level of epigenetic regulation of gene ex-
pression is achieved with the process of posttranslational
histone modifications. In eukaryotic cells, genomic DNA
is wrapped around eight core histone proteins (two mol-
ecules of each H2A, H2B, H3B and H4 histone) to form
a nucleosome, a basic subunit of chromatin. DNA com-
paction in chromatin is one of the most important mecha-
nisms regulating gene expression. Chromatin that is loose-
ly packed with lightly attached DNA, which favours active
transcription of genes, is called euchromatin. In contrast,
highly compacted heterochromatin is transcriptionally
silent owing to limited accessibility by transcription fac-
tors. Posttranslational histone modifications occur mainly
in histone tails and include acetylation, methylation, ubiq-
uitination, phosphorylation, sumoylation and citrulination
[35].

Histone acetylation, the addition of acetyl groups to lysine
residues of histone is catalysed by histone acetyltransferas-
es (HATs). Removal of acetyl groups is performed by his-
tone deacetylases (HDACs). In general, chromatin opening
during histone acetylation is associated with transcription-
al gene activity, whereas increased activity of HDACs and
histone deacetylation causes hypoacetylation, chromatin
compacting and gene silencing (fig. 1) [36].

In contrast to methylation of cytosine residues in DNA,
which leads to transcriptional repression, histone methyla-
tion by histone methyltransferases (HMTs) can be associ-
ated with either repression or active transcription [37]. The
outcome depends on the position of targeted amino acid,

the type of residues involved (arginine vs lysine) and the
degree of methylation [30]. For example, methylation of
lysine (K) in position 4, 36 and 79 of H3 is found in open
chromatin whereas closed heterochromatin is enriched in
methylation of H3K9 and H3K27.

In summary, it is becoming more and more clear that the
epigenetic mechanisms that regulate gene expression are
not separate but rather connected in such a way that DNA
methylation may influence histone modification and vice
versa [38].

Epigenetic modifications in IBD
In the first study trying to understand epigenetic mech-
anisms in IBD, Gloria et al. showed that, as compared
with healthy controls, rectal mucosa from ulcerative colitis
patients was characterised by global hypomethylation. A
similar DNA global hypomethylation profile was observed
in patients with active, inflamed ulcerative colitis as com-
pared with patients with inactive ulcerative colitis [39].
In IBD, it has been demonstrated that local inflammation
increases colonic epithelial cell turnover and accelerates
DNA methylation changes [40]. Increased DNA methyla-
tion may result in genetic instability that leads to cancer
development. As candidate genes referred to carcinogene-
sis are known, epigenetic changes could be easily investi-
gated. That is the reason why the first DNA methylation
studies were mainly focused on IBD related cancer devel-
opment.

Genes that were already associated with carcinogenesis,
namely CDKN2a/p16INK4A, CDKN2a/p14ARF, CDH1,
MLH1, HPP1 and MYOD1 have been found differentially
methylated in colonic mucosa from ulcerative colitis pa-
tients with dysplasia and/or carcinoma as compared with
quiescent mucosa from the same patients [41–45]. Inter-

Figure 1: Epigenetic regulation of gene expression – histone acetylation. Cells in the gastrointestinal track are exposed to several envi-
ronmental factors, dietary antigens, intestinal microbiota and microbiota derived-metabolites that may modulate epigenetic machinery. In the
steady state, there is a balance between acetylation and deacetylation. Increased activity of histone deacetylases (HDACs) leads to higher hi-
stone deacetylation, which causes formation of heterochromatin and silences gene expression. On the other hand, treatment with HDAC in-
hibitors decreases HDAC activity and restores balance between acetylation and deacetylation in the cell, allowing genes to be transcribed.
HAT = histone acetyltransferase
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estingly, as a consequence of hypermethylation lower lev-
els of CDH1, encoding cell adhesion molecule E-cadherin,
and MLH1 were observed in immunohistochemical stains
of gut tissue [46].

Later, the research focus was directed to a potential role
of epigenetic regulation events in IBD pathogenesis itself.
GWAS analysis revealed an association between IBD and
polymorphisms in a gene encoding an enzyme responsible
for establishment of DNA methylation – DNMT3a [47].
Moreover, as compared with uninflamed paired samples,
in inflamed mucosa from ulcerative colitis patients, higher
levels of expression of DNMT1 and DNMT3b were report-
ed [48]. Increased interest in the role of DNA methylation
in the pathogenesis of IBD was followed with the develop-
ment of advanced platform-based DNA methylation array
technologies, which shifted interest from single, candidate
gene approaches to broad, general methylation analysis.

Epigenome-wide methylation association studies (EWAS)
were initially performed using peripheral blood. Nimmo
et al. reported a methylation profile that is characteristic
for Crohn’s disease, with 50 significantly altered methyla-
tion sites in Crohn’s disease patients compared with con-
trols [49]. Differences in methylation were observed in
genes important for immune responses, such as IL21R,
S100A13, FASLG, MAPK13, RIPK3 or PRF1. Use of pe-
ripheral blood as a material to investigate IBD-related
methylation changes was questioned by a study where pe-
ripheral blood mononuclear cells (PBMCs) from monozy-
gotic twins and IBD patients did not showed differentially
methylated genes with exception of hypermethylation of a
locus of TEPP gene (which has no clear relevance in IBD
pathogenesis) [50].

Obviously more relevant for IBD research are tissue-spe-
cific variations in DNA methylation. In an EWAS study us-
ing whole tissue intestinal biopsy specimens from monozy-
gotic twins, Hasler et al. were able to identify 61
differently methylated loci, including several loci responsi-
ble for regulation of immune responses. Interestingly, dif-
ferently methylated loci were later validated in other co-
horts and showed differentially expressed transcripts (CFI,
FLNA, HKDC1, IGHG1, MT1H, PTN, SLC7A7, SPINK4,
THY1, TK1) [51]. A nice example of a gene whose pro-
motor region is hypermethylated and whose corresponding
transcript is downregulated in the rectal mucosa of ulcera-
tive colitis patients without differences in methylation pro-
file in circulating leucocytes, is BRINP3 [52]. As BRINP3
was never identified in GWAS studies, it also serves as per-
fect example that epigenetic studies can identify new genes
relevant for IBD pathogenesis.

In a very interesting study, Cooke et al. compared DNA
methylation profiles in isolated intestinal epithelial cells
from inflamed and uninflamed rectal biopsies from ulcer-
ative colitis and Crohn’s disease patients [53]. Differen-
tially methylated genes identified during this study had al-
ready been reported in other EWAS [49] and as Crohn’s
disease-associated (TAP1, IL8RP, PKLR, PTFR) or ulcer-
ative colitis-associated (ICAM3, CDH1, CARD9, IL8RB,
IL8RA) susceptibility genes in GWAS as well [54].

The comparison between different studies investigating the
role of epigenetic mechanisms in IBD is difficult, as the
main problem is reproducibility and lack of consistency
regarding the type of tissue analysed (PBMCs, epithelial

cells, biopsies), controls (healthy controls, unaffected tis-
sue from the same patient) and heterogeneity of the
analysed population. As the methylome signature is spe-
cific for a given cell type, changes in cell proportions in
tissues due to inflammation might mimic true epigenetic
changes and lead to a false understanding of the whole
process. Despite the use of statistical algorithms for es-
timating cell proportions in tissues, methylation profiles
should ideally be studied in sorted cell populations to allow
proper conclusions about real epigenetic changes.

Methylation and acetylation events of histones have been
studied in IBD to a lesser extent. In dextran sulphate sodi-
um (DSS) and 2,4-trinitrobenzene sulfonic acid (TNBS)
induced experimental rat models of colitis, histone acety-
lation was observed in colonic tissues [55]. In this study,
an increase in histone 4 acetylation on lysine (K8 and K12)
was reported in inflamed mucosa as compared with unin-
flamed mucosa. Identical pattern of acetylation were con-
firmed in biopsies from patients with Crohn’s disease [55].
However, most of our understanding of histone modifica-
tions and their influence on IBD pathogenesis come from
the use of HDAC inhibitors and might be therefore some-
how artificial.

Administration of HDAC inhibitors in DSS and TNBS-in-
duced experimental colitis reduces disease severity and ex-
pression of pro-inflammatory cytokines [56]. Additionally,
inhibition of HDAC9 prevents colitis in mice as a result of
increased development and suppressive T regulatory cell
(Treg) function [57]. HATs and HDACs do not act exclu-
sively on histones, but can modulate acetylation of non-hi-
stone proteins including p53, STAT3 (signal transducer and
activator of transcription-3) or NFκB (nuclear factor kappa
B) [58].

Interestingly, short-chain fatty acids (SCFAs), bacterial
metabolites that are formed as result of anaerobic fermen-
tation of dietary fibre, possess HDAC inhibitory activity
[59, 60]. Many bacteria from the Firmicutes and Bac-
teroides genera secret SCFAs (acetate, propionate, bu-
tyrate) at high concentration [61] and reduced numbers of
bacteria that produce SCFAs have been reported in pa-
tients with IBD [62]. Conversely, application of Roseburia,
a bacterium that is able to produce butyrate, showed posi-
tive effects on ulcerative colitis treatment [63, 64]. Possi-
ble mechanisms of action involve generation of Tregs from
naïve CD4+ T cells. In an experimental setup, butyrate led
to increased histone H3 acetylation within Foxp3 loci, the
key transcription factor required for Treg cell differenti-
ation [59, 60]. In addition, butyrate might modulate the
function of intestinal macrophages [65]. Lipopolysaccha-
ride-induced secretion of proinflammatory mediators such
as IL-12 and IL-6, but not of tumour necrosis factor-al-
pha or monocyte chemoattractant protein-1 (MCP-1), was
downregulated after treatment of macrophages with bu-
tyrate. As intestinal macrophages are the most abundant
cells in lamina propria, bacterial-derived butyrate induces
macrophages hyporesponsiveness and maintains tolerance.

The potential role of gut microbiota in the development of
IBD, as well as of dysbiosis in gut microbiota composition
in IBD patients, have been reported [66]. However, there
is more and more evidence suggesting that, via epigenetic
regulation of gene expression, commensal microbiota may
play a beneficial role in IBD treatment.
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Conclusion

Current knowledge about genetic and epigenetic involve-
ment in IBD pathogenesis is still poor. Since the identifica-
tion of the first IBD risk gene, NOD2 in 2001, GWAS have
unravelled 240 risk gene loci involved in IBD pathogen-
esis, and many of them are involved in regulating innate
and adaptive immune responses or intestinal barrier func-
tion. This strongly emphasises that, in addition to genet-
ic alterations, the intestinal microbiota and environmental
factors also play a critical role in IBD pathogenesis. How-
ever, there is still only a little knowledge about the direct
consequences of the identified SNPs for IBD pathogenesis
and human physiology overall, since the functional conse-
quences of those genetic variations in vivo are often still
unknown.

Even less information is available about the role for epi-
genetic modifications in IBD patients and their impact on
IBD pathogenesis. EWAS and other approaches detected
a number of epigenetic events that might be causatively
involved in the onset of IBD, but our knowledge about
the functional relevance of those epigenetic modifications
is still scarce. This however opens up a broad research
field that might help to obtain crucial novel insights into
the pathophysiology of intestinal and chronic inflammato-
ry disease. Specific patterns of DNA methylation and his-
tone modifications might serve not only as biomarkers for
disease activity or disease course, but also as new targets
for therapeutic interventions in IBD patients. So it will be
important to further unravel and elucidate the exact func-
tional consequences of genetic and epigenetic alterations in
IBD pathogenesis to pave the road for the development of
novel therapeutic strategies.

Search strategy and selection criteria
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es of PubMed with the search terms genetics, epigenetics,
IBD susceptibility genes, IBD risk genes as well as IBD
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Only papers published in English were reviewed. The final
reference list was generated on the basis of originality and
relevance to the broad scope of this review.
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