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Summary

The exact pathophysiology of inflammatory bowel disease
(IBD) is still unknown. However, over the years important
insights allowed the development of novel therapeutic ap-
proaches that are at the threshold of introduction into
clinical practice, or at least in clinical trials. After being
first described by Burrill B. Crohn, Crohn’s disease, one
of the two major forms of IBD, was perceived as an in-
fectious disease. When the concept of autoimmune dis-
eases was formulated, Crohn’s disease and ulcerative col-
itis were thought to be members of this disease group. T
cells certainly contribute to the chronification of the intesti-
nal inflammation and targeting T cell migration has been
introduced some years ago as a successful therapeutic
approach in IBD. Despite the development of successful
therapy based on this pathophysiological concept, IBD is
no longer seen as a typical autoimmune disease. After the
millennium, genome wide association studies on genet-
ic variants and risk factors in these polygenetic diseases
have told us a lot about pathogenetic pathways. Howev-
er, genetic susceptibility explains only up to one third of
the cases. Environmental factors also must play a role.
Those environmental factors may “transfer” their disease-
promoting potential into pathophysiological pathways with
the intestinal microbiota as mediator. Hence, the intesti-
nal microbiota has gained much attention as an impor-
tant factor in disease development. Microbial factors, as
well as other direct environmental influences, have been
shown to affect epigenetic signatures, intestinal epithelial
cells and the innate immune system, providing another im-
portant concept on how these diseases originate and can
cause repeated flares at the same gut segments even af-
ter years of remission and after intermediate complete mu-
cosal healing.
Current pathophysiological concepts of IBD not only help
us to better understand these diseases and develop new
therapies. They also illustrate the evolution of basic sci-
entific concepts over time and that sometimes partially or
even largely abandoned concepts persistently influence
out current thinking/clinical practice.
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Introduction

Inflammatory bowel diseases (IBDs) are chronic, relapsing
inflammatory disorders of the intestinal tract usually start-
ing in young adults and potentially causing a life-long bur-
den and reduction of quality of life for the patients. There
are approximately 12,000–15,000 adult cases in Switzer-
land. Data from the Swiss IBD cohort study (SIBDCS)
suggest that (consistent with the majority of global epi-
demiological investigations [1]) the overall incidence is in-
creasing [2]. Worldwide, over 2.5 million people of Eu-
ropean ancestry are affected [3–7]. Increasingly, IBD is
diagnosed in countries where it was almost absent 20 years
ago, such as in Asia [8].
Crohn’s disease may occur anywhere in the gut from the
mouth to the anus. It is an often segmental but transmural
inflammation of the gut wall. Inflammation in Crohn’s dis-
ease may trigger fibrosis [9, 10] or fistula formation [11,
12]. Currently, despite recent advances in medical treat-
ment options, up to 80% of the patients must undergo at
least one surgical removal of an intestinal segment [13,
14]. In contrast, ulcerative colitis affects only the large
bowel, always starting with highest activity in the rectum.
It may be associated with high numbers of bloody bowel
movements per day and has a huge impact on quality of life
– up to 10 to 15% of patients will ultimately need colecto-
my [15, 16]. However, numbers seem to be decreasing.
Due to the associated severe morbidity and – at least for
many patients with more severe disease – unsatisfactory
treatment options available, research on IBD pathogenesis
and factors triggering disease flares is currently intense.
In addition, IBD has become a “prototype disease group”
for chronic autoinflammatory disorders with a polygenic
background and important multifaceted, environmental
triggers.
There is clear evidence that environmental factors must
contribute to both disease pathogenesis and disease flares
[17–20]. The genetic risk factors have not changed over
hundreds or thousands of years, but the disease incidence
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and prevalence is still increasing as outlined above. Almost
absent as a disease until 100 years ago, IBD now affects
millions, including non-Caucasians, in whom the disease
had been exceedingly rare – clearly indicating environ-
mental influences. These environmental factors may either
directly affect the gut or may mediate their effects via
the intestinal microbiota [18]. Those effects may not only
be immediate and direct. Epigenetic changes, for instance,
may impact the intestinal ecosystem months and years
after the environmental influence that caused the epige-
netic alterations was present. But classical environmental
factors, such as exposure to antibiotics with regards to mi-
crobial composition, may also exert an influence that is
much more sustained than originally expected [21, 22].
Thus, IBD is a disease group par excellence from which
to learn about the important interactions between genetics/
genetic risk factors, environmental influences and “in-vi-
ronmental” factors, for example, the intestinal microbiota
[18]. Despite the numerous genetic factors identified, it
turns out that a limited number of main pathways are af-
fected. Some of these important pathways will be dis-
cussed in the following paragraphs.
Pathophysiological insights obtained from IBD research
are now being translated into other chronic inflammatory
diseases such as arthritis, asthma or diabetes. This increas-
es the value of results obtained in the IBD field. However,
there are multiple gaps in our knowledge of the factors in-
fluencing disease progression and development of compli-
cations, which are responsible for a large part of the dis-
ease burden along the course of the diseases.

What to learn from history: historical facts
and their role for current pathophysiological
concepts in IBD

Crohn’s disease as a disease entity was described by Burrill
B. Crohn, Leon Ginzburg and Gordon D. Oppenheimer
in New York in 1932 as regional ileitis and later named
after Crohn (an impressive example of how a surname’s
place in the alphabet may affect future recognition – at
that time, alphabetic order determined positioning of co-
authors) [23]. However, Crohn and colleagues were not the
first to report this disease pattern: previous reports by other
authors had been ignored or neglected in the medical-sci-
entific community. This was described in detail by Crohn
himself in the 1940s [24–26]. There were several reasons
why Crohn's disease was named after Burrill B. Crohn on
the basis of the above-mentioned publications, and the dis-
ease aroused medical-scientific interest. Some are still rel-
evant for the disease concepts today.
In the 1920s, it became very popular to group patients
with similar symptoms into disease entities and try to cat-
egorise symptoms. The concept of disease, as we know
it today, evolved at the beginning of the 20th century. It
became common to systematically record clinical symp-
toms that were similar and to define them as a syndrome or
new disease. It was a transformation of the concept of dis-
ease, in which the enormous influence of the causal con-
cepts of microbiology played a major role. The 1920s and
1930s were the heyday of microbiology. Many new dis-
eases were based on the finding of a causative bacteria.
Therefore, Burrill B. Crohn was initially convinced that re-
gional ileitis or Crohn’s disease was caused by a microbi-

ological agent, Mycobacterium avium subsp. paratubercu-
losis (MAP). Crohn’s first manuscripts came to this con-
clusion by an analogy. He found that the so-called Johne’s
disease in cattle has many similarities with the human
ileitis terminalis in terms of anatomical changes and his-
tological findings. Based on these similarities and analo-
gies, he concluded that both diseases – Johne’s disease in
cattle and regional ileitis in humans – must have the same
trigger. In the context of the “microbiological revolution”
mentioned above, it indeed was shown that MAP causes
John’s disease in cattle.
Despite unsuccessful attempts to detect Mycobacterium
avium in patients with Crohn’s disease, this hypothesis
was maintained over the years and there is still a com-
munity of gastroenterologists that strongly believes in this
pathophysiological hypothesis [27, 28]. The tissue of the
terminal ileum of affected patients with Crohn’s disease
was homogenised and inoculated into guinea pigs or rab-
bits. Although this led to signs of disease of the respective
species in other diseases with a microbiological, that is,
bacterial, origin, there were no signs of disease in the ani-
mals for Crohn’s disease. The experiment thus contradict-
ed the infection hypothesis. Nevertheless, antibiotics were
tested as a therapy for Crohn’s disease and ulcerative col-
itis based on this hypothesis. And some of them proved to
have some benefit for the patients.
The other reason why Crohn’s description of the disease
was picked up was its prevalence. At that time, its inci-
dence and prevalence started to rise, so that many doctors
had seen patients with similar symptoms. This indicates
that indeed there was a change of (environmental) condi-
tions that triggered disease onset in an increasing number
of patients. MAP has been around for centuries. It is hard
to believe that it would suddenly cause an “epidemic”. On
the other hand, the genetic signature of the population has
not changed within decades making a “gene” as the cause
of those “new” diseases rather unlikely.

The “immunological concept” of IBD patholo-
gy

The concept of autoimmune diseases was introduced into
medicine 25 or 30 years ago. Immunology was one of the
most successful biomedical sciences at that time [29–31].
According to the basic hypothesis, excessive or uncon-
trolled activation of the adaptive immune system (e.g., T
cells and B cells) can lead to uncontrolled and chronic in-
flammation. Numerous publications deal with T cell sub-
populations and adaptive immunity in chronic inflamma-
tory bowel diseases [32–34]. The role of T cells has been
studied extensively in animal models. The absence of reg-
ulatory T cells (FoxP3 positive cells) leads to the onset
of colitis [35–37]. This led to concepts that suggest the
adoptive transfer of regulatory T cells in patients with se-
vere and refractory IBD [35]. In addition, it is well known
that colitis can be induced via T cell costimulatory mole-
cules [38, 39]. The activation of T cells is used in cancer
therapy today (e.g., anti-CTLA4 antibodies, ipilimumab or
programmed cell death protein 1 [PD1] and programmed
death-ligand 1 [PDL-1] antibodies such as nivolumab and
pembrolizumab) [40]. An important side effect of such
therapies is the induction of “immune-mediated colitis” in
melanoma or adenocarcinoma patients [41–43]. To some
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extent, this is proof of the concept that adaptive immune
cells contribute to the pathogenesis of IBD. Therapeutic
principles that are established in IBD (such as systemic
steroids and anti-tumour necrosis factor antibodies such as
infliximab) are now successfully used to treat this immune-
mediated colitis [44–47]. Interestingly, whether or not a
patient will develop immune-mediated colitis as a side ef-
fect of tumour therapy seems to be dependent on the com-
position of the intestinal microbiota [48]. This points to an
important role of the microbiota composition in the local
activation of mucosal T cells – an aspect of IBD patho-
physiology that will be discussed in more detail later.
T cells usually do not proliferate in the mucosa. They in-
vade from the circulation to contribute to mucosal inflam-
mation. Insights into the pathophysiological role of T cells,
generated the idea to inhibit their migration to the site of
tissue inflammation. Vedolizumab specifically inhibits the
interaction between alpha4/beta7 integrin on lymphocytes
and mucosal vascular addressin cell adhesion molecule 1
(MAdCAM), which is almost exclusively expressed on en-
dothelial cells in the gut. This approach has now been suc-
cessfully introduced into clinical routine [49–53].
IBD is no longer seen as a classic autoimmune disease be-
cause most likely the antigens against which the adaptive
immune system is primed originate from the intestinal mi-
crobiota. Furthermore, “autoimmune disease” implies an
over-reactive, hyper-stimulated immune system, whereas
rather the opposite appears to be a primary factor in the
pathogenesis of IBD. Several of the hitherto established
IBD risk single nucleotide polymorphisms code for genes
involved in microbial defence (see below). The latter, in
conjunction with the increase of microbes in the deeper
layer of the mucus directly above the mucosal layer or even
having penetrated the mucosal barrier in patients with IBD,
indicates that activation in inflammatory pathways rather
represents a secondary response due to initially impaired
defence mechanisms. Nevertheless, the autoimmune dis-
ease concept has generated important insights that led to
improvements of therapy.

Genetic factors contributing to IBD pathogen-
esis

In older twin pair studies, 40 to 50% concordance of
Crohn’s disease has been observed [54, 55]. The fact that
even monozygotic twins have a concordance of less than
50% again indicates the important role of environmental
factors in IBD pathogenesis. On the other hand, it clearly
shows that genetic risk factors have an important role in
disease onset. With the technique of genome-wide asso-
ciation studies (GWAS), those genetic risk factors could
be detected. The first genetic risk factor identified to con-
tribute to Crohn’s disease were variants in the nucleotide-
binding oligomerisation domain protein 2 (NOD2) DNA
in 2001 [56–59]. NOD2 is a pattern recognition receptor
mainly expressed in cells of the innate immune system
as well as in intestinal epithelial cells, binding muramyl
dipeptide, which is a component of the bacterial cell wall.
NOD2 variants that are associated with increased suscep-
tibility to develop Crohn’s disease show impaired or de-
ficient recognition of these bacterial wall products, again
pointing to the importance of the microbiota for the patho-
genesis of IBD. In the meantime, more than 250 genetic

risk factor have been identified [60, 61]. There are many
shared genetic risk factors with other autoinflammatory
diseases, such as lupus erythematosus, rheumatoid arthri-
tis, psoriasis or type I diabetes [60]. There is also a large
overlap between ulcerative colitis and Crohn’s disease with
respect to genetic risk factors. This tells us that, based on
the same genetic risk profile of an individual, different dis-
eases may finally develop – again pointing to an addition-
al role of environmental factors. The risk increases (odds
ratios) associated with many of those genetic variants are
only 1.2, meaning that the chance to get the disease is only
20% higher than normal having such a risk factors. In addi-
tion, it usually means that many healthy people or at least
persons who are not affected by the specific diseases car-
ry such risk factors. This is the reason why determining
genetic risk factors cannot be used for diagnosis or even
disease risk estimation. We learned a great deal about the
pathophysiological pathways involved from genetic find-
ings. However, the whole effort so far has not translated in-
to clinical developments.
Nevertheless, the concept of risk genes has spread to the
population. 23andme is the story of a great commercial
success (“Find out what your DNA says about you and
your family”) on a very dubious ethical and scientific ba-
sis.

A crucial role for environmental factors in the
pathogenesis of IBD

There is abundant evidence that in IBD, as in other chronic
inflammatory diseases, environmental factors play an im-
portant role, for both disease onset and disease course (on-
set and duration of disease flares) [17–19, 62–64]. The risk
of developing IBD and the subsequent disease behaviour
in children of immigrants from low-incidence areas (Asia)
coming to high-incidence areas (western Europe) is simi-
lar to that of the indigenous western population [65–67].
Living in an “urban environment” is a confirmed risk fac-
tor for IBD [68]. An increased prevalence of IBD in ur-
ban environments has been documented in Switzerland al-
so [17]. It is obvious that research into these environmental
factors causing or influencing IBD is important as, in con-
trast to the genetic risk factors, they can be changed or at
least modulated. The prevention of environmentally trig-
gered disease flares would be most relevant for IBD pa-
tients.
Unfortunately, reliable data on distinct environmental fac-
tors are limited. Only a few environmental factors influ-
encing IBD disease course are unequivocally relevant [17].
Probably the best investigated environmental factor influ-
encing IBD disease courses is smoking. Active smoking
worsens the course of Crohn’s disease [69–73]. In Switzer-
land, twice as many patients with Crohn’s disease are ac-
tive smokers compared with ulcerative colitis [74]. In
striking contrast to the general population, significantly
more women than men with Crohn’s disease smoke (42.8
vs 35.8%, p = 0.025) [74]. Despite the well-established
negative effects on the disease course, smoking rates in
Crohn’s disease are alarmingly high, especially in female
patients. Interestingly, smoking affects the colonic micro-
biota, providing a further link between the environment
and the “in-vironment” [75, 76].
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Other environmental factors that have been associated with
clinical presentation or risk of inflammatory flares, as well
as increased incidence, are diet and food additives [77–81].
Diet also may mediate its effects via the microbiota com-
position. Oral contraceptives and nonsteroidal anti-inflam-
matory drugs are the two main classes of frequently taken
drugs that have been attributed to have potential to cause
flares of the disease [17, 82–86].
Specific food additives such as titanium dioxide [87] or
emulsifiers [77] also may contribute to the disease course
as they impair the intestinal barrier function and allow bac-
teria to get into contact with intestinal epithelial cells that
are normally protected by the mucosal mucus layer.

The important role of the intestinal microbiota

The important role of the intestinal microbiota for the
pathogenesis of IBD has been mentioned several times in
other paragraphs. Evidence for a crucial role of the mi-
crobiota in IBD pathogenesis comes from several fields.
In animal models of colitis, inflammation is prevented by
germ-free conditions [88, 89]. Surgical diversion of the
faecal stream is followed by improvement of inflammation
in many patients with recurrence after restoration of the in-
testinal faecal stream [90, 91]. Several probiotics (such as
Escherichia coli Nissle 1917) have shown efficacy in the
treatment or the prophylaxis of flares in ulcerative colitis
[92–94].
In addition, in recent years many authors confirmed an al-
teration of the intestinal microbiota in patients with IBD
[95–101]. The changes found are generally referred to as
“dysbiosis” or “reduced diversity”. It is unclear whether a
reduction of specific bacterial strains such as Faecalibac-
terium prausnici is just an epiphenomenon or has indeed
pathophysiological relevance. Unfortunately, most studies
so far have analysed the microbiome with 16s-RNA gene
sequencing. This allows only a rather crude estimation of
the real changes occurring in the patients. In addition, the
alterations are usually detected in patients with inflamma-
tion that itself may contribute to the observed changes.
The technique that has allowed the study of the intestinal
microbiota composition is called high-throughput sequenc-
ing or pyrosequencing. It allows the analysis of 100,000 or
500,000 different DNA sequences of bacteria of the intesti-
nal flora within a few hours. In order to process the ob-
tained information, the latest computer technology is nec-
essary.
The pathophysiological concepts, for Crohn’s disease at
least, have now somehow returned to the point of origin.
Now it is not a single bacterium that causes the disease as
an infectious agent, but a dysbalance of the entire intestinal
flora, which leads to an activation of the immune system.
It appears that interesting disease concepts are never com-
pletely abandoned, but return in modifications.

How epigenetic changes are involved in IBD
pathogenesis

An important question has always puzzled investigators
working on the pathogenesis of IBD: why is it possible that
in Crohn’s disease the intestinal mucosa can be complete-
ly normal and healed for years and then the inflammation
reappears at exactly the same location? Why can Crohn’s
disease reoccur at a site where the involved area has been

resected? How can a “disease memory” in the mucosa be
explained? How can it happen that environmental influ-
ences act on the intestinal mucosa and the disease onsets
years after this influence is gone (in the case of smoking)?
The concept of epigenetic imprinting might give an answer
to all these open questions and an explanation why there
is a “disease memory” in certain areas of the gut wall. In
fact, recent data provide significant evidence that epigenet-
ic alterations also in healthy persons occur during lifetime.
In patients with IBD, specific methylation patterns have
been described [102–105]. Nimmo and co-workers report-
ed a methylation profile that was found to be characteris-
tic for Crohn’s disease of the terminal ileum [104]. In their
analysis they found 1117 methylation sites to be differen-
tially methylated, of which 50 showed significantly altered
methylation in cases compared with controls [104]. There
were distinct pathways that had an enrichment of differ-
ences in methylation that had been associated with the
pathogenesis of IBD before, including genes relevant in
the adaptive and innate immune system such as MAPK13,
FASLG, PRF1, S100A13, RIPK3 and IL-21R [104]. Inter-
estingly, the authors also found a significant, 8.6-fold en-
richment of methylation changes near GWAS loci of genet-
ic risk factors of IBD [104]. Furthermore, certain compli-
cations such as fibrosis and strictures seem to be associated
with a specific methylation pattern and subsequently with
epigenetic modifications [102].

Which common pathways may be important?

GWAS analyses and epigenetic profiling gave us insights
into the genetic/epigenetic risk factors relevant in the
pathogenesis of IBD. Many of them play a role in the
recognition of and the response to the intestinal microbio-
ta. In these defence pathways bacterial sensing, intestinal
barrier regulating proteins and autophagy associated pro-
teins, as well as cell stress and hypoxia stress response
genes, play an important role [106–111]. Autophagy is an
intracellular clearance system that leads to the degradation
of intracellular debris such as misfolded proteins or invad-
ing bacteria [112]. Autophagy plays an important role in
host defences against many bacteria, viruses and parasites
[112] and for the maintenance of intestinal homeostasis.
For many of the genetic variants and differentially methy-
lated genes, however, the function and their role in IBD
pathogenesis has not clearly been elucidated.
Interestingly some of the intracellular pathways in which
the risk genes are involved are interconnected. Variants
in the protein tyrosine phosphatase, non-receptor type 22
(PTPN22), for example, have been shown to be a risk
factor for many autoinflammatory diseases such as IBD,
rheumatoid arthritis, systemic lupus erythematosus or pso-
riasis. We recently demonstrated that this enzyme regulates
NOD2-induced cytokine release, thereby modulating the
response to the microbiota, as well as autophagy [113].
Further, PTPN22 controls the phosphorylation of NALP3,
a protein of the inflammasome complex involved in inter-
leukin-1beta and interleukin-18 secretion and subsequently
activation of the inflammasome [114, 115]. NALP3 itself
has been identified to be a risk gene for Crohn’s disease.
Another protein tyrosine phosphatase, PTPN2, also regu-
lates the NLRP3 inflammasome (Cell reports, in press).
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Figure 1: Current hypothesis of IBD pathogenesis. Intestinal microbiota, environmental factors and food antigens either cause a leaky barrier
or penetrate through a barrier leak into deeper, submucosal tissue layers. In the genetically susceptible host, epigenetic modifications, and a
dysregulation of the innate and adaptive immune response occurs. This finally manifests an intestinal inflammation.

Another interesting field in which pathways converge is
the regulation of tissue pH. Tissue pH is altered by inflam-
mation as well as during hypoxia. A G-protein coupled pH
sensing receptor of the GPR4 family, TDAG8, also has
been identified to be a risk variant for Crohn’s disease in
GWAS analyses. Hypoxia and inflammation are linked on
many levels and influence each other [116]. Hypoxia al-
so decreases the local pH in the mucosal tissue [117]. We
recently reported that deletions of GPR4 or OGR1 protect
from DSS induced colitis or ameliorates colitis in IL-10/
pH receptor double knockout mice [118–120]. These pH
receptors also are involved in the regulation of the intesti-
nal barrier when activated [119]. Again we find a connec-
tion of the different pathophysiological relevant pathways
in the mucosa such as stress response, hypoxia and au-
tophagy [121].
Recently, we have seen first examples, that profound
mechanistic and basic science investigations may not only
improve our understanding on how and why IBD develops
in a previous healthy human gut but also may directly
support therapeutic decision making. For instance, an in-
depth analysis of microbial composition and functional
properties at baseline and during the administration of
vedolizumab treatment in patients with IBD in conjunction
with clinical data using sophisticated mathematical model-
ling revealed, that the functional microbial profile (includ-
ing an increase in butyrate producing microbes in respond-
ing Crohn’s disease patients) could be associated with ther-
apeutic response.
Elucidating these critical pathways (summarised in fig. 1)
and their role in IBD pathophysiology will help to develop
new therapeutic targets and treatments in the future.

Search strategy and selection criteria

References for this review were identified through search-
es of PubMed with the search terms “Crohn’s disease, ul-

cerative colitis, pathophysiology”, from 1938 until Sep-
tember, 2017. Articles were also identified through search-
es of the authors’ own files. Only papers published in
English were reviewed. The final reference list was gener-
ated on the basis of originality and relevance to the broad
scope of this review.
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