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Summary

The epithelial lining of the intestine is constantly exposed
to a hostile environment containing a mixture of gastric
acids, consumed harmful substances and microbes. It is
widely accepted that the intestine has multiple mecha-
nisms to protect itself against tissue damage. Here, we
review three cellular protection mechanisms that protect
intestinal tissue against accumulation of somatic muta-
tions: the conveyer belt-like structure, stem cell compe-
tition and crypt fusion. We highlight the events that can
perturb these cellular protection mechanisms, and their
impact on accumulation of new (oncogenic) mutations.
Lastly, we review the potential of in-vitro and intravital mi-
croscopy techniques to study the dynamics of these pro-
tection processes. These studies may identify new targets
that can be used to manipulate cellular protection mecha-
nisms in such a way that accumulation of new mutations
can be reduced. Importantly, reducing mutation accumula-
tion has the potential to delay aging, and the initiation and
progression of diseases such as colorectal cancer.
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Introduction

The lumen of the intestine is a hostile environment and
the intestinal epithelium is constantly challenged by intrin-
sic and extrinsic factors, such as gastric acids, consumed
harmful substances and pathogenic microbes. These chal-
lenges can result in damage, such as disruption of the ep-
ithelial lining and loss of stem cells. Under homeostatic
conditions the intestine has an impressive capacity to pro-
tect itself against tissue damage. The very dynamic nature
of the intestinal epithelium enables a fast regenerative re-
sponse that can maintain epithelial integrity. Here we re-
view how this dynamic nature of the intestinal epithelium
also results in three cellular protection mechanisms that
minimise the accumulation of new mutations in the intes-
tine, thereby protecting against aging and development of

colorectal cancer. In addition, we focus on challenges that
can perturb these protection mechanisms.

Cellular protection mechanism no. 1: conveyer
belt-like organisation

The vast majority of intestinal epithelial cells are
short-lived
One way the intestine protects itself against the accumula-
tion of mutations is by imposing a short lifetime on the vast
majority of intestinal cells. This is a result of the morphol-
ogy of the intestinal epithelium, which is a repetitive sheet
of crypt-villus units (fig. 1) [1]. Intestinal stem cells that
reside at the bottom of so-called crypts of Lieberkühn –
little invaginations into the intestinal epithelium – fuel the
fast turnover of the intestinal epithelium [1]. These stem
cells give rise to progenitor cells in the transit amplifying
compartment, located a bit higher up the crypt-villus-axis,
that subsequently differentiate into all specialised lineages
while traveling upwards along the villus in a conveyer belt-
like fashion (fig. 1) [1]. The differentiated cells in the villus
fulfil the physiological functions of the intestine, includ-
ing nutrient uptake by enterocytes, hormone production by
enteroendocrine cells and mucus production for protection
and lubrication by goblet cells. Upon arrival at the tip of
the villus, ~5 days after birth of the cells, differentiated
cells are shed into the lumen [1]. Only these short-lived
differentiated villus cells are exposed to the hazardous en-
vironment of the intestinal lumen [2]. Since they get shed
into the lumen within a week, any genomic damage that
occurs in these cells cannot manifest or be propagated. Of
note, the colonic epithelium does not contain villi, but does
function as a conveyer belt as differentiated cells are shed
at the surface of the colonic epithelium.

Long-lived intestinal stem cells can accumulate new
mutations
The small pool of long-lived stem cells that maintain the
epithelium are positioned in the intestinal crypts, away
from the lumen, which minimises possible harm to these
cells (fig. 1) [2]. The fact that these multipotent stem cells
can accommodate the fast turnover of the intestinal epithe-
lium has been known for decades [3]. However, their ex-
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act identity remained uncertain for a long time. Already
in the early 1970s, Cheng and Leblond identified the pro-
liferative crypt base columnar (CBC) cells residing at the
bottom of the crypt interspersed between Paneth cells [4].
However, their functional role as stem cells was only con-
firmed relatively recently, after leucine-rich repeat-con-
taining G protein-coupled receptor 5 (LGR5) was found
to mark these CBC stem cells [5]. Lineage tracing exper-
iments in which these cells are labelled with markers that
are inherited by daughter cells showed that LGR5+ CBC
cells give rise to all differentiated cell types present in the
intestine and that they can do so over prolonged periods of
time [5]. Moreover, when single LGR5+ cells are isolated
and placed in defined culture conditions, they can form mi-
ni-guts (organoids) that contain crypt-villus units and har-
bour all intestinal cell types [6]. Together, these findings
show that LGR5+ CBC cells are multipotent and have the
capacity to self-renew, indicating that these cells are bona
fide stem cells in the intestine.
Since the LGR5+ stem cells are long-lived, whereas the dif-
ferentiated cells in the intestine only have a short lifetime,
the LGR5+ stem cells are vulnerable to accumulation of
mutations in, for example, cancer driver genes. In 2009,
Barker et al. showed that LGR5+ stem cells can indeed

function as cells-of-origin for intestinal adenoma [7, 8].
Mice developed intestinal adenomas only when an Apc
mutation was introduced into the long-lived LGR5+ stem
cells, but not when the same mutation was introduced into
the short-lived differentiated cells. Thus, the fast turnover
of the intestine and its conveyer belt-like structure can pro-
tect against the accumulation of mutations in the vast ma-
jority of intestinal epithelial cells that are exposed to the
hazardous environment of the lumen. Only a small pool
of long-lived stem cells located at the bottom of shielded
crypts can accumulate damage and mutations, and there-
fore have the potential to act as cells-of-origin for intestinal
cancer.

The stem cell pool can be replenished upon tissue dam-
age
Under homeostatic conditions, the chance to accumulate
mutations depends on the lifetime of a cell, and this there-
fore happens, as discussed above, predominately in LGR5+

stem cells. However, a large body of work suggests the ex-
istence of a pool of “reserve” stem cells that are in a rela-
tive quiescent state and characterised by DNA label-reten-
tion [9] and the expression of Lrig1, Bmi1, mTert, Hopx
and Mex3a [10–15]. Since many of these proposed mark-

Figure 1: The cellular protection mechanisms against the accumulation of mutations. Cartoon of the crypt-villus units of the small intes-
tine. Shown are the three protection mechanisms: 1. conveyer belt-like structure, 2. stem cell competition and 3. crypt fusion.
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ers are enriched at the border of the stem cell niche, four
cell diameters from the crypt bottom (+4 position), these
cells are often referred to as +4 cells (fig. 1). However,
the identity and even the very existence of quiescent “re-
serve” stem cells have been controversial and heavily de-
bated [16]. It has been suggested that, instead of being ded-
icated reserve stem cells, +4 cells are progenitors that can
repopulate the LGR5+ stem cell pool through dedifferen-
tiation (for a review see [17]). This notion is supported by
lineage tracing experiments that showed that damage can
induce the reversion of committed progenitors to LGR5+

stem cells, including secretory progenitors [18, 19], ente-
rocyte precursors [20], Paneth cells [21] and a population
of goblet cells [22, 23]. This dedifferentiation is, at least in
part, mediated by chromatin remodelling, which can make
genomic regions important for stemness more accessible
[22]. The thought that there is no dedicated “reserve” stem
cell pool is further strengthened by two independent stud-
ies that showed that a key marker of the reserve stem cell
pool (Bmi1) actually marks mature enteroendocrine cells
and that these cells can be recalled into the stem cell com-
partment upon damage [22, 23]. Other studies showed that
the +4 markers do not mark a specific population of cells,
but are expressed in cells throughout the crypt, including in
LGR5+ stem cells [11, 13, 16, 24, 25]. These data indicate
that, similar to mammary tissue [26], the identity, behav-
iour and fate of cells cannot always be linked to a single
molecular profile or specific marker. Since cells are highly
plastic and can gain or lose stem cell traits, it may be better
to define a stem cell by its function than through markers.

Tissue damage drives progenitor dedifferentiation and
affects accumulation of mutations
Regardless of the identity or state of stem cells, the current
literature agrees on the existence of a pool of cells that
has the potential to replenish LGR5+ stem cells upon tissue
damage. Consequently, mutations that are acquired in cells
just above the stem cell zone can persist when these cells
revert back to a stem cell state, which prevents cells from
being transported to and lost at the tip of the villus. The ac-
tivation of NFκB signalling seems to be required for this
dedifferentiation [27, 28]. An activating mutation in the
proto-oncogene β-catenin in non-stem cells leads to ade-
noma formation only when NFκB signalling is simultane-
ously enhanced [27]. In addition, Apc mutations in Dclk1+

tuft cells do not induce tumourigenesis under homeostat-
ic conditions [29]. However, when NFκB signalling is en-
hanced by dextran sulphate sodium-induced colitis, APC
loss in tuft cells does lead to intestinal tumours [28]. Thus,
enhanced NFκB signalling may result in dedifferentiation
of committed progenitors, thereby unmasking oncogenic
events that can potentially lead to tumour initiation.
The route of cancer initiation via NFκB-induced dediffer-
entiation of committed progenitors may not be surprising.
In colorectal cancers, and also pancreatic and gastric carci-
nomas, this pathway is often activated by inflammation or
through mutations. NFkB signalling can, for instance, be
enhanced by activating mutations in Kras, which occur in
~40% of all human colorectal cancers [30]. In mice, simul-
taneous induction of β-catenin and Kras mutations with-
in differentiated villus cells induces the re-expression of
stem cell markers, and leads to dedifferentiation and stem
cell potential [27]. Moreover, in these mice lesions are of-

ten formed at the villus regions, suggesting that WNT and
KRAS-mediated dedifferentiation enables cells to function
as cells-of-origin [27]. This phenomenon may explain the
so-called “top-down” adenomas that are observed in the
clinic, where adenomas on the surface of the colorectal lu-
men form on top of “normal” looking crypts [31]. Howev-
er, it should be noted that these studies are predominantly
performed in mouse models, in which whole populations
of cells are transformed by oncogenic mutations. Future
studies are required to indicate whether the route of dedif-
ferentiation also occurs in human colorectal cancers, where
adenomas arise from an oncogenic event in a single cell.
Taken together, the short life-time of the vast majority of
cells is a strong cellular protection mechanism in intestinal
tissue, since it results in loss of most newly acquired muta-
tions. Therefore, mutations can only manifest in long-lived
stem cells or in more differentiated cells that dedifferenti-
ate into cells with stem cell characteristics that live long
enough to induce a tumour.

Cellular protection mechanism no. 2: stem cell
competition

Most stem cells are lost over time as a result of stem
cell competition
Although the geometry of the crypt-villus unit protects
long-lived stem cells better than short-lived differentiated
cells against harmful substances present in the intestine
[2], new mutations can be introduced in the stem cells
upon proliferation. Fortunately, not all mutations that arise
in stem cells are propagated as a result of a second pro-
tection mechanism present in the crypt: stem cell compe-
tition [32, 33]. The crypt contains ~14–16 LGR5+ stem
cells interspersed with Paneth cells, which, together with
the stroma, function as a niche for stem cell maintenance
[34]. On average, LGR5+ stem cells proliferate symmetri-
cally every 21.5 hours [35], and as soon as stem cells lose
touch with a Paneth cell, they are primed for differentia-
tion and move up along the crypt-villus axis (fig. 1). This
process was illustrated by lineage-tracing experiments in
LGR5-multicolour “confetti-mice” [32]. In these mice, in-
jection of tamoxifen resulted in recombination of a con-
fetti-construct, which stochastically induced expression of
one of four confetti colours specifically in LGR5+ stem
cells, and this colour was inherited by all daughter cells
[32]. Despite induction of different confetti colours in dif-
ferent individual LGR5+ stem cells within the same crypt,
most crypts contain stem cells of a single confetti colour
after 1 to 6 months (fig. 1). These data led to the neutral
drift stem cell competition model: upon each stem cell di-
vision, the number of stem cells exceeds the available po-
sitions within the niche, which is counter-balanced by loss
of a stem cell from the niche. This constant stem cell di-
vision and stem cell loss leads to the expansion or extinc-
tion of stem cell clones and ultimately to clonality of all
stem cells in the niche (fig. 1). By use of multi-day in-
travital microscopy, we directly visualised this process and
showed that stem cells can be passively displaced from the
stem cell niche after the division of proximate cells, im-
plying that stem cell fate can be uncoupled from division
[36]. Moreover, our experiments showed that all LGR5+

stem cells (~14–16) are able to contribute to the stem cell
competition. However, cells at the border are more suscep-
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tible to passive displacement from the niche than those lo-
cated at the centre [36]. Since cells constantly gain or lose
favourable positions by changing position, they function as
a single stem cell pool with a combined output equal to
~5–7 equipotent functional stem cells, as was predicted by
mathematical modelling [32, 36, 37]. Importantly, similar
data have been obtained in human intestinal tissue [38].

Stem cell competition can eradicate mutant cells
The model of stem cell competition predicts that a muta-
tion can remain in a crypt long term only when it is pre-
sent in the one stem cell that wins the competition; mu-
tations in the other stem cells will get lost. To test this,
two independent studies were done using sporadic induc-
tion of oncogenic mutations often found in colorectal can-
cer (Apc, Kras or TP53) in combination with lineage trac-
ing; they demonstrated that oncogenic clones can indeed
get lost from the stem cell niche [39, 40]. However, the
stem cell competition is not always completely neutral. For
example, instead of having a 50% chance of displacing a
neighbouring stem cell in neutral competition, Apchet and
KrasG12D mutations lead to a 62% and 78% chance, respec-
tively, to outcompete a neighbour [39, 40]. Interestingly, a
TP53 mutation does not affect stem cell competition under
homeostatic conditions, but it gives a competitive advan-
tage (58%) when colitis is induced [39]. Mutations can po-
tentially also give a disadvantage in the competition. With
use of time-lapse microscopy of organoids, it has recent-
ly been shown that RasV12-transformed cells have an al-
tered metabolism that promotes active extrusion of these
cells from nontransformed epithelial tissues [41]. Obvious-
ly, if this also holds true for RasV12-transformed intestinal
stem cells, this mechanism decreases the strength of these
cells in stem cell competition and therefore the ability of
the RasV12 mutation to be maintained in intestinal epithe-
lial tissues.
Even in a non-neutral competition, a stem cell that acquires
a mutation is likely to be outcompeted by one of the ~15
wild-type stem cells and, as a consequence, this mutant cell
will be expelled from the niche, and transported to and lost
at the villus tip [39, 40]. Thus, acquisition of an oncogenic
mutation may influence the fitness of a cell in the stem
competition, but is not deterministic, and can be eradicated
owing to stem cell competition.

Perturbation of niche factors alters the stem cell niche
and stem cell competition
Stem cell competition can be quite accurately described
by a relatively simple one-dimensional stochastic model
based on only two parameters: the number of stem cells per
crypt and the rate at which they are replaced by a neigh-
bour and get lost [32, 33, 36, 37] (for review see Ver-
meulen and Snippert [17]). The number of stem cells deter-
mines the chance of an individual stem cell to win the com-
petition, whereas both parameters determine the speed of
the competition. These parameters are tightly controlled by
the stem cell niche. The niche provides cues in order to ac-
curately balance stem cell proliferation and differentiation,
controlling the number of stem cells and therefore also
the protection potential of stem cell competition [42]. The
niche factors that control stem cell numbers are produced
by Paneth and mesenchymal cells, and include Wnt lig-
ands (e.g., Wnt3a), Notch ligands (Dll1, Dll4), bone mor-

phogenetic protein (BMP) antagonists (e.g., Noggin and
Gremlin) and epidermal growth factor (EGF) [34, 43–48].
Importantly, the stem cell zone, and therefore stem cell
competition, is altered when these signals are perturbed.
For example, blocking Delta-Notch signalling between
stem and Paneth cells results in quick differentiation of
stem and progenitor cells into postmitotic goblet cells [44,
49]. Moreover, inhibition of BMP signalling by Gremlin
or Noggin leads to hyperproliferative crypts and the for-
mation of ectopic crypts at the villus compartment [50,
51]. In addition, when Wnt signalling is reduced by ma-
nipulating Wnt proteins directly or by manipulating a reg-
ulator of Wnt signalling R-spondin, the number of stem
cells is decreased [52]. As predicted by the one-dimen-
sional stochastic model for stem cell competition described
above, lineage tracing experiments showed that reducing
the number of LGR5+ stem cells results in faster stem cell
competition, observed as accelerated drift of stem cells to-
ward monoclonality [52]. Together these studies show that
niche factors tightly control the number of stem cells and
the composition of the crypt, thereby controlling stem cell
competition and its ability to minimise the accumulation of
new mutations.

Cellular protection mechanism no. 3: crypt fu-
sion

Crypt fission and fusion can influence stem cell dy-
namics
As a result of stem cell competition, stem cells within
crypts become monoclonal over time. However, this is not
a static situation: crypts can undergo fission and fusion
(fig. 1). During crypt fission one crypt divides into two
crypts [53], and this process mostly takes place during
postnatal intestinal elongation and during regenerative re-
sponses [54–57]. In adulthood, crypt fission still occurs
during homeostasis, although at lower levels [58–60]. Us-
ing intravital microscopy, we recently uncovered crypt fu-
sion, which seems to be an almost exact reverse phenome-
non of crypt fission where two crypts fuse into one daugh-
ter crypt [61] (fig. 1). Under homeostatic conditions, crypt
fission and fusion occur at near similar frequencies and on
average a crypt should at least undergo a fission or fusion
event every 3 months [58, 61].
Crypt fission has the potential to spread monoclonal mu-
tant crypts over the epithelium, and has been shown to be a
mechanism through which mutant cells can expand beyond
crypt borders [62]. This spread creates fields of genetical-
ly altered crypts that can predispose a tissue for cancer de-
velopment (field cancerisation) [63, 64]. In the human in-
testine, fields of KRAS-mutated crypts have been observed
surrounding colorectal cancers, indicating that this can be
an initiating event in cancer development [65, 66]. In ad-
dition, fields of APC-deficient crypts have been found,
which may play an important role in adenoma formation
and expansion [67–69]. Thus, crypt fission can induce the
spread of mutated cells over the epithelium, which may en-
hance tumour initiation.
In contrast to the spread of mutations via crypt fission,
crypt fusion has the potential to eradicate mutations from
the epithelium, since it enables stem cell competition to
eradicate mutant cells even in the situation where all stem
cells in a crypt contain a particular mutation. When a crypt
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containing mutant stem cells fuses with a wild-type crypt,
the stem cell competition “restarts” and the mutant cells
can be outcompeted by the wild-type cells (fig. 1). There-
fore, crypt fusion may be a third important cellular pro-
tection mechanism against accumulation of mutations, and
has the potential to counteract the spread of mutations by
crypt fission. Since crypt fission and fusion significantly
influence stem cell competition, it will be important to in-
vestigate the stem cell dynamics during crypt fission and
fusion. Moreover, both processes should be incorporated
into models describing stem cell competition in the intes-
tine.

Tissue damage alters crypt dynamics
As mentioned before, crypt fission and fusion can influ-
ence stem cell competition. Because of its recent discov-
ery, the molecular mechanisms underlying crypt fusion are
yet unknown, whereas more is known about crypt fission.
For example, it has been found that crypt fission occurs
more frequently in response to damage, including intesti-
nal resection, irradiation and chemotherapy treatment [54,
55, 70, 71]. This response may (partly) function through
the transforming growth factor-beta (TGFβ) signalling
pathway, since loss of the receptor TGFβR2 significantly
reduces crypt fission events [72]. Interestingly, increased
crypt fission is also observed in diseased colonic epithelia
from patients with Crohn’s disease and ulcerative colitis
[73], which both induce an inflammatory response and
lead to an increased risk of colorectal cancer. Thus, dam-
age and inflammation induce crypt fission, which may be
linked to tumour initiation. In addition to damage and in-
flammation, crypt fission may also be induced by genetic
mutations. For example, in the mouse small intestine, the
number of crypts monoclonal for the KRASG12D mutation
can expand by crypt fission with an increased rate com-
pared to wild type crypts (>30-fold), and this creates fields
of KRASG12D mutated crypts [40]. As mentioned before,
activating KRAS mutations can enhance NFκB signalling,
which is associated with inflammation, again suggesting
a link between inflammation and colorectal tumour initia-
tion.

Future perspectives

In this review we have given an overview of the current
knowledge about the cellular mechanisms present in the in-
testinal epithelium that minimise accumulation of new mu-
tations, including the conveyer belt-like structure, stem cell
competition and crypt fusion. Future research is required to
reveal the exact dynamics of these processes and how each
of them contributes to the protection against the accumula-
tion of mutations. Interestingly, once we understand these
processes in more detail, one could think about manipu-
lating them to optimise their protective capacity. For ex-
ample, inhibition of crypt fission might lead to decreased
spread of new mutations over the epithelium. On the other
hand, induction of crypt fusion might result in the deple-
tion of mutant crypts and a reduced spread of oncogenic
mutations. In addition, expanding the number of stem cells
per crypt might increase the chance that a mutant stem cell
will be expelled from the niche and be depleted from the
tissue.

Live imaging of the intestinal epithelium, such as organoid
imaging and intravital microscopy, will greatly help in
understanding the cellular protection mechanisms and in
finding ways to manipulate them. In contrast to techniques
that draw a static picture of the dynamic nature of intestinal
tissues, live microscopy can be used to visualise intestinal
tissues, cells and processes over time. Organoid imaging
[6] will be instrumental in monitoring intestinal dynamics
at subcellular resolution (e.g., [41, 74, 75].). However, it is
important to realise that organoids – as any other 3D cul-
ture model – lack the in-vivo microenvironment, such as
the surrounding stroma and immune cells. Recent advan-
tages in high resolution intravital microscopy, and the de-
velopment of a variety of imaging windows [76], enable
the visualisation of the fate and behaviour of cells and lin-
eages in living mice for several days [77–79]. We recently
developed the abdominal imaging window [80, 81], which
was used to study intestinal tissue homeostasis [36, 61] and
intestinal tumour progression [82]. In addition, it enabled
us to uncover new aspects of the intestinal cellular protec-
tion mechanisms, such as crypt fusion, which on static im-
ages cannot be discriminated from crypt fission [61]. In the
future, live imaging technologies will be instrumental in
understanding whether and how manipulating cellular pro-
tection mechanism affects tissue homeostasis and how this
affects the fate of cells that have acquired mutations in for
example cancer driver genes. We believe that manipulation
of the cellular protection mechanism gives us the ability
to reduce the accumulation of new mutations, which pro-
vides great potential to influence aging and the induction
and progression of diseases such as cancer. With new mi-
croscopy techniques, we expect to make big steps in this
direction in the near future.
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