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Summary

Compelling evidence from the last three decades clearly
shows that transmissible spongiform encephalopathies
(TSEs) develop as a result of a poorly understood misfold-
ing event that converts the cellular prion protein (PrPC) to
an isoform known as PrPSc which is aggregated, protease
resistant and able to impose its aberrant conformation onto
PrPC, leading to its accumulation in the central nervous
system. Despite all the knowledge gathered in more than
thirty years of research and the general understanding of
the pathological processes, the molecular mechanisms re-
main elusive, making it difficult to develop rational thera-
peutic strategies for this group of incurable diseases. In this
review article, we give an overview of what is known about
prion architecture and how the limited structural informa-
tion available has been used in the quest for remedies for
these devastating disorders.
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Introduction

Since Stanley Prusiner proposed the “protein only” hypo-
thesis three decades ago [1], research in the field of trans-
missible spongiform encephalopathies (TSEs), a group of
fatal neurodegenerative disorders affecting several mam-
malian species including humans, has been focused mainly
on the misfolded prion protein PrPSc, widely accepted as
the causal agent. Human prion diseases (which include
Creutzfeldt-Jakob disease, Gerstmann-Sträussler-
Scheinker disease and familial fatal insomnia among others
[2]) and animal prion diseases (such as scrapie in sheep and
goats [3], chronic wasting disease in cervids [4], bovine
spongiform encephalopathy in cattle [5] or transmissible
mink encephalopathy [6]) all share some common features
including spongiform degeneration of the central nervous
system (CNS), amyloid plaque formation, neuronal loss
and reactive gliosis [7]. All those pathological hallmarks
were linked through the “protein only” hypothesis to the
presence in the CNS of a 27 to 30 KDa protease-resistant

protein named PrP27-30 or PrPSc (scrapie-associated prion
protein), a derivative of the single gene encoded, protease
sensitive, 30–35 KDa cell-surface glycoprotein known as
PrPC (cellular prion protein) [8, 9].
Compelling evidence from the last three decades clearly
shows that TSEs develop as a result of a poorly understood
misfolding event that converts the PrPC to PrPSc, which is
found aggregated, is protease resistant and able to induce
its aberrant conformation in PrPC, leading to its accumula-
tion in the CNS [1]. Depending on the source of PrPSc, pri-
on disorders can be classified as infectious if the PrPSc is
acquired from external sources, genetic if the PrPSc is pro-
duced internally due to disease associated mutations in the
PrP encoding gene, or sporadic if the PrPSc is formed as
a result of spontaneous misfolding of the wild type PrPC

[10–12]. TSEs can manifest as phenotypically distinct dis-
eases in animals that share identical PrP sequences, known
to be caused by different PrPSc conformers, named strains
[13–15]. How these distinct pathogenic isoforms emerge
has been difficult to understand and fit within both Prusin-
er’s theory and the mechanistic rules governing the variable
ability of interspecies transmission of the different prion
strains [16, 17].
Despite all the knowledge gathered in more than three
decades of research and the general understanding of the
pathological processes, the molecular mechanisms remain
elusive, making it difficult to develop rational therapeutic
strategies for this group of incurable diseases. Specifically,
the central process of TSEs, the conversion of PrPC to
PrPSc, together with the strain diversity and interspecies
transmission, are all structurally determined [18, 19], so to
definitively solve the three-dimensional structure of all the
proteins involved would be a great step forward towards
the design of new rational strategies that could interfere
with prion propagation and disease progression. However,
it must be stressed that several compounds interfering with
the pathological process have been found by phenotypic
screening on in vitro and in vivo model systems, regardless
of structural features. This is the case for compounds such
as pentosan polysulphate [20, 21] or other sulphated
glycans [22, 23] that prevented PrPSc accumulation in cell
culture and prolonged survival times in mice models [24].
Similarly, some amyloid-binding sulphonated dyes, such
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as Congo red [25], suramin [26] or curcumin [27], have
long been known to inhibit PrPSc accumulation. Cyclic
tetrapyrroles, compounds with a highly conjugated planar
ring system that bind transition metal ions, were also repor-
ted to inhibit PrPSc accumulation in vitro and prolong sur-
vival times upon early administration in vivo [28, 29]. A
possible mechanism of action has been recently described
at a single-molecule level using force spectroscopy [30].
Other anti-prion compounds worth mentioning include tet-
racyclic compounds [31, 32] and lysosomotropic com-
pounds such as quinacrine, chlorpromazine and quinine
[33–35]. However the use of many of the molecules listed
is hampered by severe adverse effects or poor blood-brain
barrier permeability, among other disadvantages, leading to
the design of derivative compounds that may solve these
problems and enhance their antiprion activity.
Although all these, and several other compounds, were dis-
covered in the absence of structural knowledge about PrP
isoforms, a better understanding at the molecular level of
the interactions between the compounds and PrPC or PrPSc

would be highly valuable for a more rational optimisation
or derivative design. Other strategies will be only briefly
described, as this review is mainly focused on therapeut-
ic approaches that could derive from new structural in-
sights on the central event of TSEs, the misfolding of PrP.
Some of the most interesting approaches for the treatment
of TSEs that do not involve direct interaction with PrP and
thus could be developed regardless of structural features
include: (i) perturbation of lipid rafts for PrPC sequestra-
tion or redistribution [36–40]; (ii) suppression of PrPC ex-
pression through siRNAs [41, 42]; (iii) targeting accessory
molecules or pathways to conversion [43–47]; (iv) enhan-
cing PrPSc clearance [48–50]; and (v) use of neuroprotect-
ive agents as symptomatic treatment [51–53].
However, in this review article we intend to offer an over-
view of what is known about prion architecture and how
the limited structural information available has been used
in the quest for remedies for these devastating disorders.

The known part of prion architecture,
PrPC

The PrPC is the only element involved in the central pro-
cess of PrPC to PrPSc conversion that has been structurally
characterised at a high resolution level (fig. 1). Although

Figure 1

Three dimensional structure of PrPC solved by (A) nuclear
magnetic resonance (PDB code 1QM1) and (B) X-ray diffraction
(PDB code 1I4M).

several models have been proposed during recent years,
neither PrPC/PrPSc interactions nor the PrPSc fibril structure
have been solved yet, and the lack of knowledge is clearly
proven by the strikingly different molecular models sug-
gested (table 1).
The cellular form of PrP is a cell membrane protein, gen-
erally found in lipid rafts, which is comprised of an un-
structured N-terminal and a globular C-terminal domain.
The latter consists of three α-helices, and a β-sheet formed
by two antiparallel β-strands that during its maturation un-
dergo a few posttranslational modifications such as glyc-
osylphosphatidylinositol (GPI anchor) attachment, addition
of up to two N-linked glycans and the formation of a
disulphide bond that connects the C-terminal α-helices
[54–59]. Despite the detailed structural information avail-
able, the physiological role of the C-terminal domain re-
mains uncertain and many different functions have been
proposed, such as copper regulation [60, 61], signal trans-
duction [62, 63], immune system modulation [64–66], pro-
grammed cell death inhibition [67, 68] and so on. Non-
etheless, some of the previously suspected functions of PrP
are being reassigned to other proteins. Some robust stud-
ies seem to confirm its role in neuroprotection and my-
elin maintenance [69], finally starting to separate the wheat
from the chaff in the large number of functions attributed
to PrPC.
Even though it is widely accepted that PrP misfolding is
the central event in disease pathogenesis [70], the exact
mechanism by which the misfolding occurs or even the ex-
act composition of the protein form causing the prion dis-
ease has not yet been identified [71]. Hereditary or famili-
al forms of the disease clearly establish that some single
point mutations, mostly located in the globular domain of
the PrP, as well as insertions or deletions found in other
regions, increase the tendency to misfold [72–78]. Simil-
arly, several monoclonal antibodies known to bind to spe-
cific motifs of the globular domain are able to prevent prion
disease in animals [79–82]. Knowledge of PrPC structure,
as well as studies that indicate that different regions of the
protein are critical for the initial misfolding steps [83–87],
have led to the rational design of strategies for PrPC sta-
bilisation. Although initial attempts to stabilise PrPC were
made with well-known molecular chaperones [88] or com-
pounds previously found to bind PrPC regardless its struc-
ture [28, 89–93], descriptive and structural studies on PrP
mutants [94] and the binding sites for PrPC-stabilising com-
pounds are proving useful for the detection of key regions
and design of new therapeutic strategies. This is the case
with some recent studies, where PrPs with distinct patho-
logical point mutations [95] or protective polymorphisms
[96, 97] were analysed in depth to reveal their structural
basis, in order to counteract or mimic their effect. This is
in line with the search for point mutations or polymorphic
variants that increase the thermodynamic stability of PrPC

[98]. Most of the research done on PrPC-stabilising com-
pounds is still based on chemical modification of drugs
previously found effective in model systems or structure-
activity studies with large chemical derivative libraries [34,
99–103]. It should be noted that the latter studies can be
performed without any knowledge of the structural ar-
rangement of PrPC. However, very promising approaches
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based on knowledge of PrPC structure and in silico mod-
elling [104], such as the NAGARA tool developed by Ma
and collaborators, are leading the way to the new era of ra-
tional drug design [105].

The unknown part of prion
architecture, PrPC/PrPSc interaction
and PrPSc structure

One of the big unsolved questions concerning PrPC to PrPSc

conversion is the molecular mechanism by which PrPSc in-
duces its aberrant conformation in PrPC. Models mimick-
ing this phenomenon in vitro have clearly shown the select-
ive binding of both isoforms of PrP [106], and further stud-
ies on PrPC/PrPSc binding and interspecies transmission re-
vealed some putative interaction sites [106–110]. However,
the prion strain diversity and the many different putative
binding sites found suggest that interaction between iso-
forms is mechanistically complex and highly precise. There
are two main theoretical models describing this phenomen-
on: heterodimer polymerisation [111], in which conform-
ational conversion to PrPSc is templated by contact with
monomeric PrPSc, and autocatalytic seeded polymerisation
[112], in which conversion is induced by polymeric PrPSc.
Blocking this PrPC/PrPSc interaction with molecules that
bind either to PrPC or PrPSc is an important therapeutic tar-
get where the lack of structural details impedes the design
of rational strategies. Thus, proper identification of inter-
acting sites and detailed mechanistic description of this
process are of vital importance. Some molecules have been
found to interfere in this process, among which dominant
negative inhibition strategies stand out. These approaches
are based on the addition of heterologous PrPC or PrP frag-
ments known to be poorly convertible through interspecies
transmissibility studies or through the finding of protective
PrP variants [107, 113, 114]. Moreover, other rational ap-
proaches are based on computational searches of chemic-
al compounds that mimic the spatial orientation and poly-
morphisms of the key PrP residues that confer dominant
negative inhibition [115].
Apart from therapeutic actions against PrPC/PrPSc interac-
tion, actions on the neurotoxic PrP species and PrPSc dis-
aggregation or degradation need to be considered. Again,
the detailed molecular mechanisms behind prion-induced
neurotoxicity, PrPSc structure and aggregate clearance are
still unsolved, impeding the rational design of treatments
focused on reduction of toxicity, blockade of PrPSc fibril
growth or enhanced aggregate degradation. Concerning
neurotoxicity, compelling evidence indicates that fibrillar
PrPSc deposition is not directly linked to neurodegeneration
and to the existence of oligomeric species associated with
toxicity [71, 116, 117]. However, the great variety of mis-
folded oligomeric forms detected hinders identification of
the really toxic and infectious ones, impeding any thera-
peutic action against them. Furthermore, how these un-
known neurotoxic forms of PrP exert their effect on the
nerve cells is another open question, although several
mechanisms have been proposed, such as induction of ap-
optosis by activation of the complement pathway [118], by
formation of pores in the cell membranes [119, 120], by
specific modulation of N-methyl-D-aspartate (NMDA) re-

ceptors [121] or by inhibition of the proteasome [122]. The
importance of accurately assessing the cytotoxic mechan-
ism was highlighted by the toxicity induced by some an-
tiprion monoclonal antibodies through binding to certain
epitopes on the PrPC [123, 124]. This suggests a possible
role for PrPC in the neurotoxic pathway and that, until this
pathway is properly characterised, any therapeutic strategy
based on molecules binding to PrPC is potentially toxic.
Protein homeostasis is also known to be altered in disorders
caused by protein misfolding, and some evidence indicates
that its impairment might be an early mediator of prion-in-
duced neurodegeneration through repression of global pro-
tein expression or activation of pro-apoptotic pathways. In
this case, therapeutic efforts are targeted on components
involved in those pathways, regardless of the structural
features of the PrP species inducing neurodegeneration
[124–128].
Finally, the last unsolved mystery related to PrPC/PrPSc

conversion that could contribute to the development of ra-
tional therapies is the three-dimensional structure of the
PrPSc aggregates. Despite being a research topic of tre-
mendous importance in order to reach a complete under-
standing of the prion diseases and one of the first entities
associated with the pathology, its difficult purification, in-
solubility and aggregated state have limited the reliable
structural data obtained. Hopefully, infectious recombinant
prion generation in in vitro systems may soon help to over-
come some of these issues related to sample amount and
purity, allowing the acquisition of high-resolution structur-
al data [129]. The variety of biophysical techniques ap-
plied to the resolution PrPSc aggregate structure has yielded
equally variable data and thus led to the publication of sev-
eral different molecular models (table 1) [130–139]. Such
differing models as the parallel in-register extended β-sheet
model with no α-helix proposed by Cobb [130] and the
β-solenoid modelled by Wille [131] illustrate the contro-
versy surrounding the real structure of infectious prions.
Moreover, none of the molecular models proposed fits en-
tirely with all the experimental structural data available
[140], although they could be partially correct or even de-
scribe different possible arrangements for misfolded PrP,
highlighting the tremendous importance of an accurate
identification of infectious versus noninfectious PrP poly-
mers that are definitely generated in vitro [141] and may
also be present in vivo. Given the lack of reliable structural
information, it is not yet possible to design rational thera-
peutic candidates at the PrPSc level, although some inter-
esting strategies have been proposed that take advantage of
the limited structural information available. This is the case
for rational vaccine design based on disease-associated epi-
topes through identification of PrP regions exclusively ex-
posed in its misfolded conformation [142], which illus-
trates the advantage of even partial structural information.
But with a few exceptions, compounds promoting fibril
stabilisation or clearance have been mainly found through
screening for amyloid-binding compounds or structure-
based design of their derivatives, with poorly understood
mechanisms of action [143–146]. Compounds that are
known to be effective against other protein misfolding-re-
lated disorders that share some pathological features with
prion diseases [147–151] have also become an important
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source of anti-amyloidogenic compounds [152–154].
However, many of the compounds tested had blood-brain
barrier permeability issues, toxicity or strain specificity
problems that hindered their clinical application. The strain
specificity of some apparently successful compounds,
clearly shown by Berry and collaborators [155], is alarming
as it suggests that a general treatment for prion disorders
might be impossible unless structural differences between
strains are described in detail. Moreover, prions have been
shown to acquire drug resistance under selection pressure
of antiprion compounds, probably through slightly differ-
ent structural variants already present as subvariants of the
strains or “quasi species” [156–158]. This poses a problem
not just for therapy development but also for the structur-
al study of prions that seem to appear as a heterogeneous
structural mix. Although other interesting therapeutic ap-
proaches have been explored and are being developed that
do not require PrPSc structural knowledge, such as engin-
eering disaggregases [159, 160], and inducing expression
of kinases [161, 162] and heparanases [21, 163], direct ac-
tions against PrPSc imply the need for reliable structural
models of the infectious and neurotoxic agent.
Altogether, this overview of the current knowledge on
mechanistic data about prion pathogenesis and the possib-
ilities opened for rational therapy design states clearly the
urgent need of accurate molecular models that would en-

able a significant step forward in the treatment of these still
incurable diseases.
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Figures (large format)

Figure 1

Three dimensional structure of PrPC solved by (A) nuclear magnetic resonance (PDB code 1QM1) and (B) X-ray diffraction (PDB code 1I4M).
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