
Review article: Biomedical intelligence | Published 21 August 2016, doi:10.4414/smw.2016.14346

Cite this as: Swiss Med Wkly. 2016;146:w14346

Learn, simplify and implement: developmental re-
engineering strategies for cartilage repair

Paola Occhetta*, Chiara Stüdle,*, Andrea Barbero, Ivan Martin

Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
*Authors contributed equally

Summary

The limited self-healing capacity of cartilage in adult in-
dividuals, and its tendency to deteriorate once structurally
damaged, makes the search for therapeutic strategies fol-
lowing cartilage-related traumas relevant and urgent. To
date, autologous cell-based therapies represent the most
advanced treatments, but their clinical success is still
hampered by the long-term tendency to form fibrous as
opposed to hyaline cartilage tissue. Would the efficiency
and robustness of therapies be enhanced if cartilage re-
generation approaches were based on the attempt to re-
capitulate processes occurring during cartilage develop-
ment (“developmental engineering”)? And from this per-
spective, shouldn’t cartilage repair strategies be inspired
by development, but adapted to be effective in a context
(an injured joint in an adult individual) that is different
from the embryo (“developmental re-engineering”)? Here,
starting from mesenchymal stem/stromal cells (MSCs) as
an adult cell source possibly resembling features of the
embryonic mesenchyme, we propose a developmental re-
engineering roadmap based on the following three steps:
(i) learn from embryonic cartilage development which are
the key pathways involved in MSC differentiation towards
stable cartilage, (ii) simplify the complex developmental
events by approximation to essential molecular pathways,
possibly by using in vitro high-throughput models and, fi-
nally, (iii) implement the outcomes at the site of the injury
by establishing an appropriate interface between the de-
livered signals and the recipient environment (e.g., by con-
trolling inflammation and angiogenesis). The proposed re-
design of developmental machinery by establishing artifi-
cial developmental events may offer a chance for regenera-
tion to those tissues, like cartilage, with limited capacity to
recover from injuries.
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Cartilage regeneration: state of the
art

Cartilage is a tissue with poor intrinsic regeneration capa-
city. Therefore, trauma affecting articular cartilage, if not
properly treated, predisposes to osteoarthritis, a pathologic-
al condition that provokes joint pain and loss of motility.
For this degenerative joint disease, which causes a reduc-
tion of the life quality for millions of people world-wide,
no effective disease-modifying therapies are available [1].
Therefore there is a need to repair cartilage defects in
order to prevent or delay the onset of osteoarthritis. Among
the various techniques to heal cartilage traumas [2], cell-

Figure 1

Classification of mesenchymal stromal/stem cell (MSC)-based
strategies based on the type and differentiation stage of cells
(capital letters in parenthesis) and additional components (Roman
numbers in parenthesis) present in the graft. Below are listed
examples of MSC-based graft material used in selected clinical
trials registered at http://clinicaltrials.gov (keywords used for the
research: stem cells AND cartilage repair).
A–II: bone marrow MSC aspirate in a scaffold (identifier
NCT00885729).
B–III: MSCs isolated from adipose tissue specimens (liposuction)
combined with platelet-rich plasma (identifier NCT01739504).
B–IV: concentrated bone marrow-derived cells on a collagen
scaffold, covered with a platelet gel (identifier NCT02005861);
MSCs separated from redundant joint tissues (bone marrow or
synovium) combined with cartilage fragments in a fibrin gel
(identifier NCT01301664).
C–I: expanded adipose tissue-derived MSCs alone (identifier
NCT01399749).
C–III: expanded bone marrow MSCs combined with platelet lysate
(identifier NCT02118519).
C–IV: expanded bone marrow MSCs combined with chondrocytes
in a fibrin gel (identifier NCT02037204).
D–II: chondrogenic pellets derived by bone marrow MSCs
embedded in a scaffold (identifier NCT00891501).
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based therapy is the most advanced [3, 4]. Autologous
chondrocytes expanded ex vivo are the favourite source
of cells for such therapies. However, clinical outcomes
of chondrocyte-based cartilage repair approaches are not
predictable [5]. This can be explained by the inability of
articular chondrocytes to form cartilage after expansion
[6], a step required to increment the initially limited num-
ber of cells available from a normal-sized cartilage biopsy
[5]. Therefore, the following sources of chondrogenic cells
have been proposed: nasal chondrocytes [7]; chondro-pro-
genitors isolated from the superficial zone of articular car-
tilage [8, 9] or fetal cartilage tissues [10, 11]; mesenchymal
stem/stromal cells (MSCs) from various adult [12] or fetal
tissues [13, 14]; pluripotent stem cells (embryonic stem
cells) [15], or inducible pluripotent stem cells [16]. Table 1
summarises the advantages and disadvantages of using
each of these candidate cell sources for cartilage repair.
Ideally, for efficient cartilage repair the therapeutic cells
may have to recapitulate in the adult joint processes oc-
curring during cartilage development. Mesenchymal con-
densation is a critical transitional stage leading to cartilage
formation in the embryo. During this stage, undifferenti-
ated mesenchymal cells migrate from the lateral plate mes-
enchyme and aggregate, forming a cartilaginous anlage.
Within this, two distinct populations of chondrocytes arise:
one will differentiate into growth plate chondrocytes (i.e.,
cells that further mature into hypertrophic chondrocytes,
ultimately die and are replaced by bone cells); the other,
instead, will differentiate in stable chondrocytes, thus con-
tributing to articular cartilage [17]. For durable cartilage re-
pair, the therapeutic/targeted cells must be capable of ef-
ficiently differentiating into articular chondrocytes and not
activating the endochondral programme.
Although it is not yet clear to what extent adult MSCs
resemble the cells in the condensing embryonic mesen-
chyme, these cells represent the obvious candidate to re-
capitulate processes leading to articular cartilage forma-
tion. Moreover, MSCs are abundantly available in the hu-
man body and have an intrinsic tissue-repair capacity under
inflammatory/stress conditions, as well as immunomodu-
latory effects [18-20]. Indeed, positive structural/functional
outcomes of MSC-based cartilage repair have been repor-
ted in several clinical case reports and trials of the applica-
tion of MSCs for cartilage repair [20–22].
MSC-based cartilage repair approaches can be classified
on the basis of the type and differentiation stage of cells
present in the graft, as follows: cell preparation containing
(a) unprocessed naïve MSCs together with contaminant
cells present in the native tissues (e.g., bone marrow,
adipose tissue, synovium), (b) processed naïve MSCs (to
enrich for MSCs and/or to remove cell contaminants), (c)
expanded MSCs, (d) differentiated MSCs after chondrogen-
ic culture (thus within tissue-engineered cartilage tissue).
These cell preparations have been clinically used without
(I) or with additional supportive (II) or bioactive (III) com-
ponents or with combinations of supportive and bioactive
components (IV) (fig. 1). It is important to consider that
additional bioactive component(s) (matrices and/or growth
factors) in association with MSCs on the one hand might
allow enhancement of the reparative/regenerative proper-
ties of the grafted (and of the resident) MSCs, but on the

other hand render the clinical outcome difficult to interpret.
In this article the different cell-free approaches investigated
for cartilage repair will not be discussed, in order to allow
a more focused analysis (for an overview of this topic see
the references [23, 24]).
Despite the increased utilisation of MSCs for articular car-
tilage repair, before these cells can be a widely accepted
cell source for the treatment of diseased joints, it will be ne-
cessary to identify isolation/culture conditions (and bioact-
ive components) enabling them to trigger orderly and dur-
able cartilage tissue repair. In this review article we discuss
the main limitations of the MSC-based approaches and we
outline possible innovative strategies to use them to induce
cartilage regeneration.

Developmental (re-)engineering: a
new paradigm for tissue engineering

Traditional MSC-based tissue engineering (TE) strategies
suffer from critical drawbacks, which limit robust and
routinely accepted clinical translation [25]. MSCs are in-
deed intrinsically affected by intra- and inter-donor vari-
ability, and currently there is no consensus on common
markers to predict their chondrogenic potential or thera-
peutic effect [26, 27]. Moreover, cartilaginous grafts en-
gineered from MSCs typically undergo hypertrophic differ-
entiation when transplanted ectopically in vivo [28]. This
finally leads to limited structural and functional similarities
between the implanted graft and native cartilage, causing,
in most cases, the failure of interface integration [29]. A
currently investigated explanation for these issues is the
possibility that adult MSCs are intrinsically committed to-
wards terminal, hypertrophic chondrocyte differentiation
and cannot stably differentiate into articular chondrocytes.
A strategy for “re-programming” the fate of MSCs by ex-
posing them to specific signals may be used to reverse this

Figure 2

Developmental re-engineering concept: learn, simplify/adapt,
implement. After the understanding of pathways involved in the
embryonic development of the targeted tissue to repair (1), a
simplification/adaptation step is required to extrapolate from the in-

vivo complexity the key signals that are effective in adult stem cells
models. This step (2) could be accelerated by using recently
introduced high-throughput in-vitro screening tools. The most
effective developmentally inspired protocol defined in vitro for the
acquisition of functional cartilage is then implemented in the adult/
injured target tissue. For this aim, different strategies, either direct
or indirect, can be identified (3).
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tendency and guide these cells towards differentiation into
stable cartilage. From this perspective, defining an effect-
ive, and possibly temporally staged, combination of stimuli
represents an important challenge for strengthening MSC-
based TE protocols for cartilage repair.
Here, we introduce the concept of “developmental re-en-
gineering” [30] as a strategy for stable cartilage repair.
This term describes a combination of the controlled re-
capitulation of embryonic morphogenetic events as an ap-
proach for engineering adult tissues (“developmental en-
gineering”), with the recognition that such events need to
be implemented in the different adult environment, where
in-vivo repair processes take place and thus require a pos-
sible “re-engineering” of processes. We propose that the
paradigm of developmental re-engineering is summarised
in three main steps: learn, simplify/adapt and implement
(fig. 2). The first requirement for engineering a functional
tissue is to understand the processes and pathways involved
in its embryonic development [31] (“learn”) (fig. 2 step 1).
However, before successfully applying concepts learnt
from developmental biology to TE strategies, a further sim-
plification and adaptation step is required (“simplify”)
(fig. 2 step 2). Indeed, developmental morphoregulatory
systems feature an inherent redundancy and intricate path-
way interconnectivity, finally contributing to their robust-
ness. This eventually makes them probably too complex to
be faithfully reproduced in vitro, especially with the per-
spective of a clinical translation [30]. Key pathways ne-
cessary and sufficient for guiding early progenitors com-
mitment in vitro have thus to be extrapolated from the
intricate redundancy found in vivo, and eventually adapted
according to the level of commitment of MSCs [32]. To
accomplish this aim, reliable and high-throughput in-vitro
models, mainly based on microfluidics [33–36] or mini-
aturisation techniques [37–39], have been recently intro-
duced, with the potential to speed up the screening process.

Finally, key pathways selected from developmental events
need to be correctly interfaced at the site of the injury,
thanks to either direct or indirect strategies (“implement”)
(fig. 2 step 3).

Developmental re-engineering
strategies for cartilage repair

In this section we provide a more detailed description of
our vision for exploiting the paradigm of developmental re-
engineering towards MSC-based approaches for cartilage
regeneration and repair.

Step 1: Learn – development of articular cartilage
During limb development, two different chondrogenic
phenotypes are formed, (i) the stable articular cartilage,
which acts as a crucial joint component throughout life and
(ii) the transient cartilage of the cartilage anlage and the
growth plate responsible for long bone growth that even-
tually is replaced by bone tissue [17]. In order to design
a successful cartilage repair strategy it is essential to un-
derstand the genesis and maintenance of articular cartilage.
Its development is linked to joint formation, which mani-
fests first with the creation of the so-called interzone in-
terrupting the cartilage anlage of the skeletal elements at
prospective joint sites [40–42]. The interzone is demarc-
ated by down-regulation of chondrogenic genes such as
type II collagen and Sox9, as well as the prominent ex-
pression of growth differentiation factor-5 (GDF-5, a mem-
ber of the bone morphogenetic protein [BMP] superfam-
ily), wing-less type proteins (Wnt) such as Wnt9a, Wnt4,
chordin and noggin (specific antagonists of BMPs). The
precise molecular mechanisms governing the induction of
interzone formation are not yet completely known. Clearly,
Wnt signalling, in particular Wnt9a secreted from interzone
cells, plays an important role since its ectopic application

Table 1: Cell sources for cartilage repair.

Cell source Advantage Disadvantage
Adult articular chondrocytes Competent to produce cartilage matrix Limited amount from cartilage biopsy

Age-related difference in the differentiation
capacity
Possible phenotypic alteration in post-traumatic/
pre-osteoarthritis joints

Adult nasal chondrocytes High proliferation and chondrogenic capacity Limited amount from cartilage biopsy

Differentiated
chondrocytes

Neonatal, juvenile articular chondrocytes High proliferation and chondrogenic capacity
Immune-privileged cells

Limited tissue availability
Use of the cells associated with ethical concerns

Chondrocyte
progenitors

Chondrocyte progenitors from adult joint
Epiphyseal chondroprogenitors
Fetal cartilage-derived progenitor cells

High proliferation capacity
Cells maintain a commitment to their
differentiation programme

No conclusive protocols available for the isolation/
culture of these cells
Limited studies on the stability of the acquired
cartilage phenotype

From adult tissues:
– bone marrow,
– adipose tissues
– synovium
– …

Large availability
High proliferation capacity
Immunomodulatory effects
Trophic effects

Large donor-donor variability in the differentiation
capacity
Instability of the acquired cartilage phenotype

Mesenchymal stromal/
stem cells

From fetal tissues:
– placenta
– umbilical cord
– umbilical cord blood

Large availability
High proliferation capacity
Cells with immuno-privileged status
Immunomodulatory effects
No ethical concerns

No conclusive protocols available for the isolation
and culture of these cells
Controversial evidence on the capacity of these
cells to form hyaline-like cartilage

Pluripotent stem cells Embryonic stem cells
Inducible pluripotent stem cells

Potentially unlimited source of chondrocytes
Possibility for personalised medicine

No conclusive protocols available
Problems associated with tumour formation
Use of the cells associated with ethical concerns
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causes heterotopic joint-like structures [43, 44]. However,
it has been demonstrated that Wnt is not a prerequisite for
joint induction; rather, it is involved in the regulation of
joint integrity by inhibiting chondrogenesis and by regulat-
ing Ihh expression [45]. Indian hedgehog (Ihh), in turn, is
not only involved in controlling the phenotype of growth-
plate chondrocytes, but also seems to be implicated in joint
formation [46]. Tight regulation of BMP signalling is also
crucial for joint formation [47]. Recently, it has been shown
that proliferating cells in the distal part of the interzone
contribute to both embryonic articular and growth plate
cartilage formation, and that inhibition of BMP signalling
by noggin next to the presumptive joint site allows prefer-
ential differentiation towards the embryonic articular cartil-
age phenotype [48]. However, the trigger for these cells to
acquire a chondrogenic phenotype has not been elucidated
yet. Formerly, it was demonstrated that articular cartilage
initially shares a history with growth-plate chondrocytes
(both are derived from cells expressing Sox9, collagen type
II and doublecortin [49, 50]) until they eventually split their
fates. Indeed, cells descended from GDF-5-positive cells
do not contribute to growth plate development [51], but
only to joint elements, including articular cartilage. On the
other hand, cells of matrillin lineage give rise to growth
plate chondrocytes [52].
Starting from the complexity of the described develop-
mental processes (extensively reviewed elsewhere [17,
40-42]) and the intricate interplay between the occurrence
of stable and transient cartilage, the developmental events
leading to stable cartilage need to be extrapolated and val-
idated for application on a model based on adult cells.

Step 2: Simplify and adapt – key pathways for adult
MSC differentiation into stable cartilage
Recently, it has been demonstrated that the in-vitro activa-
tion/inhibition of pathways hypothesised to be active in de-
velopment sequentially guides embryonic stem cell differ-
entiation through mesoderm intermediates to a final chon-
drocyte population [53]. Interestingly, the differentiation of
mouse chondrogenic mesodermal cells derived from em-
bryonic stem cells (ESCs) could be directed in vitro either
towards hypertrophy, under the influence of BMP4, or to-
wards an articular cartilage phenotype by exposing them to
GDF-5 and simultaneously inhibiting hedgehog and BMP
pathways [54]. These results confirm the abovementioned
postulated importance of a spatial restriction of BMP sig-
nalling for the in-vivo development of stable articular car-
tilage [48]. Similar outcomes have been achieved through
human induced pluripotent stem cells (hiPSCs). In recent
studies, hiPSC-derived chondrogenic progenitors, obtained
in vitro through an intermediate state of mesoderm induc-
tion, were guided towards the acquisition of a stable car-
tilaginous phenotype (characterised by absence of BMP re-
ceptor type 2b expression) [55] by administration of trans-
forming growth factor-beta (TGFβ) and leukaemia inhibit-
ory factor (LIF) signals [56].
The direct application of developmental cues to embryonic
or induced pluripotent cell sources thus confirms the poten-
tial of developmentally inspired approaches in generating
cartilage templates. However, the translation of key devel-
opmental pathways to more clinically relevant adult stem

cell sources, which are in different stages of commitment,
requires further adaptation steps. Regarding the differenti-
ation of MSCs to stable chondrocytes, several studies have
focused on key signalling factors that are known to regulate
hypertrophy during growth plate development (i.e., mem-
bers of TGFβ, Wnt and fibroblast growth factor [FGF] pro-
tein families and the parathyroid hormone-related protein
[PTHrP] / Ihh regulatory loop) [57].
Among the different signalling pathways, BMP is involved
in many phases of limb development [58, 59]. BMP is in-
deed a key chondrogenic factor [60], but it is also involved
in triggering endochondral ossification [48, 54]. Recently,
it has, for example, been demonstrated how exogenous
over-expression of Sox9 potentiates BMP2-induced chon-
drogenic differentiation while inhibiting BMP2-mediated
hypertrophic maturation [61]. Temporally dynamic regula-
tion of BMP pathways can thus be exploited to modulate
MSC differentiation towards stable cartilage.
Temporal modulation of Wnt signalling is another cur-
rently investigated approach. Initial exposure to Wnt3a
(either alone or in combination with FGF2) was indeed
shown to enhance undifferentiated proliferation of MSCs,
while priming cells towards more efficient chondrogenic
differentiation [33, 62]. Endogenous Wnt signals, however,
were also discovered to be the main driver of late hyper-
trophic maturation, suggesting the late inhibition of Wnt
as a possible strategy for preventing calcification of car-
tilaginous templates [63]. Gremlin, a BMP inhibitor, and
two inhibitors of Wnt signalling (frizzled-related protein
[FRP] and dickkopf-related protein 1 [DKK1]) were also
recently identified as distinctive markers of adult human
articular cartilage. This further suggests that the inhibition
of these pathways has to be considered for achieving stable
chondrogenic differentiation of MSCs [64].
FGF family members have been shown to play a dynamic
and time-dependent role during MSC chondrogenesis.
Early exposure to FGF2 is well known to maximise the
expansion potential of MSCs [65], but it has been associ-
ated with the early appearance of hypertrophy-related fea-
tures as well [66]. Interestingly, Correa and colleagues re-
cently demonstrated that this tendency can be modulated
through late exposure of MSCs to the combination of en-
dogenous FGF9 and FGF18 signals. FGF9 and FGF18, sig-
nalling mainly through FGF receptor 3, have been shown
to induce both an anabolic effect on extracellular matrix
production and a delay in the maturation of MSC-derived
chondrocytes towards hypertrophy in vitro [66].
Finally, the PTHrP/Ihh regulatory loop is recognised as
one of the main pathways involved in mediating chondro-
cyte hypertrophy [67]. Mueller and coworkers found that
PTHrP treatment reduced alkaline phosphatase expression
in MSC 3D pellet culture in a dose-dependent manner;
however, when cultured under hypertrophy-enhancing con-
ditions, PTHrP could not diminish the induced enhance-
ment of hypertrophy in MSC pellets [68]. The intermittent
supplementation of 3D pellet culture with PTHrP was also
demonstrated to stimulate MSCs chondrogenesis (through
an upregulation of collagen type II gene expression), while
reducing endochondral ossification (through a reduction of
Ihh and alkaline phosphatase activity) [69]. In contrast,
Weiss and colleagues observed a concomitant down-reg-
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ulation of chondrogenic and hypertrophic factors upon
PTHrP treatment in MSC chondrogenic cultures that also
resulted in unstable in-vivo cartilage formation [70].
These studies are examples of how complex developmental
events may be approximated to discrete molecular path-
ways and highlight the importance of the temporal stage
for delivery of instructive factors modulating MSC com-
mitment. However, the stability of generated cartilaginous
templates once implanted in vivo is the main limitation of
all the above-mentioned approaches, suggesting the neces-
sity for further refinements. The next required step will be
to investigate interconnections among different pathways
in MSC models in order to identify the most effective spa-
tiotemporal sequence of instructive signals. Moreover, as
mechanical factors are also involved in the development of
articular cartilage, mechanotransduction can be considered
as an alternative strategy to activate key articular chon-
drogenic pathways. Preliminary studies indeed showed that
dynamic compressive loading suppressed a number of hy-
pertrophic markers (collagen type X, matrix metallopro-
teinase-13 and ALP gene expression) in hMSC-derived
constructs exposed to hypertrophic conditioning [71].
However, a thorough understanding of how individual
mechanical factors influence hMSC is needed to utilise
them predictably for mechanically-induced stable chondro-
genesis [72].
To accomplish these aims, high-throughput in-vitro models
[33, 34, 36] have been recently introduced as powerful
tools for testing the effect of different combinations/con-
centrations of soluble factors, immobilised cues or mechan-
ical stimuli [73] on MSC differentiation fate, in a fast and
reliable fashion. They will thus be promising candidates for
speeding up this preliminary screening step.

Step 3: Implement – developmental re-engineering
strategies for cartilage repair
Once the network of signalling pathways necessary and
sufficient for the generation of articular cartilage has been
identified, strategies for transferring them to the site of
the injury need to be implemented. In our vision, this can
be achieved either by a direct approach, namely localised
delivery of selected developmental signals, or indirectly
through the exploitation of environmental features charac-
terising the target adult/injured tissue.

Direct strategies
The direct delivery of key agonists and/or antagonists,
defined in the previous section, at the site of the injury is
a promising strategy to guide resident progenitor cells and/
or implanted MSCs towards the generation of stable cartil-
age in the context of a traumatic joint environment. The en-
visioned implanted graft should thus ensure the timed de-
livery of factors for activating/inhibiting selected pathways
on targeted cells. In this regard, possible strategies for the
controlled and localised delivery of soluble signals are ad-
dressed in the next section.
Concerning the targeted cells for the repair process, a few
studies have recently led to the identification of putative
joint progenitor cells. They were defined within the joint
site as slow-cycling proliferative cells showing numerous
stem cell markers, as well as specific traits such as TGFβ

receptor II [74] or proteoglycan 4 expression [75] in com-
bination with in vitro assays of colony forming units and
differentiation capacity. These cells localise to various joint
tissues such as the superficial zone of articular cartilage,
the infrapatellar fat pat, the synovium and the groove of
Ranvier, and were shown to persist also in the (young)
adult organism (reviewed in [76]). The relationship
between these hypothetical progenitor cells and their role
in articular cartilage regeneration and repair, however, re-
mains largely unknown. If they could be activated to mi-
grate to the site of injury and induced to differentiate, they
would represent a promising cell source in addition to, or
as a substitute for, implanted MSCs in cartilage TE ap-
proaches (reviewed in [25, 77]). In this regard, microfrac-
ture has traditionally been exploited as the main strategy
for recruiting progenitor cells from the subchondral bone to
the site of the injury [78, 79]. Moreover, a number of stud-
ies have recently addressed the use of acellular natural or
synthetic scaffolds decorated with chemotactic factors as a
promising approach to improve the homing of endogenous
cells for cartilage regeneration. Generally, these scaffolds
demonstrated in rabbit cartilage defect models a superi-
or repair potential compared with control scaffolds. Zhang
and colleagues used stromal derived factor-1 (SDF-1) in
collagen type 1-based scaffolds for the repair of partial
thickness defects. In this study, in contrast to other reports
mentioned below, stem/progenitor cells from tissues other
than bone marrow were recruited, since the subchondral
bone plate was intact [80]. Huang and colleagues utilised
a “MSC-affinity peptide” to functionalise a demineralised
bone matrix filled with chitosan-based hydrogel in order
to enhance full-thickness osteochondral defect repair by
a microfracture procedure [81]. Luo et al. demonstrated
the synergistic effect of mechanogrowth factor (MFG), an
isoform of insulin-growth factor-1 with a chemokine-like
function, with a TGFβ3-decorated spongy silk fibroin-
based scaffold in osteochondral defect repair in terms of in-
creased MSC recruitment and suppression of fibrocartilage
formation [82].
Alternatively, the use of devitalised cartilaginous templates
generated by genetically modified MSCs for the generation
of the extracellular matrix template [83, 84] may presum-
ably be applied for cartilage TE in order to attract resident
stem/progenitor cells. As an example, MSCs overexpress-
ing a potent, matrix-interacting antiangiogenic protein and
undergoing early in-vitro chondrogenic differentiation
could serve as a template for later decellularisation.

Indirect strategies
Alternative strategies consist of providing cues at the site of
the injury to influence the recipient’s environment, which
in turn would induce differentiation by indirect activation/
inhibition of key molecular pathways. The main cues of
a traumatic joint environment have been extensively de-
scribed in recent reviews [85, 86], and they are beyond the
scope of this article. Briefly, key elements playing a role
within a traumatic joint environment include (i) the trig-
ger of inflammatory and immune responses and (ii) the in-
crease of vascularisation. These events are not present dur-
ing embryonic development of cartilage and they have to
be considered while building up an efficient MSC-based
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TE therapeutic approach for cartilage repair, eventually fa-
vouring final cartilage regeneration after the implantation
of a tissue-engineered graft.
As a first example, inflammatory cues could be exploited
and/or modulated in order to improve cartilage repair and
the integration of a restored chondral surface to the
subchondral bone. It is well known that inflammation is
the first phase of tissue repair and that inflammatory cells
are crucially involved in the initiation of chondrogenic dif-
ferentiation and repair processes [87]. Inflammatory cells
(i.e., macrophages) have indeed been demonstrated to be
key players in healing processes by orchestrating the early
regenerative response to injuries [88]. Recent studies have
shown that monocytes polarised towards tissue repair –
namely anti-inflammatory macrophages (M2) [89] – con-
sistently had a synergistic effect on the cartilage-forming
capacity of MSCs in in-vitro co-culture models [90]. In-
flammatory cells infiltrating the damaged cartilage area
could thus be exploited as a strategy to improve osteochon-
dral repair at injured joint sites by directly enhancing the
chondrogenic capacity of implanted/recruited MSCs. This
can be accomplished by the development of scaffolds cap-
able of promoting the recruitment/polarisation of tissue-re-
pair macrophages [91] and concomitantly stimulating MSC
chondrogenesis through the controlled release of instruct-
ive factors.
It is well known that continuous inflammation at the defect
site leads to aberrant angiogenesis [92]. This may affect
the fate of both cartilage generated through an implanted
graft and the repaired tissue itself. Indeed, chondrocytes
are exposed to a hypoxic environment from development
throughout adulthood and a beneficial effect of low-oxygen
conditions on chondrogenic phenotype has been observed
in cultured human articular chondrocytes [93, 94]. In con-
trast, vascular invasion through vascular endothelial
growth factor (VEGF) signalling is essential for progres-
sion from cartilaginous towards bone tissue during endo-
chondral ossification [95]. Based on this, several studies
have addressed the influence of blocking angiogenesis and
of low oxygen tension on the stability of engineered car-
tilage. When muscle-derived stem cells were genetically
modified to overexpress a soluble VEGF inhibitor and
BMP-4, cartilage formation by these cells, in comparison
with cells modified for BMP-4 only, was improved in a
rat articular cartilage defect model in both healthy [96]
and osteoarthritic conditions [97]. Hyaluronic acid- / fibrin-
based scaffold functionalised with bevacizumab (an anti-
VEGF drug currently in use) and seeded with nasal chon-
drocytes reliably developed into cartilaginous tissue stable
upon subcutaneous implantation, whereas nonfunctional-
ised scaffolds were mostly resorbed as a result of vessel-
mediated ingrowth of matrix-digesting monocytes [98].
Moreover, in a comparison of the effect of hypoxia and
normoxia on MSCs cultured under standard 3D chondro-
genic conditions in the presence of TGFβ, suppression of
hypertrophic markers and a phenotype resembling articular
cartilage was observed [99]. Such hypoxic conditions were
necessary for the whole in-vitro culture period and the
hypoxia-primed cartilage templates showed a reduced ex-
tent of calcification upon ectopic implantation [100]. Col-
lectively, these findings indicate that the inhibition of an-

giogenesis and the maintenance of a hypoxic environment
might be key requisites for functional performance of en-
gineered cartilage repair tissue.

Biomaterials for the controlled
delivery of bioactive signals for
developmental re-engineering

Once the effective stimuli for stable cartilage repair have
been identified (see previous section), a strategy for their
efficient delivery to the injury site has to be defined. To this
end, we envision immobilising them within grafts and con-
trolling their spatiotemporal release (fig. 3). This requires
the exploitation of innovative technologies in the field of
biomaterials.
There are currently numerous techniques available for
simple localised delivery of growth factors, in particular
by hydrogels based either on biomolecules such as extra-
cellular matrix proteins or polysaccharides, or on synthetic
polymers such as poly(ethylene)glycol. Growth factors can
be physically incorporated into and immobilised in the gel
network by covalent (reviewed in [101]) or affinity binding
(reviewed in [102, 103]). Specific tethering of the growth
factors allows their controlled release. In the case of co-
valent attachment, the release can be tuned by addition-
ally inserting cell-responsive linker sequences which are,
for example, recognition-sites for metalloproteases. With
affinity binding, the affinity of the specific interaction part-
ners governs release kinetics. Furthermore, affinity binding
offers the possibility of manipulating the activity of the
growth factor. There are hydrogel systems using naturally
derived growth factor binding segments from heparin, fib-

Figure 3

Developmental re-engineering strategy for cartilage repair. We
envision the implantation of a graft fitting the site of the injury and
able to integrate and release in a spatiotemporally controlled
manner either one or several bioactive factors among: (a)
developmentally inspired signals to guide either implanted or (b)
resident progenitor cells towards a chondrogenic phenotype, (c)
factors for the recruitment and polarisation of tissue-repair
macrophages or (d) anti-angiogenic factors.
MSC = mesenchymal stromal/stem cell
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rin and akin that either do not interfere or enhance the
activity of the growth factor. In contrast, bound factors
are inactive in hydrogels in which binding happens to the
active site of the morphogen as, for example, when pep-
tides derived from receptors are included in the gel back-
bone. Thus, these hydrogel systems can act to sequester
and eventually to release growth factors, possibly generat-
ing gradients [102].
For the dynamic adjustability of biomaterials targeting
temporal control over growth factor release, light-mediated
chemistries have been recently introduced as an emerging
tool (reviewed in [104]). Methods such as light-activated
enzymatic patterning of synthetic hydrogels, in which the
light-reversible protection group blocks the recognition site
for the enzyme in the gel network, allow the functional-
isation of the hydrogel with signalling factors with high
spatial resolution while maintaining their bioactivity [105].
However, these strategies allow the material to be tuneable
only in vitro prior to implantation. Cartilage is naturally ex-
posed to mechanical loading; therefore, systems in which
growth factor release is governed mechanically might lead
to the possibility to adjust growth factor delivery after im-
plantation. Moghadam et al. showed that cyclic loading of
a hydrogel consisting of thermosensitive nanoparticles and
a physically entrapped drug triggers, within a few minutes,
a temperature-mediated shrinkage of the nanoparticles that
results in higher permeability of the hydrogel and thereby
facilitates release of the drug [106]. Moreover, the field of
drug release from photosensitive beads has been growing
[107] and may also be adapted for TE applications. Lee and
colleagues demonstrated that photo-caged adhesion ligand
RGD (the tripeptide Arg-Gly-Asp) in subcutaneously im-
planted hydrogels can be activated and host cell colonisa-
tion can be controlled spatiotemporally upon exposure to
transdermal light [108].
Moreover, there is increasing evidence that physical prop-
erties of the scaffold can steer chondrogenic differentiation.
It was shown that glycosaminoglycan-based scaffolds of
lower crosslinking density and lower stiffness support car-
tilaginous matrix accumulation by human MSCs in a chon-
drogenic medium [109] or induce increased SOX9 expres-
sion in rat MSCs in absence of any other differentiation
supplements [110]. Therefore, in addition to biochemical
factors, the physical parameters of scaffolds also should be
taken into account.

Conclusions

In this review, we discuss the possibility to apply the
paradigm of “developmental re-engineering” to cartilage
repair and regeneration, by following three main steps:
learn, simplify/adapt and implement.
According to this vision, the regeneration of functional and
stable cartilaginous tissues should start with an understand-
ing of the pathways involved in cartilage embryonic devel-
opment. A simplification/adaptation step is then proposed
to extrapolate from the in-vivo complexity key signals that
are specifically efficient on clinically relevant adult stem
cells models. Developmentally inspired protocols obtained
as outcomes of this second step have finally to be imple-
mented in the native tissue, while considering and possibly

exploiting the peculiar features of an adult environment.
This would lead to the design of artificial developmental
pathways in the attempt to either recapitulate directly de-
velopmental events or to alter the adult environment to be-
come compatible with developmental processes. The latter
case is exemplified by an anti-angiogenic strategy. During
development and throughout life articular cartilage is an
avascular tissue, but upon injury vascular ingrowth can oc-
cur. Therefore, re-establishing the physiological low oxy-
gen tension by blocking angiogenesis may restore con-
ditions that steer resident or injected mesenchymal pro-
genitor cells towards chondrogenic differentiation [111].
Ultimately, the proposed design of artificial development-
al pathways may offer a chance for increasing the robust-
ness of regeneration strategies, especially for those tissues,
like cartilage, where after development the self-healing ca-
pacity remains limited.
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Figures (large format)

Figure 1

Classification of mesenchymal stromal/stem cell (MSC)-based strategies based on the type and differentiation stage of cells (capital letters in
parenthesis) and additional components (Roman numbers in parenthesis) present in the graft. Below are listed examples of MSC-based graft
material used in selected clinical trials registered at http://clinicaltrials.gov (keywords used for the research: stem cells AND cartilage repair).
A–II: bone marrow MSC aspirate in a scaffold (identifier NCT00885729).
B–III: MSCs isolated from adipose tissue specimens (liposuction) combined with platelet-rich plasma (identifier NCT01739504).
B–IV: concentrated bone marrow-derived cells on a collagen scaffold, covered with a platelet gel (identifier NCT02005861); MSCs separated
from redundant joint tissues (bone marrow or synovium) combined with cartilage fragments in a fibrin gel (identifier NCT01301664).
C–I: expanded adipose tissue-derived MSCs alone (identifier NCT01399749).
C–III: expanded bone marrow MSCs combined with platelet lysate (identifier NCT02118519).
C–IV: expanded bone marrow MSCs combined with chondrocytes in a fibrin gel (identifier NCT02037204).
D–II: chondrogenic pellets derived by bone marrow MSCs embedded in a scaffold (identifier NCT00891501).
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Figure 2

Developmental re-engineering concept: learn, simplify/adapt, implement. After the understanding of pathways involved in the embryonic
development of the targeted tissue to repair (1), a simplification/adaptation step is required to extrapolate from the in-vivo complexity the key
signals that are effective in adult stem cells models. This step (2) could be accelerated by using recently introduced high-throughput in-vitro

screening tools. The most effective developmentally inspired protocol defined in vitro for the acquisition of functional cartilage is then
implemented in the adult/injured target tissue. For this aim, different strategies, either direct or indirect, can be identified (3).
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Figure 3

Developmental re-engineering strategy for cartilage repair. We envision the implantation of a graft fitting the site of the injury and able to
integrate and release in a spatiotemporally controlled manner either one or several bioactive factors among: (a) developmentally inspired
signals to guide either implanted or (b) resident progenitor cells towards a chondrogenic phenotype, (c) factors for the recruitment and
polarisation of tissue-repair macrophages or (d) anti-angiogenic factors.
MSC = mesenchymal stromal/stem cell
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