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Summary

Dual-energy computed tomography (DECT) angiography
of the chest provides a combined morphological and func-
tional analysis of the lung, usually obtained in a single ac-
quisition without extra radiation or injection of extra intra-
venous iodine contrast.
The parenchymal iodine maps generated by DECT are well
correlated with scintigraphy, and are becoming an essential
tool for evaluating patients with pulmonary vascular dis-
eases.
With a single DECT acquisition, complete imaging of pul-
monary hypertension is now available, displaying vascular
anatomy, parenchymal morphology and functional assess-
ment. Triangular pulmonary perfusion defects in chronic
thromboembolic pulmonary hypertension may be clearly
analysed even in the presence of distal arterial occlusion.
Perfusion heterogeneities seen in patients with pulmonary
arterial hypertension reflect mosaic perfusion and may be
helpful for the diagnosis, severity assessment and prognos-
is of the disease. Vascular or parenchymal abnormalities
can also be analysed with perfusion defects to determine
their aetiology. Pulmonary arterial hypertension due to con-
genital heart disease can be assessed with a single DECT,
even in the neonatal population. Furthermore, new applica-
tions are emerging with ventilation imaging or myocardial
perfusion imaging obtained by DECT and should be con-
sidered.
In conclusion, DECT of the thorax enables the simultan-
eous and noninvasive assessment of vascular anatomy, par-
enchymal morphology and functional pulmonary imaging
in various groups of PH.
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Introduction

Pulmonary hypertension (PH) is a haemodynamic and
pathophysiological condition defined as an increase in
mean pulmonary arterial pressure (mPAP) above or equal
to 25 mm Hg at rest as assessed with right heart catheterisa-
tion [1]. Because multiple clinical conditions are involved,
five different aetiological groups are defined according to
their specific and various pathological characteristics [2].
Regarding the severe prognosis of PH, the first major chal-
lenge remains early diagnosis, because of its insidious
symptoms; in fact, data show that most patients present a
severe haemodynamic alteration associated with delayed
diagnosis [3, 4]. The second issue is to determine the PH
group in order to decide upon an optimal treatment. The
distinction between pulmonary arterial hypertension (PAH)
and other causes of PH [5], even in the paediatric PH pop-
ulation [6], may be challenging.
Conventional computed tomography (CT) of the chest may
be helpful in diagnosing PH and determining underlying
pathologies such as pulmonary or vascular abnormalities.
Furthermore, functional information can then be added to
CT by the use of a dual-energy protocol. As a consequence,
new and noninvasive tools that might increase diagnostic
accuracy and functional imaging [7–11] are being deve-
loped. Magnetic resonance imaging offers functional quan-
tification but suffers from a lack of resolution of lung par-
enchyma and pulmonary arteries [12].
Dual-energy computed tomography (DECT) holds promise
by combining morphological analysis with functional in-
formation on pulmonary perfusion. In this review, we de-
scribe how DECT imaging with perfusion maps may play
an important role in the complete imaging of PH [13, 14].

DECT technology and principles

DECT is a recently available technology that enables com-
bined functional and morphological analysis of the lung.
Several DECT techniques have been proposed [15], includ-
ing dual-source systems with two X-ray tubes for simul-

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 1 of 20



taneous low- and high-kilovoltage image acquisition [16].
Another technique uses rapid kilovoltage switching at low-
and high-kilovoltage spectra with a single-source CT sys-
tem [17]. Whatever the technique used, DECT images are
obtained in a single simple acquisition.
Because of the attenuation properties of iodine at two dif-
ferent photon energies (80 and 140 kV), a dual-energy
technique can generate pulmonary blood volume maps and
quantify the iodine concentration in the parenchyma. It
has been demonstrated that the local distribution of iodine
contrast medium correlates well with pulmonary perfusion
[18]. The generated pulmonary blood volume maps are
combined with mediastinal images to permit simultaneous
analysis of the grey-scale vasculature and colour-scale par-
enchymal perfusion, with parenchymal images (fig. 1).
Furthermore, the iodine concentration in the lung allows an
objective and quantitative analysis.
In comparison with conventional CT, no additional intra-
venous iodine contrast medium is needed; functional image
processing is simply added. Furthermore, it is not associ-
ated with increased radiation levels because the radiation
dose is split between the two tubes [19]. Table 1 summar-
ises the mean effective dose reported in literature of non-
invasive or invasive examinations used in PH imaging [18,
20–22]. In our centre, the mean dose-length-product for a
DECT protocol is 252 ± 92 mGy.cm, corresponding to a
mean effective dose of 3.5 ± 1.3 mSv.
To date, published works show that perfusion measured
with DECT has an excellent correlation with the perfusion
measured with pulmonary scintigraphy. Several studies
have already demonstrated that the perfusion maps can
be used to assess qualitatively and quantitatively areas of
lung hypoperfusion, in a method similar to scintigraphy
[23, 24]. Furthermore, DECT enables “superior anatomic
and functional comprehension” by simultaneously record-
ing the vascular anatomy, parenchymal morphology and
functional perfusion without extra radiation dosage. DECT
seems to offer clear advantages in comparison with con-
ventional CT or pulmonary scintigraphy (table 2).

Many applications are available for clinical use, and per-
fusion maps are well established for evaluating acute pul-
monary embolism [25–28]. In fact, with DECT it is pos-
sible to colour code iodine distribution in the lung par-
enchyma, in order to visualise and quantify perfusion de-
fects caused by emboli. These perfusion defects reflect the
physiological impairment caused by embolic disease, and
are correlated with endoluminal clot burden and increased
right-to-left ventricular ratios [21, 29, 30], or with the pro-
gnosis of pulmonary embolism [31].
Nevertheless, these iodine maps require careful interpret-
ation. Pseudodefects can be pitfalls, because of artefacts
such as beam-hardening artefacts or motion artefacts near
to the heart or diaphragm. These artefacts need to be
avoided or recognised before a diagnosis is reached [32].
Iodine maps always require interpretation in relation to
morphological pulmonary reconstructions, in order to
avoid misdiagnosis of true segmental perfusion defects due
to pulmonary pathologies such as emphysema or broncho-
pathies, Finally, because of the field of view, greater noise
and a pitch below 3, the DECT protocol has some limita-
tions for obese patients (body mass index >30 kg/m2), or
patients with severe tachypnoea, where an enlarged field of
view or a higher pitch would be more appropriate.”

DECT in chronic thromboembolic
pulmonary hypertension (group 4)

Similar segmental perfusion defects in patients with chron-
ic thromboembolic pulmonary hypertension (CTEPH) have
already been widely evaluated [33–37], as previously stud-
ied in acute pulmonary embolism. The incomplete resolu-
tion of endovascular thromboembolic material is respons-
ible for intravascular scars, resulting in stenosis, web form-
ation or occlusion of pulmonary arteries. The resulting per-
fusion heterogeneities are well described on planar scinti-
graphy and, more recently, DECT imaging. These segment-
al perfusion defects are readily recognised as triangular
areas following the pulmonary arterial tree. In fact, the tri-
angular defects are seen more frequently in segments with

A B C D

Figure 1

Technical principles. The dual-energy system with two X-ray tubes permits simultaneous 80 (A) and 140 kV (B) image acquisition in order to
generate an iodine map (C) fused with mediastinal reconstructions (D).

Table 1: Mean effective doses reported in literature of imaging uses applicable to pulmonary hypertension.

Postero-
anterior and
lateral chest
X-ray

Conventional
chest CT

Chest dual-
energy CT

Pulmonary
angiography

Lung
perfusion
(99mTc-MAA)

Lung
ventilation
(xenon 133)

Lung
ventilation
(99mTc-DTPA)

Right/left heart
cardiac
catheterisation

Mean effective dose in mSv
(range)

0.1
(0.05–0.24)

5.6 3.85
(2.0–5.2)

5
(4.1–9)

2.0 0.5 0.2 7
(2.0–15.8)

CT = computed tomography; DTPA = diethylenetriaminepentaacetic acid; MAA = microaggregated albumin
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severe pulmonary arterial features such as webs, bands,
stenoses or occlusions [35] (fig. 2). The extent of perfusion
defects seen on DECT could be a prognostic indicator
for thromboendarterectomy [36]. Thus, DECT can provide
a single unique acquisition for diagnosis, planning and
follow-up of CTEPH, and correlates well with pulmonary
angiography and scintigraphy (fig. 3).
Conventional CT angiography (CTA) can naturally show
direct vascular signs of CTEPH or a mosaic lung pattern
[38]. Sometimes peripheral subsegmental occlusions may
be difficult or poorly visualised, and conventional CTA
cannot provide functional information about pulmonary
perfusion. For these reasons, single source CTA has a sens-
itivity of 64–70% for depiction of segmental and subseg-
mental chronic thromboembolism compared with selective
pulmonary angiography [39]. This is why it has been re-
ported that the sensitivity for the diagnosis of CTEPH with
conventional CTA is 51% versus 97% with scintigraphy
[40]. With DECT, perfusion maps could provide functional
information similar to perfusion scintigraphy and also can
provide, in a single simple technique, high anatomic res-
olution of vessels with functional imaging. Furthermore,
with a retrospective analysis after the hypoperfusion depic-

tion, it will be possible to diagnose subsegmental signs of
CTEPH and increase the sensitivity of the diagnosis.
Several studies assessed the correlation of DECT with scin-
tigraphy. A correlation between DECT and single photon
emission computed tomography (SPECT) in 51 patients
found that DECT with iodine maps had a sensitivity of 96%
and a specificity of 76% for CTEPH [34]. The authors con-
cluded that iodine maps enable depiction of smaller areas
of hypoperfusion because of higher spatial resolution and
that DECT is comparable to scintigraphy for pulmonary
perfusion analysis in CTEPH. The resolution of DECT,
scintigraphy and SPECT is 0.5 mm, 7–8 mm and 3–4 mm,
respectively. However, intra-arterial defects can be confid-
ently detected only in vessels measuring more than 2 mm.
Consequently, it has been reported that perfusion defects
are occasionally seen in the absence of a visible embolus
on CTA [25, 41]. These small defects may reflect hypoper-
fusion below the resolution limits of conventional CTA for
the visualisation of emboli (fig. 4).
Scintigraphy does not provide morphological information
such as parenchymal changes or vascular anatomy and can
lead to diagnostic errors, such as acute pulmonary embol-
ism. The integrated DECT approach with lung and vascular
analysis combined with functional analysis may, therefore,

Table 2: Comparison between conventional CT, pulmonary scintigraphy and DECT imaging for pulmonary hypertension imaging assessment.

Conventional CT Pulmonary scintigraphy DECT Imaging
Vascular analysis Pulmonary artery diameter

Pulmonary arteries with diagnosis of
clot, stenosis, occlusion, webs, bands

Systemic artery analysis

Cardiac changes (RV dilatation and
hypertrophy)

No morphological vascular analysis Identical to conventional CT:

Pulmonary artery diameter

Pulmonary arteries with diagnosis of
clot, stenosis, occlusion, webs, bands

Systemic artery analysis

Cardiac changes (RV dilatation and
hypertrophy)

Parenchymal analysis Mosaic lung perfusion

Pulmonary infarcts

Ground glass nodules

No morphological parenchymal
analysis

If ventilation imaging:

Ventilation- perfusion relationship
assessed

Identical to conventional CT:

Mosaic lung perfusion

Pulmonary infarcts

Ground glass nodules

Perfusion analysis No perfusion analysis Gold standard for perfusion analysis:

Well-defined segmental perfusion
defects

Or a “mottled” pattern

Iodine maps correlated with

scintigraphy:

Well-defined segmental perfusion
defects

Or a “mottled” pattern

With regional analysis

CT = computed tomography; DECT = dual-energy computed tomography; RV = right ventricle

A B C

Figure 2

Chronic thromboembolic pulmonary hypertension (CTEPH). Vascular (A) and parenchymal (B) signs of CTEPH with proximal marginal
occlusion (arrows) and mosaic pattern (stars). Functional information simply added with triangular perfusion defects (stars) on the iodine
maps (C).
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be more advantageous than a sequential approach with
ventilation/perfusion scintigraphy and conventional CTA.
The presence of matched ventilation and perfusion defects
can be a confounder in the scintigraphic evaluation and
it may be impossible to determine if these areas reflect a
chronic physiological response to acute or chronic vascu-
lar obstruction or concomitant obstructive airways disease.
Thus, perfusion defects seen in DECT always have to be
correlated with morphological changes to help determine
their significance.

DECT in pulmonary arterial
hypertension (group 1) and
pulmonary hypertension with unclear
multifactorial mechanisms (group 5)

Nowadays, DECT imaging can be used for pathologies oth-
er than CTEPH and seems to offer advantages for PH char-
acterisation because different DECT findings have been
described in acute pulmonary embolism, CTEPH and
idiopathic PAH (IPAH). In fact, perfusion defects are smal-

ler and less defined in PAH than in CTEPH. This is likely
due to focal under- and overperfusion as a result of the
structural pulmonary vascular changes that occur in PH,
which include vascular endothelial damage, cellular prolif-
eration and occlusion in the distal pulmonary vasculature.
Perfusion heterogeneities in DECT imaging are also com-
mon and seen in most cases of PAH. Findings of perfusion
inhomogeneities related PAH have long been recognised
in scintigraphy, and often are referred to as having a
“mottled” pattern [42]. These perfusion defects are differ-
ent from those seen in CTEPH, with nonsegmental and
poorly defined defects (fig. 5). This heterogeneity is related
to the severity of the disease. In PAH, this perfusion vari-
ability on scintigraphy is well correlated with pulmonary
vascular resistance, as Talwar et al. showed [43]. Recently,
similar results were published for DECT techniques (fig.
6). Ameli-Renani et al. described an increased enhance-
ment of pulmonary arteries with reduced iodine lung per-
fusion in PH, and a good correlation of DECT perfusion
heterogeneities with pulmonary vascular resistance; they
showed a greater heterogeneity in parenchymal iodine

A B C

D E F

Figure 3

Chronic thromboembolic pulmonary hypertension (CTEPH). Segmental occlusions of pulmonary arteries (arrow) in the pulmonary angiography
(A) are clearly visible on the CT angiography (B), with normal lung (C), and responsible for triangular perfusion defects (arrows) on the
perfusion maps (D) confirmed by the ventilation-perfusion scintigraphy (E–F).

A B

Figure 4

Peripheral chronic thromboembolic pulmonary hypertension (CTEPH). No visible pulmonary artery emboli on standard CTPA are seen (arrows)
(A) but a wide perfusion defect on the perfusion maps is depicted (B) and allows the diagnosis of peripheral CTEPH.
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maps in PH without pulmonary embolism [13]. The authors
concluded that perfusion heterogeneities seen in DECT ap-
pear to be a direct reflection of pulmonary vascular resist-
ance.
Chest DECT seems an increasingly essential tool for ima-
ging pulmonary perfusion, and could be used not only for
IPAH but also for all causes in groups 1 and 5, as demon-
strated in portopulmonary hypertension (fig. 7). Further-
more, some ground-glass opacities can be visualised in
PAH, for example in the case of Eisenmenger’s syndrome
shown in figure 8. Therefore, iodine maps could help to
differentiate ground-glass opacities due to infiltration from
those of vascular origin, as has already been reported in the
literature [44].
Finally, applications of the DECT protocol are also an
emerging technology for investigating congenital heart dis-
ease in the adult or paediatric populations. Pulmonary per-
fusion imaging is available even for very small children
with the same DECT acquisition and without extra radi-
ation dosage. This DECT allows combined morphological

analysis of the congenital heart disease and functional as-
sessment of pulmonary perfusion in the neonatal popula-
tion (fig. 9).

DECT in pulmonary hypertension due
to lung disease and/or hypoxia (group
3)

DECT simultaneously provides an assessment of the per-
fusion status of the lungs and parenchymal images in a
single acquisition. Because of this simultaneous study of
the perfusion maps with conventional parenchymal images,
the severity of pulmonary hypoperfusion can be determin-
ed. Perfusion abnormalities may be caused by parenchymal
destruction as in interstitial lung disease, bronchopathy or
pulmonary emphysema, and it is mandatory to analyse the
iodine maps with the lung reconstructions before deciding
on the origin of perfusion defects. Perfusion defects may
match areas of parenchymal destruction. For example, per-
fusion defects in areas of bronchopathy suggest hypoperfu-

A B

Figure 5

Difference of perfusion defects in pulmonary hypertension depending on the aetiology: triangular well-defined defect seen in chronic
thromboembolic pulmonary hypertension (A) and poorly defined defect with mottled pattern seen in idiopathic pulmonary arterial hypertension
(B).

A B

Figure 6

Perfusion heterogeneities in idiopathic pulmonary artery hypertension (stars) in two different patients (A/B). The dilatation of the arteries in
pulmonary hypertension (arrows) is not always observed depending on the severity of pulmonary hypertension.

A B C D

Figure 7

Portopulmonary hypertension in a 16-year-old. No abnormalities were found on morphological computed tomography (A/B), but heterogeneous
perfusions were present on the perfusion map (stars, C/D).
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sion due to airways disease secondary to pulmonary artery
vasoconstriction (fig. 10).
Perfusion could also be assessed with DECT in patients
with PH caused by emphysema or lung fibrosis (fig. 11).
The regional severity of pulmonary emphysema can be
evaluated by correlating functional perfusion images with
anatomical changes. Lee and coworkers found that DECT
could be used for emphysema quantification and regional
perfusion evaluation by use of iodine maps [45]. In em-

physema, destruction of alveoli and interstitial spaces leads
to a loss of pulmonary vessels, responsible for a decrease in
perfusion. In lung fibrosis, perfusion defects reflect patho-
logical processes such as small-vessel remodelling or
fibrotic obliteration of the pulmonary vasculature.
Recently, ventilation imaging with DECT has emerged.
Several studies have evaluated regional lung ventilation
imaging with DECT after xenon [46–48] or krypton inhal-
ation [49]. Ventilation maps promise to be a supplementary

A B C

Figure 8

Eisenmenger’s syndrome secondary to a large ventricular septal defect. No vascular abnormalities were seen (A) but some ground-glass
opacities (arrow) (B) with the absence of perfusion corresponded to vascular ground-glass opacities surrounded by clear heterogeneous
pulmonary perfusion (C).

A B C

Figure 9

Pulmonary hypertension due to a patent ductus arteriosus (PDA) connecting the descending aorta (DAO) to the left pulmonary artery (LPA) (A)
in a 2-month-old boy treated for a right diaphragmatic hernia (B) resulting in hypoplasia of the right pulmonary artery (arrow). The functional
consequences (C) are extended hypoperfusion of the right lung (star).

A B

Figure 10

Severe bronchopathy (arrow) in the left lower lobe (A) associated with extended hypoperfusion (arrow) and dilatation of the right cardiac
cavities (stars) (B).

A B C D

Figure 11

Chronic obstructive pulmonary disease. Correlation between panlobular emphysema (A/B) and pulmonary hypoperfusion (C/D) (stars).
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technique and enable the combined assessment of regional
ventilation and perfusion, a surrogate for lung scintigraphy.
With xenon- or krypton-enhanced DECT, ventilation maps
can be generated to analyse regional ventilation, for ex-
ample in chronic obstructive pulmonary disease (COPD) or
lung fibrosis. This combination of lung perfusion and vent-
ilation mapping promises a complete and comprehensive
assessment of ventilation, perfusion and morphology of the
pulmonary parenchyma [50].

DECT in pulmonary hypertension due
to left heart disease (group 2)

PH due to left heart disease promotes a cascade of dam-
aging anatomical and functional changes of the pulmonary
venous, capillary and arterial circulation, eventually accel-
erating right ventricular dysfunction and failure. Several
authors have shown that patients with left heart disease
had symmetrical perfusion defects in the lower lungs on
pulmonary ventilation/perfusion scintigraphy, which were
caused by redistribution of pulmonary blood flow [51].
Clinical cardiac DECT applications are emerging and have
been described for dual-energy myocardium perfusion
(with or without a stress test) or myocardium viability ima-
ging [52–54]. Cardiac DECT techniques promise to as-
sess simultaneously coronary artery stenosis and function-
al myocardial perfusion, with exactly the same technology
as pulmonary DECT. With a stress test, it will be possible
to identify haemodynamically significant coronary stenos-
is [55]. Furthermore, late enhancement of the myocardium
on DECT could identify chronic myocardial infarction and
its eventual viability as well as the images obtained using
cardiac magnetic resonance imaging [56, 57]. Thus, cardiac
DECT should be considered for the depiction of left heart
disease in patients with PH.

Conclusion

Because DECT can combine morphological pulmonary
vascular imaging and perfusion map characterisation, the
technique provides a powerful “one-stop” examination of
pulmonary hypertension for diagnosis, assessment of
severity or follow-up, irrespective of the cause or age, and
with no extra radiation. The role of DECT in the diagnostic
algorithm of PH has to be confirmed by further studies.
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Figures (large format)
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Figure 1

Technical principles. The dual-energy system with two X-ray tubes permits simultaneous 80 (A) and 140 kV (B) image acquisition in order to
generate an iodine map (C) fused with mediastinal reconstructions (D).
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Figure 2

Chronic thromboembolic pulmonary hypertension (CTEPH). Vascular (A) and parenchymal (B) signs of CTEPH with proximal marginal
occlusion (arrows) and mosaic pattern (stars). Functional information simply added with triangular perfusion defects (stars) on the iodine maps
(C).
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Figure 3

Chronic thromboembolic pulmonary hypertension (CTEPH). Segmental occlusions of pulmonary arteries (arrow) in the pulmonary angiography
(A) are clearly visible on the CT angiography (B), with normal lung (C), and responsible for triangular perfusion defects (arrows) on the perfusion
maps (D) confirmed by the ventilation-perfusion scintigraphy (E–F).
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Figure 4

Peripheral chronic thromboembolic pulmonary hypertension (CTEPH). No visible pulmonary artery emboli on standard CTPA are seen (arrows)
(A) but a wide perfusion defect on the perfusion maps is depicted (B) and allows the diagnosis of peripheral CTEPH.
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Figure 5

Difference of perfusion defects in pulmonary hypertension depending on the aetiology: triangular well-defined defect seen in chronic
thromboembolic pulmonary hypertension (A) and poorly defined defect with mottled pattern seen in idiopathic pulmonary arterial hypertension
(B).
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Figure 6

Perfusion heterogeneities in idiopathic pulmonary artery hypertension (stars) in two different patients (A/B). The dilatation of the arteries in
pulmonary hypertension (arrows) is not always observed depending on the severity of pulmonary hypertension.
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Figure 7

Portopulmonary hypertension in a 16-year-old. No abnormalities were found on morphological computed tomography (A/B), but heterogeneous
perfusions were present on the perfusion map (stars, C/D).
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Figure 8

Eisenmenger’s syndrome secondary to a large ventricular septal defect. No vascular abnormalities were seen (A) but some ground-glass
opacities (arrow) (B) with the absence of perfusion corresponded to vascular ground-glass opacities surrounded by clear heterogeneous
pulmonary perfusion (C).
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Figure 9

Pulmonary hypertension due to a patent ductus arteriosus (PDA) connecting the descending aorta (DAO) to the left pulmonary artery (LPA) (A)
in a 2-month-old boy treated for a right diaphragmatic hernia (B) resulting in hypoplasia of the right pulmonary artery (arrow). The functional
consequences (C) are extended hypoperfusion of the right lung (star).
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Figure 10

Severe bronchopathy (arrow) in the left lower lobe (A) associated with extended hypoperfusion (arrow) and dilatation of the right cardiac cavities
(stars) (B).
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Figure 11

Chronic obstructive pulmonary disease. Correlation between panlobular emphysema (A/B) and pulmonary hypoperfusion (C/D) (stars).
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