Appendix

Supplement to:

Chammartin F, Probst-Hensch N, Utzinger J, Vounatsou P. Mortality atlas of the main causes of death in Switzerland, 2008–2012. Swiss Med Wkly. 2016;146:w14280.

Appendix 1: Cause of death classification according to ICD-10 code

We got inspired by the CDC classification for showing mortality data by geographic areas (CDC, 2009) to group our data into 32 causes of death. Table A1 shows the causes of death together with the corresponding International classification of Diseases (ICD)-10 codes

Cause of death	ICD-10 code
Cancer	
Breast cancer	C50-C509
Gynecological cancers (cervix uteri, corpus uteri and ovary)	C53-C56
Colorectal cancer	C18-C218
Leukaemia	C91-C959
Lung cancer	C33-C349
Non Hodgkin's lymphoma	C82-C859
Pancreas cancer	C25-C259
Prostate cancer	C61
Stomach cancer	C16-C169
Urinary tract cancer	C64-C689
Other cancer	C00-C159,C17-C179,C22-C249,
	C26-C329,C37-C499,C51-C52,
	C57-C609,C62-C639,C69-C819,
	C86-C866,C88-C887,C90-C903,
	C96-C97
Cardiovascular diseases	
Heart diseases	
Hypertensive heart disease with or without renal disease	I11-I139, I159
Ischemic heart diseases	120-1259
Other diseases of heart	100-1099,126-1519
Atherosclerosis	170-1709
Hypertensive disease (hypertension and hypertensive renal disease)	I10,I12-I129
Stroke (cerebrovascular diseases)	160-1698
Other diseases of circulatory system	171-1788
External cause of death	
Assault (homicide)	X859-Y099
Intentional self-harm (suicide)	X60-X849,Y87-Y870
Motor vehicle accidents	V02-V049,V09-V090,V092,
	V124-V149,V19-V194,V20-V799,
	V81, V82, V835, V872, V89, V892
All other unspecified accidents and adverse effects	V01-V019,V05-V061,V093-V099,
-	V11-V119,V15-V189,V199,
	V80-V809, V813, V825-V829, V899
	V904-X599,Y40-Y86,Y88-Y883
All other external causes	Y10-Y349,Y872,Y89-Y899
Other causes	110 1010,1012,100 1000
Certain conditions originating in the perinatal period	P00-P968
Congenital malformations, deformations and chromosomal abnormalities	Q00-Q999
Chronic respiratory diseases	J40-J47
Alzheimer's disease	G30-G309
Diabetes	E10-E149
HIV	B20-B24
Influenza and pneumonia	J09-J189
Liver diseases	K70-K709,K73-K746
Nephritis, nephrotic syndrome and nephrosis	N01-N079,N17-N19,N25-N26
Peptic ulcer	K25-K289
Pregnancy, childbirth and the puerperium	000-0998
Sudden infant death syndrom	R95
Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified	
Symptoms, signs and abhormar chinear and laboratory initings, not cisewhere classified	A 52-A 529
Tuberculosis	A15-A199
All other diseases	A01-A099,A24-A499,A60-B199,
	B25-B99,D002-E079,E15-G259,
	G31-H931,I80-J398,J61-K229,
	K29-K668,K71-K729,K75-M959,

Table A 1: Definition of the causes of death by the ICD-10 code.

Appendix 2: National statistics

Gender-specific age-adjusted death rates are calculated as a weighted average of the agespecific $a \ (a = 1, ..., 18)$ death rate by gender $g \ (g \in \{Female, Male\}$ as follows:

Age-adjusted death rate_g =
$$\sum_{a} (\text{weight}_a * \frac{\text{death count}_{ag}}{\text{population}_{ag}}).$$

Hence, similar weights that depend on the age structure of the total population are applied to the standard age-specific rates, readily allowing for gender comparison. Population and weights for the year 2010 in Switzerland are given in Table A2.

Age category	Age	Female population	Male population	Total population
1	0-4	$189871 \ (4.76\%)$	200758~(5.18%)	390629~(4.96%)
2	5 - 9	$186442 \ (4.67\%)$	196612~(5.07%)	383054~(4.87%)
3	10 - 14	203197~(5.09%)	213936~(5.52%)	417133~(5.30%)
4	15 - 19	220240 (5.52%)	231379~(5.97%)	451619~(5.74%)
5	20 - 24	238828~(5.98%)	246153~(6.35%)	484981~(6.16%)
6	25 - 29	257836~(6.46%)	263516~(6.80%)	521352~(6.62%)
7	30 - 34	$266170\ (6.67\%)$	268638~(6.93%)	534808~(6.80%)
8	35 - 39	278833~(6.98%)	280086~(7.22%)	558919~(7.10%)
9	40 - 44	315984~(7.91%)	318088~(8.20%)	634072~(8.06%)
10	45 - 49	321169~(8.04%)	329746~(8.50%)	650915~(8.27%)
11	50 - 54	279627~(7.00%)	286684~(7.39%)	566311~(7.20%)
12	55 - 59	243362~(6.10%)	243474~(6.28%)	486836~(6.19%)
13	60 - 64	232996~(5.84%)	226815~(5.85%)	459811~(5.84%)
14	65 - 69	205331~(5.14%)	191911~(4.95%)	397242~(5.05%)
15	70 - 74	164340~(4.12%)	139108~(3.59%)	303448~(3.86%)
16	75 - 79	145628~(3.65%)	110430~(2.85%)	256058~(3.25%)
17	80 - 84	119759~(3.00%)	74620~(1.92%)	194379~(2.47%)
18	≥ 85	123095~(3.08%)	55472~(1.43%)	178567~(2.27%)
		3992708~(100.00%)	3877426~(100.00%)	7870134 (100.00%)

Table A 2: Population and percentage (weight) of the population in Switzerland according to the 2010 census, by gender.

Appendix 3: Additional results

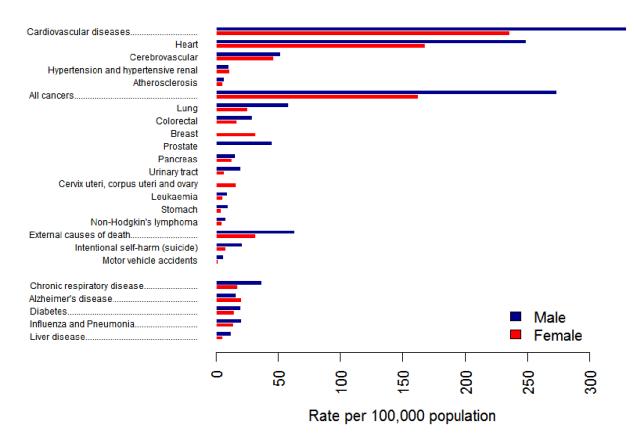


Figure A 1: Age-adjusted death rates by cause and gender.

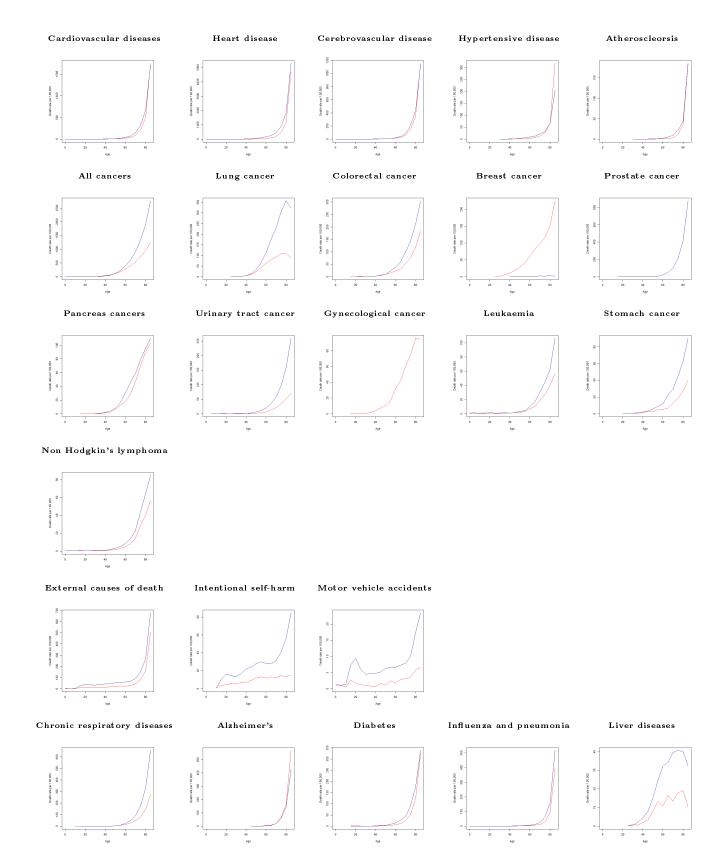


Figure A 2: Death rate per 100,000 population by cause for male (blue) and female (red).

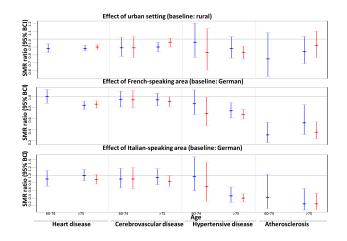


Figure A 3: Effect of differrent covariates on cardiovascular diseases for male (blue) and female (red)

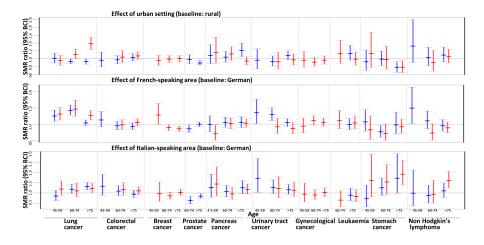


Figure A 4: Effect of differrent covariates on cancer for male (blue) and female (red)

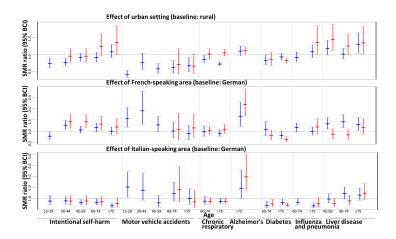
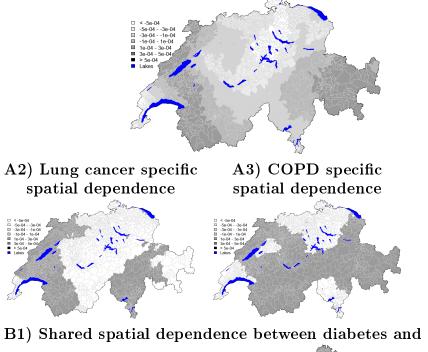



Figure A 5: Effect of different covariates on additional causes of death for male (blue) and female (red).

A1) Shared spatial dependence between lung cancer and COPD

B1) Shared spatial dependence between diabetes and cardiovascular diseases

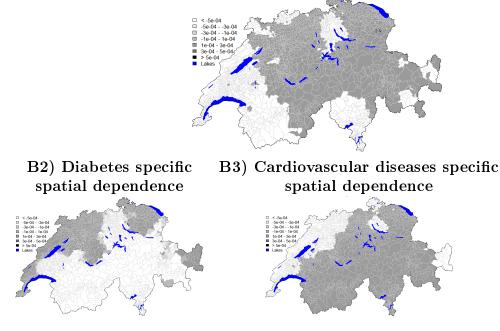


Figure A 6: Shared and disease specific spatial dependence identified by the joint modelling of A) lung cancer and chronic lower respiratory diseases (COPD) and B) diabetes and cardiovascular diseases.

	0-14	0–14 vears old	15-29	15–29 vears old	30-44	30–44 vears old	Age (45-59	Age category 45–59 vears old	60-74	60–74 vears old	>75 ve	ars old	ЧП	All-age
Cause of death	Male	[~] Female	Male	Female	Male	Female	Male [`]	Female	Male	Female	Male	Māle Female	Male	Female
Cardiovascular diseases	9	5	10	4	102	75	606	380	2214	1413	8906	15213	11844	17087
Heart disease	12	18	68	32	449	130	2558	580	7386	2889	26306	39127	36779	42776
Cerebrovascular disease	ъ	2	ю	4	64	54	296	281	1196	949	5933	10290	7499	11580
Hypertensive disease	0	0	0	0	14	4	142	50	380	218	995	2549	1531	2821
Atherosclerosis	0	0	0	0	2	2	20	×	139	51	799	1418	960	1479
All cancers	78	46	157	116	711	842	5438	4775	16607	11735	22023	18744	45014	36258
Lung cancer	0	0	5	0	104	06	1480	1011	4563	2327	3902	1971	10051	5399
Colorectal cancer	0	0	ю	10	61	54	509	388	1682	1019	2421	2380	4678	3851
Breast cancer	0	0	0	7	1	270	7	1209	13	2348	17	3152	38	6986
Prostate cancer	0	0	1	0	4	0	125	0	1388	0	5138	0	6656	0
Pancreas cancer	0	0	0	e S	35	27	389	280	1191	882	1093	1680	2708	2872
Urinary tract cancer	2	1	იე	2	18	15	274	95	964	370	1844	986	3105	1469
Gynecological cancer	0	0	0	10	0	91	0	464	0	1297	0	1707	0	3569
Leukaemia	19	11	33	19	43	30	132	86	497	340	776	782	1500	1268
Stomach cancer	0	0	7	1	53	37	244	145	557	235	727	546	1583	964
Non Hodgkin's lymphoma	ю	2	11	4	30	14	140	81	389	263	713	795	1288	1159
External causes of death	119	60	1226	361	1651	540	2196	844	1954	921	3693	4627	10839	7353
Intentional self-harm	11	2	509	163	767	282	1165	475	810	379	669	281	3931	1582
Motor vehicle accidents	43	20	280	60	200	39	257	71	197	76	184	98	1161	364
Chronic respiratory diseases	0	1	იე	0	11	ი	162	144	1354	868	3996	3112	5526	4128
Alzheimer's	0	0	0	0	0	0	13	13	216	270	2049	4985	2278	5268
Diabetes	0	0	7	9	29	15	198	62	716	404	2100	3102	3050	3606
Influenza and pneumonia	80	80	9	4	30	17	107	62	370	196	2379	3221	2900	3508
Liver diseases	0	0	1	2	107	43	655	332	972	400	461	308	2196	1085

ð	
ă	
ē	
<u>60</u>	
, age and gei	
· 🖸	
Ц	
60	
e,	
ည္	
а	
õ	
2	
E	
8	
<u> </u>	
by c	
р,	
\sim	
<u> </u>	
5	
\simeq	
ò	
õ	
õ	
Ñ	
Q	
<u> </u>	
Ξ.	
ē.	
d	
lE	
Ą.	
+	
<u>60</u>	
n	
·	
JC.	
dü	
d du	
nd du	
and du	
$-\infty$	
rla	
$-\infty$	
rla	
rla	
rla	
rla	
Switzerla	
rla	
s in Switzerla	
s in Switzerla	
Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	
s in Switzerla	

Appendix 4: Spatial analysis at municipality level Likelihood assumption

Several likelihood functions were explored to model death counts, namely the "Poisson", the "negative binomial" and the "zero inflated negative binomial" distributions.

The Poisson distribution is widely used to model count data. It is the simplest distribution that assumes the variance to be equal to the mean. Thus, our data Y_{ij} were assumed to follow a Poisson distribution $Y_{ij} \sim Poisson(\lambda_{ij}E_{ij})$, where Y_{ij} is the number of deaths due to disease *i* at municipality j (j = 1, ..., 2352), λ_{ij} is the expected number of deaths and E_{ij} represents the expected number of deaths in the general population.

However, count data are often over-dispersed and might have a larger variance than assumed by the Poisson distribution. Thus, a negative binomial distribution $Y_{ij} \sim NegBin(\mu_{ij,r})$, where $\mu_{ij} = r/(r + \lambda_{ij}E_{ij})$ and the parameter r captures the over-dispersion might be more appropriate.

In the presence of large amount of zero counts, a zero inflated negative binomial distribution that captures the excess of zeros that cannot be accounted for by the over-dispersion parameter can be assumed such as:

$$Y_{ij} \sim \begin{cases} 0 & \text{with probability } p_{ij} \\ NegBin(\mu_{ij}, r) & \text{with probability } 1 - p_{ij} \end{cases}$$

Generalised linear regression model

Standardised mortality ratios (SMR) were modeled on the log scale, such as $log(\lambda_{ij}) = log(E_{ij}) + \alpha_i + \psi_{ij} + \epsilon_{ij}$, where α_i is a disease-specific constant, ψ_{ij} is a conditional autoregressive (CAR) spatially-structured random term and ϵ_{ij} an unstructured random effect.

Following Besag et al. (1991) formulation, we assigned a conditional prior distribution on the ψ_j , such as:

$$\psi_j | \psi_{k,j \neq k,\sigma^2} \sim N(\frac{1}{w_j} \sum_{j \sim k} \psi_k, \frac{\sigma^2}{w_j}),$$

where w_j is the number of neighbours of municipality $j, j \sim k$ indicates that municipalities jand k are neighbours and σ^2 is the conditional prior variance.

Age and gender standardization was done through the expected number of deaths E_{ij} . Thus, $E_{ij} = \sum_{a_{1g}} (DR_{ia_{1g}} * (\sum_{t} n_{ja_{1gt}}))$, where $n_{ja_{1gt}}$ is the 2010 population and $DR_{ia_{1g}}$ is the death rate for municipality j(j = 1, ..., 2352), age category a_1 ($a_1 \in \{0.4, 5.9, ..., \ge 85\}$), gender $g \ (g \in \{Female, Male\})$ and time $t \ (t \in \{2008, 2009, ..., 2012\})$, i.e. $DR_{ia_1g} = \sum_{\substack{jt \\ jt} n_{jta_1g}} \sum_{jt} n_{jta_1g}$.

We also developed gender and age group-specific models that account for urbanisation (urban vs rural) and linguistic areas (French, Italian and Romansch vs German). We divided the total population into 6 age groups a_2 ($a_2 \in \{0.14, 15.29, 30.44, 45.59, 60.74, \ge 75\}$). Thus, SMRs were modeled such as: $log(\lambda_{ija_2g}) = log(E_{ija_2g}) + X_{ij}^T\beta_{ia_2g} + \psi_{ija_2g} + \epsilon_{ija_2g}$, where X is the matrix of explanatory variables that includes urbanisation, linguistic areas and a constant. Expected number of death E_{ija_2g} was calculated as: $E_{ija_2g} = \sum_{a_1 \cap a_2} (DR_{ia_1g} * C_{a_1} + C_{a_2})$

 $\left(\sum_{t} n_{ja_1gt}\right)$).

Similarly, we developped shared component model (Knorr-Held and Best, 2001) by jointly modelling two causes of death i (i = 1, 2) as follows: $log(\lambda_{ij}) = log(E_{ij}) + \alpha_i + \psi_{ij} + \epsilon_{ij} + \delta_k \phi_j$, where ϕ_j is the CAR spatially-structured random term that is shared by both causes of deaths i and δ_k is a cause of death specific weight.

Model fit and implementation

Model parameters were estimated through integrated nested Laplace approximations (INLA) (Rue et al., 2009) and stochastic partial differential equations approach (Lindgren et al., 2011) for fast Bayesian inference. All models were fitted in R (version 3.0.2) (R Core Team, 2014) with the INLA package. We used the poisson, nbinomial and zeroinflated-binomial1 likelihood models implemented in the R INLA package to fit the corresponding regression models. Spatial and non spatial random effects were fitted with the bym model for latent Gaussian field. We assigned uninformative Gaussian prior for the constant α ; i.e. $\alpha \sim N(0, 100)$ and logGamma distribution for the log of the overdispersion parameter r, $log(r) \sim logGamma(1, 100)$. For the shared component model, we modeled spatial effects with the besag model and non-spatial effects with the independent random variables model, respectively. We chose flat log-normal distribution for δ_2 and fixed δ_1 to 1 to overcome identifiability problems.

Bibliography

- Besag J, York J, and Mollié A (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the institute of statistical mathematics, 43(1):1–20.
- CDC (2009). Instruction manual, part 9, ICD-10 cause-of-death lists for tabulating mortality statistics (updated March 2009 to include WHO updates to ICD-10 for data year 2009). Hyattsville: Centers for disease control and prevention/National center for health statistics.
- Knorr-Held L and Best NG (2001). A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(1):73–85.
- Lindgren F, Rue H, and Lindström J (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423-498.
- R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rue H, Martino S, and Chopin N (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2):319–392.