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Summary

The humble house mouse has long been a workhorse model
system in biomedical research. The technology for intro-
ducing site-specific genome modifications led to Nobel Pr-
izes for its pioneers and opened a new era of mouse ge-
netics. However, this technology was very time-consuming
and technically demanding. As a result, many investigators
continued to employ easier genome manipulation methods,
though resulting models can suffer from overlooked or un-
derestimated consequences. Another breakthrough, invalu-
able for the molecular dissection of disease mechanisms,
was the invention of high-throughput methods to measure
the expression of a plethora of genes in parallel. However,
the use of samples containing material from multiple cell
types could obfuscate data, and thus interpretations. In this
review we highlight some important issues in experiment-
al approaches using mouse models for biomedical research.
We then discuss recent technological advances in mouse
genetics that are revolutionising human disease research.
Mouse genomes are now easily manipulated at precise loc-
ations thanks to guided endonucleases, such as transcrip-
tion activator-like effector nucleases (TALENs) or the
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CRISPR/Cas9 system, both also having the potential to
turn the dream of human gene therapy into reality. Newly
developed methods of cell type-specific isolation of tran-
scriptomes from crude tissue homogenates, followed by de-
tection with next generation sequencing (NGS), are vastly
improving gene regulation studies. Taken together, these
amazing tools simplify the creation of much more accurate
mouse models of human disease, and enable the extraction
of hitherto unobtainable data.
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Introduction

Despite their diminutive size, and our lack of body fur and
a tail, there are deep, genetically encoded, incontrovertible
parallels in human and mouse biology. Like humans, mice
have colour vision and close their eyes during sleep, and
their four-chambered hearts pump warm blood, which car-
ries gases via haemoglobin proteins. The mouse brain has
the same major regions present in humans, including those
most severely affected in neurodegenerative diseases. Hu-
man and mouse behaviour, metabolism and bodies change
with aging [1–3]. Importantly, genomes of mice and hu-
mans have a similar linear length and gene content, both
are typically methylated on silenced regions and hydroxy-
methylated on transcribed regions [4, 5], and many features
of genome organisation and control are conserved [6–9].
All these similarities, together with their small size and fast
life-cycle, have made the mouse a favourite model system
for studying human diseases.
The utility of mouse models was dramatically augmented
with the advent of recombinant DNA technologies, en-
abling the modelling of genetic alterations linked to human
diseases, and the manipulation of gene networks hypothes-
ised to be involved in disease mechanisms. An import-
ant example involves a mouse model of one of the most
notorious genetic diseases: sickle cell anaemia. The mice
were genetically engineered to express the human sickle
cell mutation and developed blood phenotypes that closely
resembled those in humans [10]. Remarkably, the mice
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were experimentally “cured” by a combined gene ther-
apy / stem cell therapy approach, much like what is en-
visioned to be commonly used in humans one day [10,
11]. The importance of the mouse’s role in medical re-
search has been thoroughly articulated by others [12–14]
(see also http://ec.europa.eu/research/health/pdf/summary-
report-25082010_en.pdf). Herein we review several cutting
edge technologies that are revolutionising the utility of the
mouse as a model system for biomedical research and are
certain to help bridge the gap between the bench and the
bedside.

Strategies for genome manipulation

The first successful introduction of exogenous DNA into
the mouse genome was accomplished by injection of viral
DNA into mouse blastocyst stage embryos [15]. Several
years later, the first examples of genetically engineered
mice expressing a specific foreign gene [16] and transmit-
ting it to their progeny [17] were reported. These types of
mouse models are referred to as random integration trans-
genics (RITs), as foreign DNAs (transgenes) integrate in-
to random genomic locations, typically in multiple copies
[18]. To inactivate an endogenous gene required a com-
bination of two techniques. First, the endogenous DNA re-

Figure 1

A comparison of strategies to genetically engineer mice. The
random integration approach (left workflow) is useful for adding
new genes, and is technically straightforward, but suffers from
position effects (transgenes on different chromosomes on the
bottom). The gene targeting approach (middle workflow) is more
laborious, requiring embryonic stem cell (ESC) culturing, and
breeding of chimeras, which often fail to transmit the transgene to
their progeny. The breakthrough of the gene targeting approach
employing guided nucleases (right workflow), is that the final result
of gene-targeted mice is obtained without the ESC culturing and
chimera breeding hassles.

combination machinery was harnessed to insert a new gene
into a specific genomic location of cultured cells, a pro-
cess known as gene targeting [19, 20]. The next step was
to convert gene-targeted mouse cells into fully developed,
viable animals. This was accomplished by combining cul-
tured embryonic stem cells (ESCs) with a blastocyst stage
mouse embryo, leading to a hybrid (chimeric) mouse con-
sisting of the original (host) blastocyst and the injected
ESCs [21]. Importantly, the ESCs can contribute to all tis-
sues of the chimeric embryo. Thus, with a little luck, a chi-
mera is born in which the germ cells were derived from
the ESCs and thus engineered genes carried by ESCs can
be transmitted to offspring [21–25]. This technology was
initially used to engineer interruptions in genes that pre-
vented synthesis of a functional product and the resulting
mice were thus called knockouts [26–28]. Soon after, it
was possible to place mutant genes intended for expression
into specific genomic loci, creating lines now known as
knock-ins [29–32]. The practical and experimental differ-
ences between RIT and knock-in mice are critical to con-
sider when designing and interpreting experiments (see fig.
1).

Location matters – effects of genomic
position

When RITs are developed, multiple ‘founder’ lines are typ-
ically created by independent integrations of the transgene
into different genomic loci, typically resulting in different
expression levels and patterns. Why does this happen? The
answer is not completely understood but we can turn to
other fields of genetics research for clues. Although mind
bogglingly expansive, the mammalian genome is not a sea
of randomly distributed elements that simply float around
in the cell nucleus. Instead, the genome is contorted into
very specific structures. Genes that are distantly localised
in linear DNA space can be neighbours in three-dimension-
al space for coordinated regulation [33–35]. Indeed, neigh-
bourhoods appear to give cells their identities [36, 37].
With the concept of genomic neighbourhoods in mind, it
is conceivable that the same transgene behaves differently
depending on the genomic context of the integration site.
A transgene employing a promoter selective for a specific
cell type would likely not be expressed if integrated into a
genomic region that is silenced in that cell type. The endo-
genous genomic elements would likely dominate, and the
transgene promoter would fail to recruit a sufficient com-
pilation of activating transcription factors to outcompete
the native elements suppressing transcription.
An important example of how this can affect mouse models
of disease was published 20 years ago as a description of
a new model of a neurodegenerative disease, spinocere-
bellar ataxia 1 [38]. The authors were as rigorous as pos-
sible. Not only did they generate and analyse multiple in-
dependent lines carrying the mutant transgene (table 1),
but they did the same for a control transgene [38]. By in-
tuition, we assume that the more of a toxic transgene is
present, the more harmful its effects. However, the num-
ber of copies of the transgene did not reliably correlate
with expression level and, even more surprisingly, the ex-
pression level was not predictive of the severity of the
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phenotype (table 1: BO4 vs BO1, BO2 and BO6). None
of the lines expressing the control transgene showed any
signs of the disease, indicating it was the mutation, and
not simply overexpression of a human protein, that was
causing the disease in these mice. This example highlights
the importance of examining multiple independent lines
expressing a mutant transgene, and a series expressing a
control transgene, when working with RITs. The transgene
vector employed in these lines is expressed in a very spe-
cific cell type, Purkinje cells of the cerebellum (directed
by Pcp2 promoter elements). However, even more broadly
expressed transgene vectors are vulnerable to position ef-
fects. For example, the thy1 vector, which is widely used
for its tendency to express in neurons, is highly prone to
position effects [39, 40], and sometimes even functions in
glial cells [41]. A more broadly expressed transgene vec-
tor MoPrP.Xho1 [42], built from a modified mouse pri-
on protein gene [43], is also prone to expression pattern
differences. For example, sometimes it is expressed in the
striatum (a brain region affected in Huntington’s disease),
but sometimes not [42]. Even within brain regions there
is variability, as sometimes it is active in Purkinje cells
[44] but sometimes it is not [43, 45]. Since the thy1 and
MoPrP.Xho1 vectors are widely employed to model brain
diseases, recognising that this variability happens and con-
trolling it is extremely important.
The fidelity of expression can be improved by employing
larger transgene vectors, such as bacterial artificial chro-
mosome (BAC) or yeast artificial chromosome constructs
[46]. They can carry up to 300 kilobase-pairs of DNA,
enough to include even distant enhancers or insulators, and
significantly increase the probability that a transgene will
be expressed in the correct pattern, though some variabil-
ity still remains [46]. Finally, a tangentially related but non-
etheless important issue is that RITs alter the integration
site. Besides the presence of new DNA, which might inter-
rupt a gene [47], very large deletions can be created, and
the modified loci are often unstable and change through
generations [18]. Moreover, the regulation of genes neigh-
bouring the inserted transgene can also be affected [18,
48], certainly an undesirable and difficult-to-detect conse-
quence. Thus, although relatively easy to create, RITs are
prone to difficult-to-control confounders related to their ge-
nomic location of insertion.

Table 1: Variable expression and ataxia.

Line Copy no. Expression
(mRNA)*

Ataxia? (weeks)†

BO3 50 0X No (20)

BO4 3-5 10X Yes (16)

BO1 30 50X No (36)

BO2 10 50X No (36)

BO6 10 50X Yes (26)

BO5 30 100X Yes (12)

* fold expression above endogenous levels
† hemizygous mice only
Data obtained from [38]

Targeted genome modifications: the
trouble with knock-ins

The knock-in approach has its own set of important dis-
advantages. The first is that mutations engineered into en-
dogenous genes obtain only natural expression levels. In
many cases, phenotypes can be accelerated or enhanced by
increased expression, which can be an important strength
of RITs despite the caveats raised in the previous section.
Indeed, in our own work with knock-in mouse models of
neurodegenerative diseases, the onset of phenotypes is typ-
ically after midlife, like in humans, which translates to
12 to 18 months in the mouse. Understandably, many re-
searchers do not have the resources or patience to devel-
op and study such slowly progressing models. Nonetheless,
they can be viewed as models of early stage disease. These
models often have neuropathological changes similar to
findings in humans, such as disease-associated protein ag-
gregates, neuronal degeneration, and reactive gliosis. Inter-
estingly, the tissue tropism characteristic of the human dis-
ease is often recapitulated with knock-in mice [10, 49–53].
A second disadvantage of knock-in mouse models of dis-
ease is the inherent difficulty in creating them (fig. 1). The
procedure includes the expensive and tedious process of
genetically modifying ESCs, which are then injected into
early stage mouse embryos. In comparison, the typical RIT
approach requires only that a comparatively simple DNA
construct be created and directly injected into mouse oo-
cytes, providing greater flexibility in the DNA construc-
tion, and bypassing the ESC work.
Luckily, newly developed technologies make the genera-
tion of knock-in and knock-out lines technically quite sim-
ilar to the random integration approach.

Combining the strengths of knock-ins
and RITs

Figure 2

Comparisons of programmable nucleases and possible
outcomes. Zinc finger nucleases (top left), transcription activator-
like effector nucleases (TALENs; top middle) and CRIPSR/Cas9
(top right) systems introduce a site-directed double strand break
(DSB) in DNA. Depending on the repair mechanism,
nonhomologous end joining (NHEJ) or homology-directed repair
(HDR), the site of interest can be left with random mutations,
designed mutations, insertion of large transgenes, or (in case more
than one DSB is generated), inversions, deletions and
translocations.
Cas9 = CRISPR-associated system nuclease 9; CRISPR =
clustered regularly interspaced short palindromic repeats; Fokl =
Fokl nuclease; ORF = open reading frame; TALE = transcription
activator-like effector; Zif = zinc finger nuclease

Review article: Medical intelligence Swiss Med Wkly. 2015;145:w14186

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 3 of 17



DNA double-strand breaks (DSBs) in the eukaryotic gen-
ome trigger two types of repair mechanisms, nonhomolog-
ous end joining (NHEJ) [54] and homologous recombina-
tion (HR) [55]. NHEJ simply fuses two free ends of DNA,
sometimes with a random nucleotide insertion or deletion,
resulting in a frameshift in the open reading-frame of a
gene, potentially creating a gene knock-out. HR recom-
bines the damaged genomic site with a separate piece of
DNA (template) that is homologous to it, in effect switch-
ing the two [56]. This can be co-opted for genetic en-
gineering by adding transgenic DNA to serve as the tem-
plate, allowing one to introduce precise genome changes,
such as gene knock-outs or knock-ins (see “strategies for
genome manipulation” above). However, the efficiency of
HR in a locus strongly depends on its chromatin state
[57]. Genes in condensed chromatin are relatively protec-
ted from DSBs and thus render miserably low efficiency
of targeted mutagenesis, potentially explaining why differ-
ent loci differ in their susceptibility to gene targeting. For
example, the first attempts to knock-out the prion protein
gene (Prnp) required screening of approximately 10 000
ESC colonies for a single targeted clone [58]. This is likely
because the Prnp locus remains rather silent in ESCs, and
would rarely require and recruit the DSB-HR repair ma-
chinery [59]. On the other hand, in certain loci HR occurs
with higher efficiency. Two such permissive loci are HPRT
or ROSA26 [60, 61]. The ROSA26 locus is an especially
popular choice for making expression reporter mouse lines
[62], as it provides strong, uniform and ubiquitous trans-
gene expression across multiple tissues [61, 63]. A recently
identified locus that is also easy to manipulate (TIGRE)
will complement, and may even be better for ubiquitous
activity, than the ROSA26 locus [64, 65]. However, modi-
fying or disabling most endogenous genes in mice re-
mained inefficient and variable, making the stimulation
of HR sorely needed. This motivated the development of
programmable endonucleases to introduce double strand
breaks into specific genomic locations and thereby trigger-
ing DNA repair mechanisms.
The first programmable nucleases routinely applied to
mouse genome manipulation were created by fusing zinc
finger DNA-binding domains to FokI endonuclease [66].
These chimeric restriction enzymes (termed zinc finger
nucleases, ZFNs) were applied with amazing results in
cells and in vivo [67–72] and even reached clinical trials
[73]. However, this ground-breaking technology suffered
from high cost of production and insufficient selectivity
[74–76]. More recently, a related technique emerged, tran-
scription activator-like effector nucleases (TALENs).
TALENs proved to offer greater flexibility (they can target
virtually any DNA sequence of interest, whereas ZFNs re-
quire a guanine-rich region, thereby limiting the density
of targetable sites), and were easier to make thanks to
their modular structure (see also fig. 2 and box 1). Most
recently, RNA guided endonucleases (RGENs) burst on
to the scene, with high efficiency and design flexibility
for genetic modification of a multitude of species (fig. 2)
[77–81]. The range of applications of TALENs and RGENs
is expanding exponentially and a number of detailed re-
views summarising their advantages and potential applica-
tions were published recently [72, 82–86].

The ground-breaking advantage of RGENs is the simplicity
of construction, as the target specificity is directed by a
20-bp guide RNA molecule template which can be easily
cloned into a vector encoding all the remaining compon-
ents of the system: Cas9 nuclease and synthetic guide RNA
(sgRNA) (fig. 2). Many dual expression vectors encoding
Cas9 and sgRNA are freely available, and several online
tools facilitate the identification of optimal guide se-
quences (see fig. 2 for details). Ease of design initially
came at the expense of specificity, resulting in mutations in
unintended locations [87, 88]. However, several recent ad-
vances diminish this problem. For example, a Cas9 mutant
that cuts one DNA strand instead of two stimulates HR but
insertions/deletions are not created in the case of NHEJ re-
pair [89]. A second approach employs a catalytically inact-
ive mutant version of Cas9 protein fused to FokI restric-
tion endonuclease. Since this Cas9::FokI fusion protein
requires dimerisation to function, two guide RNAs must
bind in close proximity, greatly enhancing specificity [90].
A similar approach utilising TALENs successfully targeted
a large construct injected into mouse oocytes [91]. Finally,
when genetically engineering mice, most off-target muta-
tions can be eliminated through backcrossing.
Compared with RGENs, ZFNs and TALENs require com-
plex engineering of DNA recognition domains, as it is the
protein, not RNA, which confers target specificity. The
modular structure of TALENs greatly facilitates their
design and construction, and many bioinformatics tools and
assembly kits are currently available from open sources
[92–95]. However, the design flexibility offered by RGENs
is much greater. Consequently, they have rapidly become
the method of choice for modifying multiple loci simul-
taneously. This was employed to generate multiple mouse
lines simultaneously using “multiplexed” ESCs [96]. The
ease of packaging of the small target specificity component
into gene delivery systems should make it a useful tool for
modifying genes in vivo, globally or in selected tissues. To
simplify this process, a mouse line was genetically engin-
eered to express Cas9 nuclease in specific cell types by
use of Cre recombinase [97] (Cre is explained in fig. 3). In
this inventive tool, a variety of established methods deliv-
er guide RNAs, directing the modification of multiple loci
simultaneously in specific cell-types of intact mice or cul-
tured primary cells [97]. An interesting alternative is the re-
cently reported delivery of both Cas9 (in this case a smaller
version) and sgRNA packaged into adeno-associated virus
particles [98]. The latter technique does not require trans-
genic mice and thus can be applied directly to mouse mod-
els of disease without the added expense of time and money
to breed in additional lines. This amazing bid to specific-
ally modify a single gene in a living organism once again
highlights the therapeutic potential of RGENs. In human
cells, CRISPR/Cas9 was already used with promising res-
ults to treat muscular dystrophy [99], human immunodefi-
ciency virus infection [100], and Fanconi anaemia [101].
This therapeutic potential can be inverted to model multi-
genic diseases, including cancer. In addition to generating
multiple mutations simultaneously, guided nucleases can
be employed to engineer tumour-specific chromosomal re-
arrangements [102–104] (fig. 2). These possibilities were
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recently described in detail in two excellent reviews [105,
106].
Another important feature is that programmable endonuc-
leases can be employed to create gene-targeted transgenic
mice by injection or electroporation into fertilised oocytes
[81, 96, 107]. This approach saves precious time and re-
sources that would otherwise be spent on culturing, target-
ing, screening, and karyotyping ESCs, and the subsequent
generation and (often futile) breeding of chimeras (fig. 1).
Moreover, the efficiency of in vivo gene targeting with
RGENs can be enhanced through inhibition of the NHEJ
pathway [108]. These improvements could make the gen-
eration of gene-targeted mice nearly as simple as the gen-
eration of RIT mice, but with the enormous advantage that
the integration site of the transgene is precisely controlled.
Finally, modifications of TALEN and Cas9 systems are
enabling the manipulation of gene expression [109, 110],
sometimes controlled by light [111, 112]. Even the epi-
genome of specific genomic loci can be manipulated [113,
114]. TALEs- and CRISPR/Cas9-guided transcriptional ac-
tivators were successfully used to remodel chromatin, en-
forcing gene activation in silenced regions [115]. Such spe-
cific control on gene-expression patterns in vivo will have
a profound impact on disease research.

Context matters too – effects of
genetic background

Engineered alleles (RITs, knock-outs or knock-ins) are of-
ten transferred from one genetic background to another by
repeated backcrossing, occasionally with unwanted conse-

quences. For example, mouse lines with different knock-
out alleles of the prion protein gene were engineered in
ESCs derived from 129S7, 129S4 or 129P2 mouse strains
(hereafter collectively referred to as 129) and the resulting
chimeras were typically bred to a very different genetic
background, C57Bl/6 (B6 hereafter) [32, 116–119]. Even
after backcrossing to B6 for 15 generations, a small amount
of 129 genomic DNA flanking the Prnp gene remained
[120]. This residual 129-derived sequence caused a phen-
otype, originally attributed to the mutant Prnp gene [121],
that was later determined to be independent of the Prnp de-
letion [120]. Unfortunately, this was not an isolated event
[122–124]. So how can it be avoided?
If using inbred mice is not possible one solution is to create
a knock-in control allele that is built like the mutant al-
lele but lacks the element expected to create the phenotype
[50, 52, 122, 125–127]. This approach develops mutants
and controls with approximately the same amount of ESC
derived genome flanking the engineered locus [122].
However, creating the extra mouse line essentially doubles
the work. An alternative solution is to utilise the plethora
of available genome mapping and sequence data to identify
natural genomic features in that locus that differ between
the two strains [28]. This would enable one to backcross
the wild-type allele from the donor background into the
recipient background guided by a genotyping assay, thus
bypassing the extra work required to engineer a knock-in
control line, and providing a strategy for RITs if the integ-
ration site is known. Finally, with the rapid advances in the
RGENs field, routine engineering of the same genetic ele-

Box 1: A brief comparison of key features of ZFNs, TALENs and RGENs.

ZFNs
Zinc finger nucleases

TALENs
Transcription activator-like effector nucleases

RGENs
RNA guided endonucleases

Origin Zinc finger DNA binding protein domains TALEs from plant pathogenic bacteria
xanthomonas.

CRISPR-associated system (CRISPR-Cas) of
found in many bacteria and archea species.

Mechanism of
DNA
recognition

Arrays of 30 amino acid-long Cys2-His2 zinc
finger domains separated by linker sequences
[162]

Arrays of 33‒35 amino-acid repeats (TALEs).
Each repeat recognises a single DNA base pair in
the major groove [163].

Cas9 nuclease recognises target DNA sequence
through a short RNA molecule, which includes a
20-bp fragment complimentary to the target DNA.

Off-target
cleavage

High Low High for many applications, but being improved
[89, 90].

Generation
time

1–4 weeks ±3 days

Construction DNA synthesis or several noncommercial DNA
engineering methods [164]

DNA synthesis or several noncommercial DNA
engineering methods [92, 94, 95, 165–168].

Only one-step cloning of the guide sequence into
gRNA/Cas9 expression vector. For increased
efficiency, Cas9 mRNA or protein can be made in

vitro [96].

Other
important
features

Lower target density as compared with RGENs
and TALENs [74]
Higher risk poor DNA recognition or cytotoxicity
when using newly designed ZFN [169, 170]

Higher specificity than original CRISPR/Cas9 Fast and relatively inexpensive
Preferable for targeting multiple loci
Flexible design
Cre dependent Cas9-expressing mouse line
available from the Jackson Lab:
http://jaxmice.jax.org/strain/024857.html
Cas9 variant for AAV delivery [98]

DNA
recognition
determinant

Protein (zinc finger domains) Protein (TALE arrays) Synthetic guide RNA (sgRNA)

Nuclease
component

FokI FokI Cas9

Online tools
and other
resources

http://www.zincfingers.org
http://www.zincfingertools.org

http://www.e-talen.org
http://taleffector.genome-engineering.org/

http://www.e-crisp.org
http://crispr.genome-engineering.org/
http://www.rgenome.net/

AAV = adeno-associated virus; bp = base-pair; Cas9 = CRISPR-associated system nuclease 9; CRISPR= clustered regularly interspaced short palindromic repeats; gRNA
= guide RNA; sgRNA = synthetic guide RNA; TALE = transcription activator-like effector
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ment into mice of multiple inbred genetic backgrounds is
foreseeable.

Cutting-edge tools to study gene
regulation

Diseases typically cause changes to tissues that are marked
by changes in gene expression, essentially serving as a
quantitative phenotype. For example, in neurodegenerative
diseases, astrocytes often convert into a reactive phenotype
and therefore changes in related gene products could be de-
tected by in situ hybridisation or northern blots [128]. In
the 1990s the high-throughput method of DNA microarrays
transformed this field, suddenly allowing for hundreds, and
eventually thousands, of mRNAs to be tested systematic-
ally and simultaneously [129, 130]. Just as dramatically,
the field took another exponential leap in the 2000s with
the invention of next generation sequencing (NGS) techno-
logies, which basically determine the sequence of tens of
millions of small fragments of DNA (obtained by reverse
transcription of RNAs) in parallel, which are used to calcu-
late the relative fraction of transcripts of tens of thousands
of genes in a sample [131]. These techniques generate very
accurate quantitative data, with a large dynamic range, and
can provide additional information (for example mRNA
splice variants, posttranscriptional edits, etc.). Although
contention exists [132, 133], many experiments reveal that
gene expression changes observed in humans also occur in
the corresponding mouse models [134–136], providing sol-
id validation of the models. New techniques are constantly
improving the sequencing side of the NGS approach, for
example by reducing the amount of RNA needed while im-
proving the quantitative nature of the technique [137–140].
Until recently a major limitation was rooted in the profound
biological problem that tissues consist of an extraordinary
mixture of multiple cell types, and cell types with opposing
gene expression programmes will be masked if RNAs are
purified from a homogenate containing both. Thus, analys-
is of RNAs from specific cell types would provide a huge
leap forward.

It’s all about the lure – cell type-
specific gene expression studies

One logical approach is to physically isolate specific cell
types using a variety of sophisticated techniques. In one,
tissues are gently dissociated into cell suspensions, labelled
with antibodies targeting cell type-specific epitopes, and
then separated by fluorescence activated cell sorting or im-
munopanning [141, 142]. This works extremely well for
tissues that are easy to dissociate, such as blood, allow-
ing a rapid separation procedure to be completed before
too many changes to RNA levels occur. It is also perfectly
suited for experiments where cells are sorted and subse-
quently cultured, allowing recovery from any gene expres-
sion changes induced by the dissociation and separation.
This approach has yielded important insight into the tran-
scriptomes of specific cell types in the mouse brain [141,
142]. Alternatively, cells in tissue slices can be hand-picked
with laser capture microdissection (LCM) [143]. The LCM
strategy limits unwanted changes in gene expression be-

cause the tissues are typically fixed or frozen, and can be
combined with spatial information (e.g. proximity to a dis-
ease lesion). Though the cell bodies are typically the only
parts captured and much mRNA is located far away from
there, e.g. mRNAs translated at neuronal synapses [144]
much important insight into disease has been acquired with
LCM [135, 145].
A new and radically different approach is to isolate RNAs
from specific cell types directly from crude tissue homo-
genates. The various versions of this strategy share the
common theme of labelling biomolecules in specific cells
and then using the introduced labels to affinity purify (or
co-purify) RNAs from homogenised tissue. The isolated
tissues can be rapidly frozen, thereby maximally preserving
the native (patho)physiological state of gene expression.
Many of these tools employ Cre for activation (fig. 3). Cre
can activate the expression of a RNA tagging tool encod-
ing transgene in a subset of cells based on, for example,
cell identity, developmental stage or activity state (fig. 3)
[146–149].
One cell type-specific RNA labelling technique employs
a uracil phosphoribosyltransferase (UPRT) enzyme from
Toxoplasma gondii [150]. In contrast to the endogenous

Figure 3

Cre recombinase – a versatile mouse genome manipulation
tool. (A) In the systems described here, the activity of the Cre
enzyme results in the removal of DNA sequences between two
LoxP sites in the mouse genome [160]. (B) Spatially restricted
expression of Cre can be employed to inactivate or activate genes
in specific cell types [146] (cell type 3 – yellow). (C) Temporal
control of Cre activity can be accomplished with fusion proteins
consisting of Cre with an oestrogen receptor fragment (ERT) which
prevents Cre-mediated recombination, until tamoxifen is present to
direct the Cre-ERT fusion into the nucleus [161]. The top pathway
features an example where the promoter driving Cre-ERT is cell
type-specific. This is convenient in cases where cellular phenotypes
change during development or through time (e.g. neural precursor
cells can become neurons or glia). The bottom pathway features an
example where Cre-ERT expression is induced by stimuli that
happen often but when Cre activity is desired for a specific time. In
this example an immediate early gene promoter drives expression,
which would happen often, but Cre activity would occur only when
tamoxifen is present [149].
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mouse UPRT, the exogenous enzyme efficiently activates
a uracil analogue (4-thiouracil, 4TU), which is then incor-
porated into RNAs transcribed in the cell type of interest
(fig. 4). Such 4TU-containing RNA can be easily biot-
inylated and efficiently separated from total RNA with
routine biotin-streptavidin enrichment tools [151].
A second strategy aims to capture specifically miRNAs,
small RNAs that modulate gene expression by guiding
the RNA induced silencing complex (RISC) to specific
mRNAs and driving their degradation or impairing their
translation [152]. This was accomplished by cell type-spe-
cific expression of an epitope-tagged protein component of
RISC called Argonaute2 (Ago2, fig. 4) [153, 154]. Tissue
homogenates are then probed with antibodies against the
engineered epitope tags, co-capturing the RISC and associ-
ated miRNAs [154].
Two slightly different methods using a concept similar to
the Ago2 method were developed to capture, from specific
cell types, functional ribosomes and their associated
mRNAs, enabling the study of translatomes. In the first
method, called RiboTag [155], a modified ribosomal pro-
tein is expressed from its endogenous genomic location,
but only once activated by Cre (figs 4 and 5). In the second
method, called bacTRAP, a modified ribosomal protein is
expressed by a BAC transgene (fig. 5) [156, 157]. Besides
being a tool to isolate mRNA from specific cell types,
mRNAs associated with ribosomes more closely represent
the proteome than total mRNAs [158]. Although both
methods to study the translatome are broadly similar there
are some important differences. One important difference
is that for the RiboTag approach, not one but two mouse

Figure 4

Transgenic techniques for cell type-specific RNA capture. A
mouse expressing Cre recombinase is bred with a mouse encoding
transgenes for RNA capture components. Each transgene is
activated by Cre to drive cell type-specificity. The Rpl22 (ribosomal
protein L22) protein captures ribosomes and ribosome-bound
mRNAs during translation (the Ribotag method). The Ago2 protein
captures the RISC complex and associated miRNAs. The UPRT
enzyme converts 4-thiouracil into a nucleotide that is incorporated
into newly transcribed RNA.
Ago2 = Argonaute2; miRNA = microRNA; RISC = RNA-induced
silencing complex; UPRT = uracil phosphoribosyltransferase

lines are required: the knocked-in ribosomal gene plus a
Cre activator that determines the cell type-specificity. In
an effort to study a genetic mouse model of a disease, the
addition of two new loci to the mix requires complicated
breeding schemes and lots of costly cage space. However,
the RiboTag approach has an important advantage over
the bacTRAP method. With the bacTRAP method a single
promoter determines both cell type-specificity and expres-
sion levels. In addition to the issues of random integration
(see above), the promoters will have variable strengths in
different cells, which will make quantitative comparisons
between lines complicated (fig. 5). Moreover, the effects
of gene-expression changes on cell type markers might
change during disease [36, 159], which would also alter the
amount of the tagged ribosome in the bacTRAP method.
Both approaches are very clever, but it is critical to identi-
fy the most important features and disadvantages of each
when designing a project. In all, these various techniques
for cell type-specific gene expression studies will vastly
improve the information obtained from disease models.

Figure 5

A comparison of Ribotag and bacTRAP methods. In the left
pathway, a ubiquitous promoter drives expression of the Ribotag
(rpl22-HA) protein only after Cre recombinase activity releases the
inhibition of Ribotag expression. The endogenous rpl22 exon 4
functions as a ‘floxed STOP’ for the Ribotag method, as shown in
fig. 4. The cell type specificity is determined by the pattern of Cre
expression. Therefore, the same cell targeted by different Cre
activators will have the same expression level of the Ribotag
protein because the same ubiquitous promoter drives its expression
from the same place in the genome. In contrast (right pathway),
different promoters drive the expression of bacTRAP resulting in
different expression levels in this hypothetical example. An
important advantage of bacTRAP is that one mouse line is needed
versus two for Ribotag.
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Conclusion

In this short review we have presented a handful of ex-
amples of new genetic tools that are transforming biomed-
ical research involving mouse models of disease. Some
notable examples that we omitted include optogenetics and
RNA interference, though they have existed for a while
longer and are thus more widely known. Nonetheless, the
examples we highlighted make for a very powerful com-
pilation of tools that will harmonise. The gene-expression
analysis tools will enhance the discovery of disease mech-
anisms and targets, and will also function as robust pheno-
typing tools to measure the efficacy of experimental thera-
peutic strategies. In turn, the new genome sequence and
expression manipulation techniques, especially when ap-
plied to specific cell-types, will be a powerful approach
to interrogate these pathways. In the 1980s, the devel-
opment of gene-targeted mice made scientists absolutely
giddy with excitement. That giddy feeling is back!
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Figures (large format)

Figure 1

A comparison of strategies to genetically engineer mice. The random integration approach (left workflow) is useful for adding new genes,
and is technically straightforward, but suffers from position effects (transgenes on different chromosomes on the bottom). The gene targeting
approach (middle workflow) is more laborious, requiring embryonic stem cell (ESC) culturing, and breeding of chimeras, which often fail to
transmit the transgene to their progeny. The breakthrough of the gene targeting approach employing guided nucleases (right workflow), is that
the final result of gene-targeted mice is obtained without the ESC culturing and chimera breeding hassles.
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Figure 2

Comparisons of programmable nucleases and possible outcomes. Zinc finger nucleases (top left), transcription activator-like effector
nucleases (TALENs; top middle) and CRIPSR/Cas9 (top right) systems introduce a site-directed double strand break (DSB) in DNA. Depending
on the repair mechanism, nonhomologous end joining (NHEJ) or homology-directed repair (HDR), the site of interest can be left with random
mutations, designed mutations, insertion of large transgenes, or (in case more than one DSB is generated), inversions, deletions and
translocations.
Cas9 = CRISPR-associated system nuclease 9; CRISPR = clustered regularly interspaced short palindromic repeats; Fokl = Fokl nuclease;
ORF = open reading frame; TALE = transcription activator-like effector; Zif = zinc finger nuclease
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Figure 3

Cre recombinase – a versatile mouse genome manipulation tool. (A) In the systems described here, the activity of the Cre enzyme results
in the removal of DNA sequences between two LoxP sites in the mouse genome [160]. (B) Spatially restricted expression of Cre can be
employed to inactivate or activate genes in specific cell types [146] (cell type 3 – yellow). (C) Temporal control of Cre activity can be
accomplished with fusion proteins consisting of Cre with an oestrogen receptor fragment (ERT) which prevents Cre-mediated recombination,
until tamoxifen is present to direct the Cre-ERT fusion into the nucleus [161]. The top pathway features an example where the promoter driving
Cre-ERT is cell type-specific. This is convenient in cases where cellular phenotypes change during development or through time (e.g. neural
precursor cells can become neurons or glia). The bottom pathway features an example where Cre-ERT expression is induced by stimuli that
happen often but when Cre activity is desired for a specific time. In this example an immediate early gene promoter drives expression, which
would happen often, but Cre activity would occur only when tamoxifen is present [149].
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Figure 4

Transgenic techniques for cell type-specific RNA capture. A mouse expressing Cre recombinase is bred with a mouse encoding transgenes
for RNA capture components. Each transgene is activated by Cre to drive cell type-specificity. The Rpl22 (ribosomal protein L22) protein
captures ribosomes and ribosome-bound mRNAs during translation (the Ribotag method). The Ago2 protein captures the RISC complex and
associated miRNAs. The UPRT enzyme converts 4-thiouracil into a nucleotide that is incorporated into newly transcribed RNA.
Ago2 = Argonaute2; miRNA = microRNA; RISC = RNA-induced silencing complex; UPRT = uracil phosphoribosyltransferase
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Figure 5

A comparison of Ribotag and bacTRAP methods. In the left pathway, a ubiquitous promoter drives expression of the Ribotag (rpl22-HA)
protein only after Cre recombinase activity releases the inhibition of Ribotag expression. The endogenous rpl22 exon 4 functions as a ‘floxed
STOP’ for the Ribotag method, as shown in fig. 4. The cell type specificity is determined by the pattern of Cre expression. Therefore, the same
cell targeted by different Cre activators will have the same expression level of the Ribotag protein because the same ubiquitous promoter drives
its expression from the same place in the genome. In contrast (right pathway), different promoters drive the expression of bacTRAP resulting in
different expression levels in this hypothetical example. An important advantage of bacTRAP is that one mouse line is needed versus two for
Ribotag.
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