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Summary

Oxidised phospholipids (OxPLs) are generated from
(poly)unsaturated diacyl- and alk(en)ylacyl glycerophos-
pholipids under conditions of oxidative stress. OxPLs exert
a wide variety of biological effects on diverse cell types in
vitro and in vivo and are thought to play a role in the devel-
opment of several chronic diseases including atheroscler-
osis, a classical lipid-associated and inflammatory disor-
der. OxPLs are recognised as culprit molecular components
responsible for the pathophysiological actions of oxidised
low-density lipoproteins. There is growing interest in the
potential use of OxPLs as biomarkers of human patholo-
gies. Here we offer a brief overview of current detection
methods and knowledge on relationships between levels of
circulating OxPLs and disease progression, with particular
emphasis on cardiovascular disease.
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Structure and generation of oxidised
phospholipids

Oxidative stress is a hallmark of many pathological states.
Among various types of biomolecules lipids are particu-
larly susceptible to oxidation due to the presence of unsat-
urated double bonds from which hydrogen can be easily
abstracted by oxidants. Phospholipids (PLs) are a major
class of polar lipids that are abundantly present within
cell membranes and the outer shell of lipoprotein particles.
Glycerophospholipids, which are the most abundant sub-
class of PLs, contain a glycerol backbone, two fatty acid
residues and a polar head group (fig. 1). The majority of
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glycerophospholipids in mammalian tissues contain phos-
phatidylcholine as a head group, while phosphoethanolam-
ine or phosphatidylserine represent less abundant classes,
which, however, are enriched in some tissues such as brain
[1]. Polyunsaturated fatty acids in the sn-2 position of the
glycerol moiety of PLs are the major target for oxidation.
Oxidative attack on polyunsaturated fatty acids results in
generation of multiple fragmented or non-fragmented end
products with various combinations of functional oxy
groups. These products can exert variable effects on cells
by modulating activity of intracellular signal transduction
and gene expression mechanisms, forming covalent or non-
covalent complexes with proteins, inducing cellular stress
and apoptosis and further stimulating ROS production [2].
Moreover, newly formed oxidation epitopes on lipid mo-

Figure 1

Chemical structure of some biologically active oxidised
phospholipids. The image shows molecular structures of a non-
oxidised phospholipid 1–palmitoyl-2–arachidonoyl-sn-
glycero-3–phosphocholine (PAPC) and some of its oxidised
derivatives: 5–hydroxy-8–oxo-6–octenoyl-phosphocholine (HOOA-
PC), 1–palmitoyl-2–(5,6–epoxyisoprostane E2)-sn-
glycero-3–phosphocholine (PEIPC),
1–palmitoyl-2–(5–oxovaleroyl)-sn-glycero-3–phosphocholine
(POVPC) and 1–palmitoyl-2–glutaroyl-sn-
glycero-3–phosphocholine (PGPC). Bold lines, glycerol
“backbones”; shadow, polar head groups.
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lecules are targets for adaptive and innate immune re-
sponses which significantly contribute to pathological con-
ditions characterised by chronic inflammation [3].

Methods for detection of circulating
oxidised phospholipids

Quantification of oxidised phospholipids (OxPLs) in biolo-
gical samples is difficult due both to their low concentra-
tions as compared to non-oxidised precursors and the very
wide range of structurally different oxidation products. The
most sensitive and powerful method for OxPL analysis is
mass spectrometry [4, 5]. Development of soft ionisation
procedures such as electrospray ionisation mass spectro-
metry (ESI-MS) or atmospheric pressure chemical ionisa-
tion mass spectrometry (APCI-MS) enabled sensitive and
efficient metabolic profiling of lipids present in a variety
of biological samples (tissues and fluids) including ather-
osclerotic plaque, brain, plasma and cerebrospinal fluid.
However, large-scale mass spectrometry analysis of clinic-
al samples remains a challenge due to the complexity and
high costs of the technique. The bulk of existing clinical
data on OxPL levels in human disease has been obtained
using immunological methods.
Two monoclonal antibodies (mAb) against OxPLs (DLH3
and E06) have been used in clinical studies. DLH3 was
generated by immunising mice with a homogenate of hu-
man atheroma [6]. A limitation of DLH3–based ELISA
is that low density lipoprotein (LDL) fractions have to
be isolated from plasma, which makes large-scale screen-
ing impractical. In contrast, mAB E06 raised from B-cell
clones of apoE-deficient mice [7, 8] is exploited for a
sandwich ELISA in which LDL particles are captured dir-
ectly from plasma by another mAb (MB47) recognising
apolipoprotein B-100 (apoB-100) and oxidation-generated
epitopes are detected with biotinylated E06 followed by
chemiluminescence-based detection; this sandwich ELISA
has been used for the majority of clinical investigations on
circulating OxPLs. Both DLH3 and E06 antibodies recog-
nise the oxidised, but not native, phosphatidylcholine moi-
ety on PLs, although the exact structures of their respect-
ive target epitopes are not characterised. Apart from OxPL
present on oxidised LDL (OxLDL), E06 can bind to ap-
optotic cells which express oxidised phosphatidylcholine-
containing epitopes on their surface due to oxidative stress
[9] and to phosphocholine present in the capsular polysac-
charide of many bacteria (e.g., Streptococcus pneumonia)
[10]. There are also other commercially available OxLDL-
recognising monoclonal antibodies. One example is ML25
which binds to malondialdehyde-modified LDL (MDA-
LDL) and is often used in combination with anti-apoB-100
antibody to measure MDA-LDL in serum [11]. However,
the epitopes of these antibodies contain covalent adducts
of apoB-100 with small molecules generated by non-en-
zymatic peroxidation of all sorts of esterified and non-
esterified fatty acids (e.g., MDA or 4–hydroxynonenal).
Therefore these mAbs are not specific for OxPLs and will
not be discussed in this review.

Oxidised phospholipids as biomarkers
in cardiovascular disease

Proatherogenic effects of OxPLs
Oxidative stress and oxidation of lipids are held to be de-
cisive events in progression of atherosclerosis and its clin-
ical complications. Initial studies on involvement of oxid-
ised lipids in atherogenesis demonstrated that avid OxLDL
uptake mediated mostly by macrophage scavenger recept-
ors SR-A and CD36 promoted lipid accumulation in mac-
rophages and formation of foam cells in atherosclerotic
plaques [12, 13]. Today it is recognised that OxLDL and
its major active factor OxPLs can elicit multiple proath-
erogenic effects by acting on several different cell types in
blood and the vascular wall [14] (fig. 2). The role of OxPLs
in atherosclerosis is supported by studies demonstrating the
presence of OxPLs in atherosclerotic vessels of hypercho-
lesterolaemic animal models [15] and in human lesions.
Various OxPL species have been documented at different
stages of atherosclerosis in different areas of plaques in-
cluding oxidatively fragmented phospholipid species con-
taining saturated and unsaturated truncated residues,
phospholipid-esterified isoprostanes, phospholipid hydrop-
eroxides and others [2]. Amounts of OxPLs increase pro-
portionally with plaque burden and are specifically asso-
ciated with unstable and ruptured advanced plaques [16].
OxPLs significantly contribute to inflammation in diseased
vessels both by inducing expression of proinflammatory
cytokines and adhesion molecules on vascular endothelial
cells and promoting monocyte adhesion, and by acting dir-
ectly on leukocytes [17]. Other activities of OxPLs relevant
to initiation, progression and development of complica-
tions of atherosclerosis include stimulation of ROS pro-
duction, attenuation of endothelial-dependent vasorelaxa-
tion, induction of phenotypic modulation and migration of
smooth muscle cells, enhancement of thrombogenic activ-
ity of endothelial cells, activation of platelets, induction of
smooth muscle cell apoptosis and stimulation of vessel cal-
cification. Activation of intraplaque angiogenesis and in-
creased production of metalloproteinases by OxPLs con-
tributes to destabilisation of coronary plaques, predispos-
ing them to rupture and causing thrombosis and acute

Figure 2

The role of OxPLs in the pathophysiology of atherosclerosis.
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coronary syndromes. OxPLs can modulate functions of
dendritic cells and T- lymphocytes and thus may influence
the outcome of adaptive immune reactions. Under certain
conditions OxPLs may also stimulate tissue-protective pro-
cesses via upregulation of stress response genes, attenu-
ation of inflammation and maintenance of the endothelial
barrier function [2].

Clinical studies on biomarker value of circulating
OxPLs
Since pathological effects of OxLDL and OxPLs have been
investigated most extensively in the context of atheroscler-
osis, the majority of studies aimed at the evaluation of cir-
culating OxPL levels as biomarkers have also been per-
formed in the field of cardiovascular disease. A series of
studies utilising E06–based ELISA have demonstrated a
clear correlation between OxPL content per particle of
apoB (OxPL/apoB ratio) and the presence of coronary and
peripheral artery disease. A strong and graded association
with the extent of coronary artery disease (CAD) defined
as stenosis of more than 50 percent of the luminal diameter
was demonstrated in a study involving 504 subjects, the
correlation being strongest for patients aged 60 years or
younger [18]. The highest quartile of OxPL/apoB was asso-
ciated with an odds ratio for CAD of 3.12 (P <0.001) com-
pared with subjects in the lowest quartile. Interestingly, in
the entire cohort OxPL/apoB predicted CAD independently
of all other clinical markers except for Lp(a), a subclass of
lipoproteins characterised by the presence of a unique apol-
ipoprotein apo(a). OxPL/apoB showed strong correlation
with Lp(a) levels suggesting that the majority of oxidative
epitopes detected by E06 are located on Lp(a) particles, the
main function of which is supposed to be sequestration of
toxic proinflammatory OxPLs. Recent mass spectroscopy
analysis revealed that OxPL are both present in the lipid
phase of Lp(a) and are covalently bound to apo(a) [19].
Interestingly, this relationship between OxPL and Lp(a)
was dependent on the size of apo(a) isoforms. Apo(a) pro-
teins vary in size due to a variable number of the so-called
kringle IV type 2 repeats in the apo(a) gene. Correlation of
OxPL levels was weakest with the largest apo(a) isoforms
and strongest with the small isoforms containing lowest
number of kringle IV type 2 repeats [20]. Among patients
aged 60 years or younger the predictive value of OxPL/
apoB was independent even of Lp(a), perhaps reflecting
additional proinflammatory Lp(a)-independent risks of
OxPL elevation. Studies performed using DLH3 antibody
confirmed association of higher OxPL levels with coronary
[21] and carotid [22] atherosclerosis.
The prospective Bruneck study performed with a 5 year in-
terval demonstrated high predictive value of OxPL/apoB
measured by E06 antibody also for the presence, extent
and development of carotid and femoral atherosclerosis
[23]. In the 10 year [24] and 15 year [25] follow-up ana-
lyses OxPL/apoB and Lp(a) predicted future cardiovas-
cular events (cardiovascular death, myocardial infarction,
stroke and transient ischaemic attack) beyond the informa-
tion provided by the Framingham Risk Score, and allowed
reclassification of a significant proportion of patients into
higher or lower risk categories after traditional risk as-
sessment. The EPIC-Norfolk study involving 763 cases

and 1,397 controls demonstrated that the highest tertiles of
OxPL/apoB and Lp(a) were associated with a higher risk
of CAD-related events and provided better cumulative pre-
dictive value when added to traditional cardiovascular risk
factors [26]. However, in patients with previous myocardial
infarction no correlation was found between E06–detected
OxPL/apoB and recurrent cardiovascular events (cardi-
ovascular death, nonfatal reinfarction or stroke, percu-
taneous coronary intervention, coronary artery bypass
grafting and hospitalisation due to angina pectoris) [27].
Importantly, the Dallas Heart Study demonstrated signific-
ant race/ethnicity-related differences in oxidative markers,
with the level of OxPL/apoB and its correlation with Lp(a)
being highest in black subjects as compared with whites
and Hispanics [28]. These data suggest that proinflammat-
ory OxPLs present on Lp(a) represent a genetic predispos-
ition to increased oxidative stress. Positive association of
OxPL/apoB with peripheral artery disease has been con-
firmed in a recent study which included two parallel nes-
ted case-control studies within the Health Professionals
Follow-up Study and the Nurses’ Health Study [29].
Temporary increases in plasma OxPL detected by E06 or
DLH3 antibodies have been observed in acute coronary
syndromes such as myocardial infarction [22, 30–33].
Studies performed using DLH3 antibody demonstrated
strong accumulation of OxPLs in ruptured lipid cores of
culprit coronary and carotid atherosclerotic plaques [22,
31, 32]. Plasma levels of DLH3–OxPL increased in acute
cerebral infarction [34], stayed persistently elevated during
the early phase after the stroke in association with enlarge-
ment of the ischaemic area in patients with cortical le-
sions [35], and reflected reduction of oxidative brain dam-
age in patients with cortical infarcts treated by free radical
scavenger edaravone [36]. Interestingly, a mass spectro-
metry approach identified a distinct plasma pool of OxPL
that is covalently bound to plasminogen. OxPL/plasmino-
gen levels did not correlate with Lp(a) and were acutely
increased over the first month in patients following acute
myocardial infarction [37].
Percutaneous coronary intervention (PCI) is a standard dia-
gnostic and therapeutic method for management of CAD.
A major complication of PCI is vascular restenosis, a
gradual re-narrowing of the treated segment that occurs
between 3 to 12 months after the intervention. Several stud-
ies attempted to establish the potential value of OxPLs as a
predictor of restenosis. Results on changes in OxPL levels
obtained using E06 and DLH3 antibodies are not strictly
consistent: while both approaches demonstrated elevation
of OxPL after the percutaneous intervention and stenting
[38–40], E06 reactivity in plasma was not associated with
the restenosis risk either in balloon- or stent-treated groups
[40], while OxPL levels detected by DLH3 were a strong
independent predictor of in-stent restenosis at six month
follow-up in acute myocardial infarction patients [41]. In-
terestingly, oxidation epitopes recognised by E06 could be
coimmunoprecipitated with Lp(a) from plasma samples at
every time point after PCI except for those collected im-
mediately after the intervention, suggesting that OxPLs are
released briefly and then reassociate with Lp(a) [38]. A
complex study utilising immunoassays and mass spectro-
metry confirmed the presence of multiple oxidised lipid
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species including phosphatidylcholine-containing OxPL in
lipid extracts from obstructive plaques and in OxPL re-
leased into the circulation during percutaneous coronary
and peripheral arterial interventions [42]. Accumulation
of fragmented phosphatidylcholine during the reperfusion
period was also detected by high performance liquid chro-
matography after cardiopulmonary bypass [43]. Fast
changes in OxPL concentrations after acute events or re-
vascularisation procedures might reflect oxidative stress
caused by tissue injury, increased production of ROS dur-
ing ischaemia/reperfusion or release of lipid components
from ruptured atherosclerotic plaques into the circulation.
Several studies have addressed the value of OxPL meas-
urements in monitoring efficiency of medicamentous treat-
ments and life style changes aimed at management of car-
diovascular disease. Unexpectedly, most data obtained us-
ing E06 antibody revealed elevations in OxPL levels in
response to cholesterol-lowering agents. In the MIRACL
(Myocardial Ischaemia Reduction with Aggressive Choles-
terol Lowering) Trial atorvastatin treatment decreased total
OxPL on all apoB particles in patients with acute coron-
ary syndromes but increased OxPL/apoB, Lp(a) levels and
Lp(a)-associated OxPL [44, 45]. The VISION (Value of
oxIdant lipid lowering effect by Statin InterventON in hy-
percholesterolaemia) study compared oxidation biomarker
values in two groups of hypercholesterolaemic patients
treated either with pitavastatin or atorvastatin. No differen-
ce between the groups was observed with respect to OxPL/
apoB; however, within each group OxPL/apoB signific-
antly increased upon treatment as compared to baseline
[46]. Similar results were obtained in the REVERSAL
(Reversal of Atherosclerosis with Aggressive Lipid Lower-
ing) Trial for atorvastatin and pravastatin [47] and in two
other studies [48, 49]. Patients on a low-fat, high-carbohy-
drate diet exhibited elevated levels of OxPLs and an ac-
companying shift in plasma lipoprotein profile (decrease in
LDL particle size and increase of Lp(a)) [50]. As a fur-
ther example of inverse correlations between OxPL levels
and disease progression, increases in OxPL/apoB and Lp(a)
were found to strongly correlate with improved vascular
function and to predict a lack of progression of coronary
artery calcification [51]. Some attempt at explaining these
inverse correlative data was made in an experimental study
which analysed dietary-induced atherosclerosis progres-
sion and regression in cynomolgus monkeys and New Zea-
land White rabbits. Hypercholesterolaemia was associated
with a decrease in plasma OxPL/apoB, whereas during re-
versal to normocholesterolaemia OxPL/apoB increased and
was accompanied with the disappearance of OxPLs from
atherosclerotic plaque lesions [52]. Taken together, these
data might suggest that statins and lipid lowering diets pro-
mote formation of Lp(a) lipoproteins resulting in mobil-
isation of OxPL from the vessel wall, transfer to Lp(a)
particles and improved clearance of OxPLs from the vas-
cular system. However, in contrast to these studies, OxPL
levels detected by DLH3 mAB decreased in patients with
hypocholesterolaemia after treatment with fluvastatin and
pravastatin [53], thus showing a tendency similar to MDA-
LDL levels which were reduced by pitavastatin and ator-
vastatin [46].

Endothelial dysfunction is an early event in the pathogen-
esis of atherosclerosis which is characterised by decreased
vasodilator function, increased coagulation activity and en-
hanced proinflammatory properties of vascular endotheli-
al cells. Inflammation and oxidative stress which results in
reduced availability of the major vasodilator factor NO are
potent triggers of endothelial dysfunction. Improvement of
endothelial function after lipid lowering therapy in patients
with coronary atherosclerosis assessed by quantitative an-
giography strongly correlated with OxPL levels. The num-
ber of E06 epitopes per LDL particle was related to the
severity of endothelial dysfunction and was the single most
powerful independent risk factor in the post-therapy study
suggesting that OxPL may contribute to abnormal coronary
vasomotion in atherosclerosis [54].

Oxidised lipids in diabetes and
metabolic syndrome

The metabolic syndrome, a constellation of symptoms in-
cluding obesity, dyslipidaemia, hypertension and insulin
resistance, is a risk factor for both CAD and diabetes [55].
Some components of metabolic syndrome are traditional
risk factors for these pathologies, but they only partially ac-
count for the increased incidence of CAD and diabetes in
persons with metabolic syndrome. Among emerging com-
mon non-traditional risk factors are low-grade inflamma-
tion and oxidative stress. In population studies elevated
levels of proinflammatory biomarkers CRP and IL-6 were
found to predict the development of type 2 diabetes [56].
Increased oxidative stress in adipose tissue contributes to
the metabolic syndrome and is associated with type 2 dia-
betes [57]. The role for oxidised lipids in metabolic syn-
drome was suggested by the findings that obesity-asso-
ciated dyslipidaemia and hyperglycaemia in humans are
associated with increased LDL oxidation and that dyslip-
idaemia and insulin resistance in obese LDL receptor-defi-
cient mice were associated with increased oxidative stress
and impaired antioxidant defence [58]. LDL from patients
with non–insulin-dependent diabetes mellitus were more
susceptible to oxidative modification due to a reduced vit-
amin E/lipid peroxide ratio in blood, a factor that may rep-
resent a possible link between the increased incidence of
vascular disease and diabetes mellitus [59]. High-density
lipoproteins isolated from type 2 diabetic patients exhibited
a decreased capacity for clearance of OxPLs, which may
increase the risk for cardiovascular disease [60]. Further,
levels of OxLDL and advanced glycation end
products–modified LDL in circulating immune complexes
were strongly associated with carotid intima thickening in
patients with type I diabetes [61].
DLH3 mAb-based ELISA demonstrated higher OxPL in
patients with unstable angina pectoris that also had diabetes
mellitus as compared to non-diabetic subjects [31] and in
subjects with diabetic nephropathy [62]. Altogether, these
data suggest that OxPLs may reflect and/or contribute to
progression of metabolic disorders and the linkage to a con-
stellation of their complications and related pathologies.
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Oxidized phospholipids in renal
dysfunction

Disturbances in lipid metabolism are a characteristic fea-
ture of chronic renal disease. Renal insufficiency is accom-
panied by shifts in plasma lipid profiles, and high trigly-
ceride and cholesterol plasma levels are independent risk
factors for renal disease progression. Experimental data
suggest that oxidative stress may be among possible mech-
anisms linking hyperlipidaemia with the renal damage [63].
Increased cellular accumulation of lipids and oxidised fatty
acids were detected in the glomerulosclerotic lesions [64].
Patients with uraemia, which is a major contributor to oxid-
ative stress, exhibit increased susceptibility of LDL for ox-
idation [65]. The haemodialysis procedure per se may also
promote LDL oxidation due to activation of neutrophils or
bacterial contamination [66].
Several studies analysed levels of OxPLs in blood of pa-
tients with renal disease and reported variable results.
DLH3 mAb-based ELISA demonstrated more than eight-
fold increase in LDL oxidation in patients receiving hae-
modialysis [6]. Low levels of lysophosphatidylcholine de-
termined by an enzymatic assay were reported to be as-
sociated with increased risk of cardiovascular disease in
Korean haemodialysis patients [67]. In end-stage renal fail-
ure patients undergoing haemodialysis OxPL/apoB levels
measured by E06 mAb dropped immediately following the
procedure, while other markers of LDL oxidation such
as autoantibody titers to copper-oxidised LDL and
malondialdehyde-LDL significantly increased. E06–based
detection also did not reveal any association between
OxPL/apoB levels and cardiovascular disease in chronic
haemodialysis patients [68]. Further large-scale prospect-
ive studies are required to estimate predictive value of
OxPL levels as a biomarker of clinical outcome in renal
disease.

Oxidised phospholipids in neurological
disorders

Brain and nervous tissue are very susceptible to oxidation
due to their high lipid content and intense consumption
of oxygen. Oxidative stress and lipid peroxidation have
been related to progression of many neurological disorders
such as schizophrenia, bipolar disorder and neurodegen-
erative diseases. Involvement of OxPLs in onset and pro-
gression of Alzheimer’s and Parkinson diseases has been
proposed [69, 70]. Multiple sclerosis (MS) is a disabling
neurodegenerative disease characterised by the presence of
demyelinated plaques and axonal degeneration. Autoim-
mune attack on the myelin sheath in the brain and the spinal
cord is supposed to be the major cause for the disease;
however, the identity of the antigens remains elusive. Since
lipids comprise >70% of the myelin sheath, lipids have
been considered capable of inducing autoimmune reac-
tions in MS [71]. Oxidized 1–palmitoyl-2–(5'-oxo)valeryl-
sn-glycero-3–phosphatidylcholine, detected by E06 anti-
body, was found to be present in high amounts in brain
tissue of MS patients but almost absent in control samples
[72].

Another neuropathological condition involving OxPLs is
that of neurobehavioral problems in children treated for
acute lymphoblastic leukaemia. Chemotherapy with me-
thotrexate causes an injury of the central nervous system
leading to neurocognitive deficiencies, anxiety and depres-
sion. Children with high-risk acute lymphoblastic leuk-
aemia receiving the most intensive methotrexate treatment
displayed the highest levels of oxidised phos-
phatidylcholine in the cerebrospinal fluid suggesting that
this OxPL species may be a marker of therapy-induced
central nervous system injury [73]. OxPL levels also pre-
dicted behavioural changes such as executive dysfunction
[74], aggression at the end of therapy and postconsolidation
adaptability [75]. These studies would justify development
of OxPL-based biomarker methods for predicting the de-
gree of neuropathological symptoms caused by chemother-
apy, and also suggest that use of antioxidants may limit tox-
ic effects of the treatment.

Other pathologies characterised by
accumulation of oxidised
phospholipids

Lung injury
PLs are a major component of pulmonary surfactant and
easily undergo oxidation under pathological conditions
characterised by oxidative stress, such as viral or bacterial
infections. Accumulation of OxPLs has been reported in
animal models of lung injury as well as in humans infected
with SARS, Anthrax or H5N1 [76]. Experimental evidence
suggests that OxPLs have dual pro- and anti-inflammatory
functions in the lung. On the one hand OxPLs stimulate
production of proinflammatory cytokines and TLR4 sig-
nalling in alveolar macrophages [76] thus contributing to
lung tissue injury, and they increase endothelial permeab-
ility by inducing cellular cytoskeleton reorganisation [77,
78]. On the other hand, under certain conditions OxPLs
may inhibit LPS-induced inflammation in animal models
[79, 80] and also protect endothelial barrier function, the
differential effects being dependent on concentration and
structural characteristics of OxPL species [77, 78]. Quant-
itative assessment of levels of tissue and systemic OxPLs
in pulmonary injury has not been performed.

Leprosy
Accumulation of fatty acids and PLs is a characteristic fea-
ture of the lepromatous (disseminated, L-lep) form of hu-
man leprosy. Lipid accumulation is related to changes in
the expression profile of genes involved in lipid metabol-
ism in the host, such that the newly synthesised lipids in
leprous lesions derive from human tissue and not from the
mycobacteria. Functionally, OxPLs produced mainly by
macrophages promoted survival of the pathogen by inter-
fering with innate and specific immune responses such as
CD1b-mediated presentation of antigens to T-cells, TLR2/1
activity and IL-12 secretion [81]. Interestingly, the accu-
mulation of OxPLs in leprosy lesions was very similar to
atherosclerosis, suggesting common innate immunity-con-
trolled mechanisms in progression of infectious and meta-
bolic diseases.

Review article: Medical intelligence Swiss Med Wkly. 2014;144:w14037

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 5 of 10



Cancer
Bilary strictures may develop due to a number of patholo-
gies, among them cholangiocarcinoma and pancreatic can-
cer. Correct diagnosis of the bilary stricture aetiology re-
mains a challenge since existing diagnostic methods such
as bile duct brushing do not allow differentiation between
malignant and benign origin of the strictures. Lipidomic
profiling using liquid chromatography-ESI-MS technique
demonstrated elevation of two OxPL species,
1–palmitoyl-2–(9–oxononanoyl)-sn-gly-
cero-3–phosphatidylcholine and
1–palmitoyl-2–succinoyl-sn-gly-
cero-3–phosphatidylcholine, in bile samples of patients
with cholangiocarcinoma, distinguishing these cases from
strictures of other origins with 100% sensitivity and 83.3%
specificity. This approach may enhance the accuracy of en-
doscopic tests during diagnosis of indeterminate biliary
strictures [82].

Conclusion

Emerging data suggest that OxPLs significantly contribute
to progression of many pathological conditions and might
serve as biomarkers to predict the risk of the diseases, mon-
itor disease progression and check therapeutic intervention
efficacy. Broadening the range of monoclonal antibodies to
enable detection of various types of OxPLs as well as better
characterisation of their target oxidation-specific epitopes
would help to overcome the limitations of current OxPL
detection methods. Mass spectrometry analysis of the spec-
trum and structure of OxPL species differentially expressed
in health and disease has great potential for rapid progress
in the field and will allow identification of both novel bio-
markers and molecular mechanisms underlying pathologic-
al effects of OxPLs.
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Figures (large format)

Figure 1

Chemical structure of some biologically active oxidised phospholipids. The image shows molecular structures of a non-oxidised phospholipid
1–palmitoyl-2–arachidonoyl-sn-glycero-3–phosphocholine (PAPC) and some of its oxidised derivatives: 5–hydroxy-8–oxo-6–octenoyl-
phosphocholine (HOOA-PC), 1–palmitoyl-2–(5,6–epoxyisoprostane E2)-sn-glycero-3–phosphocholine (PEIPC),
1–palmitoyl-2–(5–oxovaleroyl)-sn-glycero-3–phosphocholine (POVPC) and 1–palmitoyl-2–glutaroyl-sn-glycero-3–phosphocholine (PGPC). Bold
lines, glycerol “backbones”; shadow, polar head groups.
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Figure 2

The role of OxPLs in the pathophysiology of atherosclerosis.
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