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Summary

Infectious pathogens are responsible for high utilisation of
healthcare resources globally. Attributable morbidity and
mortality remains exceptionally high. Vaccines offer the
potential to prime a pathogen-specific immune response
and subsequently reduce disease burden. Routine vaccina-
tion has fundamentally altered the natural history of many
frequently observed and serious infections. Vaccination is
also recommended for persons at increased risk of severe
vaccine-preventable disease. Many current nonadjuvanted
vaccines are poorly effective in the elderly and immuno-
compromised populations, resulting in nonprotective post-
vaccine antibody titres, which serve as surrogate markers
for protection. The vaccine-induced immune response is
influenced by: (i.) vaccine factors i.e., type and composi-
tion of the antigen(s), (ii.) host factors i.e., genetic differen-
ces in immune-signalling or senescence, and (iii.) external
factors such as immunosuppressive drugs or diseases. Ad-
juvanted vaccines offer the potential to compensate for a
lack of stimulation and improve pathogen-specific protec-
tion. In this review we use influenza vaccine as a model in
a discussion of the different mechanisms of action of the
available adjuvants. In addition, we will appraise new ap-
proaches using “vaccine-omics” to discover novel types of
adjuvants.
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A brief history of adjuvants

In 1796, Edward Jenner’s first observations of protective
effects after inoculation with inactivated cowpox, manifest
by reduced disease burden following pathogen challenge,
heralded the era of vaccination [1]. A century later, Emil

von Behring and Shibasaburo Kitasato discovered that sera
from animals immune to diphtheria contained an antitoxin
activity, later called antibodies [2]. These key findings of
an inducible immune response resulted in the development
of vaccines at the beginning of the last century. Contem-
poraneously, the immunomodulatory potential of alumini-
um was discovered. In 1926, aluminium was the first com-
mercially used adjuvant to improve the immunogenicity of
diphtheria vaccine [3]. For several decades thereafter, oil-
in-water emulsions were the only compounds added to the
list of adjuvants (table 1). In recent years, many potential
new classes of adjuvants have been discovered, most not-
ably toll-like receptor (TLR) agonists, and these have un-
dergone testing for efficacy and safety in humans.

Vaccine-induced immune responses

In this review article, we will address vaccine adjuvant
themes using influenza as a model of acute viral infection.
Influenza is a common acute viral infection and the cur-
rently available vaccines strive to generate neutralising an-
tibodies. Influenza infection is associated with increased
morbidity and mortality in elderly, obese and immunosup-
pressed patients (e.g., after transplantation or during
chemotherapy) and newborns, and during pregnancy [4–7].
Influenza virus replication is controlled by a complex inter-
action of the innate and adaptive immune response. Neut-
ralising antibodies prevent infection and CD8 cytotoxic T-
cell responses (CTL) help to clear the infection [8–14].
Annual vaccination against influenza is recommended (ht-
tp://www.who.int/influenza/vaccines/virus/en/).
The purpose of vaccination is to prime a naïve immune
system and establish a pathogen-specific protective im-
munological memory. Essentially, vaccination induces two
important immune phenotypes: (i.) a virus-specific B-cell
response with production of neutralising antibodies [15]
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with the help of a T helper cell type 2 (Th2) memory
and/or (ii.) a virus-specific CTL and T helper cell type 1
(Th1) memory. Both are capable of providing protective
memory, but one phenotype can predominate at the ex-
pense of the other. The relative importance for protection is
likely dependent upon the particular pathogen. The type of
vaccine-induced immune response is highly dependent on
the antigen and adjuvant composition. Important factors to
consider in vaccine design are: pathogen transmissibility,
replication dynamics, tropism of the pathogen and the nat-
ural immune response. Currently, most commercially avail-
able vaccines target the induction of neutralising antibod-
ies.

Key steps
Antigen-presenting cells (APCs: B cells, dendritic cells
[DCs] or macrophages) play a central role in inducing vac-
cine responses. Antigens such as viral structural proteins
are processed by the proteosome complex (CD8+ CTL)
or lysosomal enzymes (CD4+ T helper cells), cleaved into
peptides, and then presented in a human leucocyte antigen-
(HLA-) dependent manner via the major histocompatibility
complex class I (MHC-I) and MHC-II to CD8 and CD4
T cells, respectively [16] (signal 1). Simultaneously, APCs
are activated via pattern recognition receptors (PRRs), such
as TLRs [17] and cytokines such as interferons (IFNs).
PRRs which sense ribonucleic acid (RNA) contained in in-
activated whole influenza vaccines are endosomal TLR3
and TLR7/8, as well as cytoplasmic retinoic acid-inducible

Table 1: List of adjuvants.

Adjuvant Class Component Company Mechanism of action Vaccines References
Licensed adjuvants
Alum Aluminium mineral salts - Potassium aluminium

sulphate
- Often wrongly classified

- Necrosis causing urate
crystals
- Induction of inflammasome
- IL-1 secretion

Multiple [162–166]

MF59 Oil-in-water emulsion - Squalene
- Polysorbate 80
- Sorbitan trileate

Novartis - Slow release of antigen
- Nonspecific immune
stimulation

Fluad (seasonal influenza)
Focetria (pandemic
influenza)
Aflunov (prepandemic
influenza)

[98, 103,
167–171]

Virosomes Liposomes - Lipids
- Haemagglutinin

Berna Biotech - Slow release of antigen Infexal (seasonal influenza)
Epaxal (hepatitis A)

[172–174]

AS04 Alum-absorbed TLR4
agonist

- Aluminium hydroxide
- MPL

Glaxo SmithKline - induction of Th1 response Fendrix (hepatitis B)
Cervarix (human papilloma
virus)

[175–178]

AS03 Oil-in-water emulsion - Squalene
- Tween 80
- α-Tocopherol

Glaxo SmithKline - Slow release of antigen
- Nonspecific immune
stimulation

Pandremix (pandemic
influenza)
Prepandrix (prepandemic
influenza)

[179, 180]

Unlicensed adjuvants
Pam3Cys TLR2 agonist - Lipopeptide - - Induction of Th1 response - [181]

Poly I:C TLR3 agonist - ds-RNA analogues Hemispherx
Biopharma

- Induction of Th1 response - [182, 183]

Flagellin TLR5 agonist - Bacterial protein linked to
antigen

Moffitt Cancer
Center

- Induction of Th1 response - [184–186]

Imidazoquinolines TLR7 and TLR8
agonist

- Small molecules Cancer Research
Technology

- Induction of Th1 response
- Direct activation of B cells

- [187, 188]

CpG TLR9 agonist - CpG oligonucleotides
±alum/emulsion

Chiron - Induction of Th1 response
- Direct activation of B cells

- [189, 190]

AS01 Combination - Liposome
- MPL
- Saponin

Glaxo SmithKline - Slow release of antigen
- Induction of Th1 response

- [191]

AS02 Combination - Oil-in-water emulsion
- MPL
- Saponin

Glaxo SmithKline - Slow release of antigen
- Induction of Th1 response

- [192]

AF03 Oil-in-water emulsion - Squalene
- Montane 80
- Eumulgin B1PH

Sanofi Pasteur - Slow release of antigen
- Nonspecific immune
induction

- [193]

CAF01 Combination - Liposome
- DDA
- TDB

Statens Serum
Institute

- Slow release of antigen - [194]

IC31 Combination - Oligonucleotide
- Cationic peptides

Novartis - Induction of Th1 response - [195]

Iscomatrix Combination -Saponin
- Cholesterol
- Dipalmitoyl-
phosphatidylcholine

CSL Behring - Slow release of antigen - [196–198]

CAF = cationic adjuvant formulation; DDA = dimethyldioctadecylammonium; IL = interleukin; MPL = monophosphoryl lipid; poly I:C = polyinosinic:polycytidylic acid; RNA =
ribonucleic acid; TDB = trehalose-6,6-dibehenate Th = T helper cell; TLR = toll-like receptor
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gene-1- (RIG-I-) like receptors [18–20]. However, in sub-
unit vaccines, only protein is present and stimulation of
TLRs may need specific adjuvants. Activation of PRRs res-
ults in the up-regulation of costimulatory ligands on the
cell surface of APCs. Costimulatory ligands on APCs mod-
ulate the activation and downstream signalling cascade of
the T cell (signal 2). Important T-cell activating costimulat-
ory ligands are CD80, CD86 and CD40; important T-cell
inactivating costimulatory ligands are cytotoxic T-lymph-
ocyte antigen-4 (CTLA-4) and programmed death ligand
(PD-L)1/2 [21–23].
Successful induction of a CTL response involves the initial
stimulation of DCs by influenza virus. DCs then prefer-
entially secrete IFN-α [24] and interleukin-12 (IL-12), and
up-regulate MHC-I and MHC-II [25]. Thus unprimed naïve
T helper cell (Th0) differentiation is skewed towards a Th1
direction, with IFN-γ, IL-12 and IL-6 production further
amplifying the response [26]. Th1 cells, which produce a
significant amount of IFN-γ, are essential for the induc-
tion of an optimal CTL killing response including release
of perforin and granzyme from cytotoxic granules. In ad-
dition, IFN-γ generated from Th1 CD4+ T cells can affect
isotype switching in B cells [27]. IFN-γ can promote the
induction of HA-specific neutralising antibodies and may
in fact help with broadening responses to heterologous in-
fluenza viruses [28, 29]. This effect could be due to broad-
ening the spectra of available epitopes after proteasome
cleavage [30].
With respect to B-cell responses, adequate priming of a
Th2 immune response (IL-4, IL-5, IL-9 and IL-13) is im-
portant [31–33]. The Th1 response is known to suppress
Th2 responses [34, 35] – via suppressor of cytokine signal
(SOCS) proteins [36] – culminating in lower antibody titres
[24]. In addition, a new class of T cells, T follicular helper
cells (TFH), predominantly producing IL-21, also have a
key role in B-cell maturation [37, 38]. For example, pa-
tients infected with human immunodeficiency virus (HIV)
who had been successfully vaccinated showed significantly
increased IL-21 serum levels and frequency and mean
fluorescence intensity of IL-21R-expressing B cells, which
correlated with H1N1 antibody titres [39, 40]. Other im-
portant growth factors for B cells, such as B-cell activating
factor (BAFF) or a proliferation-inducing ligand (APRIL),
are released by activated monocytes, DCs and macro-
phages in the lymph nodes [41]. Figure 1 highlights the
most important interaction steps between monocytes/DCs,
T cells and B cells during vaccination. The interaction
between B cells and Th2 cells leads to B-cell activation.
The priming steps of a naïve B cell precede a maturation
phase characterised by immunoglobulin class switching
and affinity maturation. In turn this triggers the production
of more specialised antibodies such as Immunoglobulin G
(IgG) subclasses, IgA and IgE [37]. Seroconversion, which
is commonly defined as a 4-fold antibody titre increase
from baseline, serves as an important surrogate marker sug-
gesting successful vaccination.

Adjuvants: mechanisms of action

Changing population demographics, in particular the in-
creasing number of immunosuppressed hosts and elderly

persons, significantly impacts vaccine-related outcomes.
Overcoming the immunosuppressive effects of the aging
immune system will become a key challenge for the vac-
cines of the 21st century [42–45]. Immunosenescence af-
fects DCs, and T and B cells at various levels [46]. Nonad-
juvanted influenza vaccines show low effectiveness, with
seroconversion rates of only 30% in healthy adults above
65 years old [47–51], which is comparable to the weak
response seen in transplant recipients taking immunosup-
pressive drugs [52]. Nonetheless, vaccination remains
highly recommended for these groups in whom the pre-
valence of influenza-associated morbidity and mortality is
high [53].
Adjuvants offer a strategy to improve vaccine outcomes via
natural, synthetic or endogenous molecules that function to
modulate and/or increase the immune effect. This may res-
ult in an enhanced, accelerated and prolonged pathogen-
specific immune response. The immune response can be
preferentially skewed in a certain direction, such as with re-
spect to immunoglobulin classes or the induction of cyto-
toxic or T helper cell responses (Th1 versus Th2). Thereby,
the immunogenicity of particular antigens can be improved
and the nature of the immune response modified, whilst the
amount of required antigen is also reduced. Adjuvants thus
have the potential to boost immune responses in elderly and
immunocompromised hosts. Table 1 provides a list of ad-
juvants and their proposed mechanisms of action.
As antigens vary in immunogenic and biological character-
istics, a particular adjuvant has to be optimised for a specif-
ic antigen. Adjuvants should be added on the basis of the
type of immune response desired; for influenza vaccines,
for example, cytotoxic and Th1 responses against haemag-
glutinin might be of less clinical importance to prevent in-
fection. More important is a robust Th2 response to induce
haemagglutinin-specific neutralising antibodies.
A large amount of data regarding adjuvanted vaccines con-
cerns their safety and tolerability. Prevention of infection
compared with nonadjuvanted vaccines is rarely examined
and often compared with historical controls or literature.
An important debate concerns the best immune biomarker
indicative of protection and prevention of infection. Most
research has considered antibody titres, which certainly

Figure 1

Key steps in B-cell activation and B-cell interaction with T-helper
cells and monocytes, and monocyte derived macrophages and
dendritic cells.
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are easy to measure, as a surrogate marker for protection.
However, T-cell responses, especially Th2 cytokine release;
and measuring B-cell activation directly might correlate
better with protection [54–57]. An increase in antibody
levels does not necessarily correlate with protection; nev-
ertheless, as mentioned, seroconversion is the most com-
monly used surrogate marker of protection. It has been
shown that seroprotection increases to a greater extent in
patients with low or zero baseline titres, compared with pa-
tients with high baseline titres, and that the relative increase
in vaccine recipients with prevaccination titres >1:40 is sig-
nificantly lower [58, 59]. This could be due to a higher “ac-
tivation threshold”, which needs to be reached.
Differential cytokine responses are observed following ad-
ministration of different adjuvants. In general, when used
with pure proteins, oil-in-water (O/W) emulsions up-regu-
late Th2 responses. Addition of TLR agonists to the emul-
sions skews the response to Th1. Much of this work has
been done with TLR4 agonists, including monophosphoryl
lipid A (MPL1), and glucopyranosyl lipid A (GLA) oil-in-
water formulations [60, 61].

Aluminium mineral salts

Mechanism of action
The adjuvant potential of aluminium salts was discovered
in 1926 [62], but their mechanism of action is certainly
complex and still not fully understood. Aluminium salts ex-
ist in various forms with various chemical specifications,
however, and aluminium salts are often described as
“alum”. “True” alum should be reserved for hydrated po-
tassium aluminium sulphate. The misleading term might
explain the variability reported in the literature, as different
aluminium salts induce distinct effects on the immune sys-
tem. Aluminium is cytotoxic via the rupture of endolyso-
somes and the induced release of uric acid, which act as
damage-associated molecular patterns (DAMP) [63]. This
leads to an activation of the Nod-like receptor family pro-
tein-3 (NLRP3) inflammasome and caspase-1, and release
of IL-1, IL-18 and IL-33 [64–67]. This promotes antigen
uptake and presentation by human macrophages and their
recruitment to sites of inflammation [64, 68]. In addition,
HLA-DR, CD40 and CD86 are up-regulated on DCs [69]
in a MyD88-dependent manner (MyD88 is a critical ad-
aptor protein for most TLRs). Other studies have suggested
that “alum” may not act through TLRs [70, 71]. The re-
cruited DCs prime a naïve CD4+ T-cell response, in partic-
ular Th2 [64, 72, 73]. Th2 cytokines are crucial for the dif-
ferentiation of B cells and the maturation processes leading
to IgG1 production.

Clinical data
Although aluminium salts induce a favourable Th2 re-
sponse, not many licensed influenza vaccines are ad-
juvanted in this way – and no licensed influenza vaccine
is available (table 1). In the last decade, new data on the
mechanism of action have emerged, but most studies on
vaccine efficacy have been performed in mice. The poten-
tial to reduce antigen amounts has been recently summar-
ised in a meta-analysis [74]. Table 2 summarises the pub-

lished studies with aluminium salts in influenza vaccine
during the last 10 years.

Oil-in-water emulsions – MF59 and
AS03

Mechanism of action
MF59 and AS03 are squalene-based oil-in-water emul-
sions. MF59 is composed of 0.5% Tween-80 as a water-sol-
uble surfactant, 0.5% Span85 as an oil-soluble surfactant,
4.3% squalene oil, and water. The emulsion droplet size is
approximately 130 nm. Experiments with nanoparticle ad-
juvants suggest that the particle size may be a key factor
for the activity: microspheres with diameters of <10 nm
seem to activate APCs, whereas particles with diameters of
30–100 nm show a slow release of antigen, known as “de-
pot effect” [75]. MF59 squalenes are internalised by DCs
[76] and act independently of the NLRP3 inflammasome
[77], but are dependent on MyD88, which might have an
adaptor protein function for tumour necrosis factor receptor
superfamily member 13B (also known as TACI) or the IL-1
receptor [78]. Studies have shown that pretreatment with
MF59 prior to vaccine application resulted in a maintained
“immunocompetent environment” within the muscle [79].
Interestingly, this effect does not occur if MF59 is injec-
ted later. The number of leucocytes isolated in the muscle
increased seven-fold within 2 days, and a slow decay was
observed thereafter. MF59 function is dependent on CC
chemokine receptor type 2 (CCR2), the receptor for mono-
cyte chemoattractant proteins 1–5 (MCP-1–MCP-5), and
on intracellular adhesion molecule-1 (ICAM-1) [80, 81].
MF59 additionally induces monocyte-to-DC differentiation
[82]. Of note, the individual components of MF59 are not
as effective as the entire formulation [83].
AS03, containing an α-tocopherol (a form of vitamin E),
modulates cytokine release and cell recruitment to regional
lymph nodes, leading to enhanced antibody responses [84].
Slow release of antigen compounds seems not to be a
primary mechanism of action. Squalene is rapidly degraded
in tissues and studies with viral glycoproteins showed that
antigens did not bind to the emulsion droplets, and that
binding was not necessary to achieve a potent adjuvant ef-
fect [79, 85]. MF59 and AS03 showed higher immunos-
timulatory potential than aluminium salts in several clinical
studies [74].

Clinical data
The immunogenicity of seasonal and pandemic
MF59-adjuvanted influenza viruses has been widely evalu-
ated in open and controlled studies involving a broad range
of different patient groups – inclusive of elderly and im-
munosuppressed populations. To summarise, these studies
showed that MF59-adjuvanted influenza vaccines induce a
more potent immune response with higher rates of serocon-
version compared with nonadjuvanted vaccines [86–91].
Local reactions – mainly mild reactions at the site of injec-
tion sites – were increased.
In addition, O/W emulsions carry the potential to generate
cross-reactive antibody responses. MF59 increases the di-
versity of the epitope repertoire against haemagglutinin-1
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[92]. Given the frequency with which antigenic drift occurs
in influenza viruses, this seems to be the most important
immune advantage arising from the use of MF59. In ad-
dition, the potency of vaccines against weakly antigenic
pandemic vaccine strains could be significantly increased
[93–95]. Reductions in the amount of antigen (lower than
15 μg of haemagglutinin) needed to generate a sufficient
response is critical when the capacity to generate vaccines
is limited, in particular during a pandemic [96–104]. Al-
though the immunogenicity of MF59-adjuvanted vaccines
has been demonstrated in terms of antibody responses, the
increased protective effect has only been shown in two
studies [105, 106].
The potency of AS03-adjuvanted influenza vaccines to in-
crease antibody levels was shown for the avian A/H5N1 in-
fluenza virus [107–109] and the A/H1N1 pandemic virus

[110–114]. Data from clinical trials involving the elderly,
children of different ages and immunocompromised pa-
tients have shown enhanced antibody mediated immune re-
sponses to haemagglutinin. Again, only one study demon-
strated the impact on infection prevention [115].

New types of adjuvants:

Peptide design
Protein interactions that modulate the immune response
and have been identified in genome-wide association as-
says and gene hub analysis can also be used to design new
adjuvants (see below). On the basis of these interactions,
peptide libraries can be designed to block or stimulate the
interaction. These peptides may be used as adjuvants by

Table 2: Studies of alum-adjuvanted influenza vaccines in humans.

Type of influenza Study cohort Treatment groups Major outcomes Type of
aluminium
salt

Reference

Whole virion inactivated
Influenza A/California/7/2009
pandemic H1N1

Double-blind randomised
Phase I (n = 50, 18–50 y)
Phase II/III (n = 330, >3 y)

Phase I: 10 μg vs 15 μg, i.m.
injection
Phase II/III: 10 μg vs 15 μg
Three age groups:
3–17 y, 18–49 y, >50 y

Phase I: In 20% mild side effects
during 42-day follow-up.
No adverse effects
Phase II: same.
Seroconversion
in 18–49 y: 10 μg 90.4%, 15 μg
90.4%
in >50 y: 10 μg 87%, 15 μg 76%

Aluminium
hydroxide

Kulkarni et al.
[199]

Whole virus inactivated
Influenza A/Vietnam/1203/2004
H5N1

Randomised dose-escalation
Phase I and II (n = 275)

18–45 y
Adjuvanted: 3.75, 7.5, 15, and
30 μg
Nonadjuvanted: 7.5, 15 μg.

Higher seroconversion in
nonadjuvanted group
Higher seroconversion in lower
antigen group
(7.5 vs 15 μg); Phase I; Phase II

“Alum”
adjuvant

Ehrlich et al.
[162]

Whole viron inactivated
Influenza A/Vietnam/1194/
2004–A/PR/8/34
H5N1

Randomised placebo-
controlled double-blind study
(n = 120)

18–60 y, i.m. injected
1.25, 2.5, 5, or 10 μg in two
doses vs placebo

Seroconversion:
1.25 μg: 23.5%; 2.5 μg: 18.8%
5 μg: 78.6%; 10 μg: 80%
2nd booster dose increased
seroconversion.

“Alum”
adjuvant

Lin et al. [200]

Inactivated-split
Influenza A/Vietnam/1194/2004

Prospective, randomised,
observational, multicentre trial,
n = 400 in each trial

Phase I, n = 400, 18–45 y
Adjuvanted: 7.5, 15 μg
Nonadjuvanted:7.5, 15 μg
Phase II, n = 400, 18–64 y
Adjuvanted: 30, 45 μg
two doses

Phase I, d21, seroconversion:
7.5 µg: 21% 7.5 μg + Al: 14%
15 µg: 28% 15 μg + Al: 17%
Phase II, d21, seroconversion:
30 μg + Al: 31%
45 μg + Al: 30%
double seroconversion after 2nd
dosage

Aluminium
phosphate
+ thiomersal

Nolan et al.
[201]

Inactivated
Influenza A/Hong Kong/1073/99
H9N2

Randomised dose-comparison
study, n = 353

1.7, 5, 15, 45 μg i.m.
5, 15 μg i.d.
Whole virus vs virasomal
>18 y, two doses

Seroprotection, d21 and d42,
<40 y
Dose-dependent increase
Increase with alum
Virosomal unit and intradermal
injection minimal increased
response

Aluminium
phosphate

Nicholson et al.
[202]

Inactivated-split
Influenza A/California/7/2009,
H1N1

Randomised double-blind,
placebo-controlled study, n =
2,200

Age groups:
3–11, 12–17, 18–60, >61 y
7.5, 15, 30 μg
2nd dose vs placebo

18–60 y:
15 μg 97.1%; 30 μg 92.6%; Pl:
10.7%
>61 y:
15 μg 79.1%; 30 μg 84.1%

“Alum”
adjuvant

Zhu et al. [203]

Whole viron, inactivated
Influenza A/Vietnam/1194/2004

Randomised study Phase II/III trial
Adult, n = 337; 20–59 y; i.m. vs
s.c. 15 μg
Children, n = 374; 3 m – 19 y; 3,
7.5 μg

Seroconversion
Adult: i.m. 82.8%, s.c. 71.4%
Children: no clear information

“Alum”
adjuvant

Nakayama et
al. [204]

Whole viron inactivated
Influenza A/Vietnam/1194/2004,
H5N1 and A/PR(8/34 H1N1

Randomised study (n = 120) Phase I, healthy Japanese men
20–40 y
s.c.: 1.7, 5, 15 μg
i.m.: 1.7, 5, 15 μg
2nd dose

Seroconversion
s.c. 15 μg 42.1%, vs i.m. 15 μg
65%
Seroconversion after 2nd dose
s.c. 15 μg. 68.4% vs 75%

Aluminium
hydroxide

Ikeno et al.
[205]
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themselves [116, 117] or be used as lead compounds for in-
silico screening to design small molecules.

Small molecules
Small molecule adjuvants (SMAs) include both natural
products such as muramyl dipeptide, byrostatin-1, mono-
phosporyl Lipid A (MPL), QS-21 and QuilA (saponin
based), and PAM2CSK4 [118–123]; and fully-synthetic
drug-like molecules such as the group of im-
idazoquinolines and bestatine [124–126]. Best described
is the so-called family of imidazoquinolines [127, 128),
including imiquimod, resiquimod and gardiquimod
[127–129], which act as TLR7/8 agonists. Other examples
of SMAs are synthetic CpG oligodeoxynucleotides which
act as TLR9 agonists [130]. For CpG oligonucleotides,
structure-activity relationship data to design similar com-
pounds [131] has been used; in addition, quantitative
structure-activity relationship (QSAR) technology with op-

timised activity, selectivity and toxicity was used to gen-
erate novel variations of compounds such as, CPG-1826
[132] and CPG-7909 [133]. Polyinosinic:polycytidylic acid
(or poly I:C) is another analogous immunostimulant, and
acts as a TLR3 agonist [134].

The future of adjuvant development

Discovery of new adjuvants using “-omics”
During the last decade tremendous progress has been
achieved in understanding the complex interaction between
the various key components of the immune system. Com-
plex data detailing messenger RNA (mRNA) and protein
expression profiles using systems biology approaches has
helped us to understand many key steps involved in im-
mune activation [135–138]. The data-gathering techniques
for modelling and simulation of immunological processes,
and the required tools and techniques to question vaccine

Table 3: Summary of genome-wide association studies in vaccine cohorts.

Study Vaccine Sample size Region Mapped genes SNP p-value
Pajewski NM et al. 2012 Anthrax 726, European ancestry 18q21.2 SRSF10P1 – MEX3C rs7230711–C 1 x 10–6

1p36.22 SPSB1 rs11121382–C 4 x 10–6

5q31.1 LOC100996485 rs634308–G 4 x 10–6

6p21.32 MTCO3P1 – HLA-
DQA2

rs3104402–A 6 x 10–6

9q33.1 ASTN2 rs6478282–A 6 x 10–6

9p21.1 RPS11P4 – TMEM215 rs10758161–G 8 x 10–6

13q14.3 PCDH8 – OLFM4 rs732949–C 8 x 10–6

4q24 TET2 – PPA2 rs2647264–G 9 x 10–6

Kennedy RB et al 2012 Smallpox 512, European ancestry
199, African American

18q21.2 MEX3C rs8096445–A 9 x 10–9 (AA)

5q11.2 PDE4D rs17444059–G 2 x 10–8 (AA)

2p22.3 LINC00486 rs6728021–G 4 x 10–8 (AA)

3q28 PYDC2 – FGF12 rs1516489–C 8 x 10–8 (AA)

9p21.1 NDUFB6 rs17290760–G 1 x 10–7 (AA)

1p36.12 LINC00339 – CDC42 rs2501276–A 2 x 10–7 (AA)

6q22.33 C6orf58 – THEMIS rs17299841–C 2 x 10–7 (AA)

8p23.1 BLK rs2255327–A 3 x 10–7 (AA)

5q34 TENM2 rs2973662–A 5 x 10–7 (AA)

Ovsyannikova IG et al
2012

Smallpox 217, African American
ancestry
580, European ancestry
217, Hispanic ancestry

10p12.1 MKX rs10508727–? 1 x 10–10 (AA)

10q21.1 SNRPEP8 – PCDH15 rs12256830–? 2 x 10–10 (Hispanic)

8p12 VENTXP5 – RPL6P22 rs10503951–? 3 x 10–9 (AA)

10p12.1 GPR158 – GPN3P1 rs12775535–? 4 x 10–9 (AA)

8q24.13 ZHX2 rs10108684–? 1 x 10–8 (AA)

18p11.21 SPIRE1 rs9959145–? 3 x 10–8 (AA)

10p14 PRKCQ rs4748153–? 3 x 10–8 (Hispanic)

1q31.1 RPS3AP9 – FAM5C rs10489759–? 8 x 10–8 (EA)

6p21.2 KIF6 rs9380880–? 1 x 10–7 (Hispanic)

1q43 GREM2 rs10495471–? 2 x 10–7 (AA)

Png E et al. 2011 Hepatitis B 1683, Indonesian ancestry 6p21.32 BTNL2 – HLA-DRA rs3135363–? 7 x 10–22

6p21.33 C2; ZBTB12 rs9267665–? 1 x 10–17

6p21.32 HLA-DPB1 rs9277535–? 3 x 10–12

Fellay J et al. 2011 HIV 831, all male mixed ancestry 6p10 HLA B rs4713462 1.9x10–6

6p10 HLA B rs4713460 2.4x10–6

AA = African American; EA = European ancestry; HIV = human immunodeficiency virus; SNP = single nucleotide polymorphism
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responses have been reviewed recently [139]. Application
of these approaches to vaccinology at the genome-wide,
transcriptome, and proteome levels may identify new path-
ways and molecular targets for immune modulation.
Based on genome-wide association studies, several critical
single nucleotide polymorphisms (SNPs) influencing
vaccine-induced responses have been found. These genes
reflect “gene-hubs”; critical interaction points in an inflam-
matory signalling cascade. SNPs with a high frequency are
attractive targets for compensatory molecules specifically
targeting the immune response of an individual (person-
alised vaccination). Figure 2 summarises such a screening

Figure 2

Possible work-flow to develop novel adjuvants. The following
example is only used as an illustration and not based on “real” data
– it should highlight critical steps, which could be used for different
vaccines and pathways. First step: observation of distinguished
phenotypes, such as antibody production different due to defective
cytokine production. Second step: description of respective
phenotype – identification of involved genes using a genome-wide
association study. Next, RNA sequencing could be used to describe
the pathophysiological impacts of the newly discovered SNP. Third
step: generation of a genetic network to identify critical interaction
points (so called gene hubs). In our “imaginary example” an
important cytokine receptor would be affected – the interleukin 4
receptor. In-silico design of small molecules, which can modulate or
compensate for the polymorphisms in the signalling cascade. In this
example IL4 cannot bind sufficiently owing to a mutation within the
IL4-receptor. A small molecule could be specifically designed to
overcome this.

Figure 3

In-silico drug discovery strategies.
(A) Virtual screening campaigns usually identify small molecules
that fit within a particular pocket in a protein.
(B) An illustration of a pharmacophore construction describing the
distribution of important features for a drug that has three
hydrophobic regions with two hydrogen bond acceptors. Based on
these models virtual screens can be performed to focus only on a
couple of interesting candidate compounds rather than screening a
whole library.

approach and gives a hypothetical example using IL-4 as a
key cytokine for B-cell activation.
Studies continue to suggest the promise of this approach.
Umlauf and colleagues associated the measles-mumps-ru-
bella (MMR) induced vaccine response with 307 common
candidate SNPs from 12 antiviral genes / immune sig-
nalling cascade such as RIG-I, interferon-induced GTP-
binding protein Mx1 (Mx1) 2’-5’-oligoadenylate syn-
thetase 1 (OAS1), etc. Genetic variants within the DDX58/
RIG-I and OAS1 gene were associated with measles-spe-
cific antibody variations. DDX58 and ADAR polymorph-
isms were associated with variations in both measles-spe-
cific IFN-γ and IL-2 secretion. After correction for false
discovery rate, 15 single-SNP associations (11 SNPs in
Caucasians and 4 SNPs in African-Americans) still re-
mained significant at the q-value (minimal false discovery
rate) <0.20 [140]. Larger studies have been performed us-
ing genome-wide association of SNPs (GWAS) with
vaccine-induced immune responses against smallpox
[141–143], anthrax [144], HIV [145], and hepatitis B virus
[146]. Table 3 summarises the findings of all mentioned
studies. One GWAS explored the association of SNPs with
side effects from vaccines [147].
At the transcriptome level, several high-frequency
sampling studies of vaccine responses to yellow fever
[148] and influenza [12, 149] vaccination have identified
transcriptome signatures of the unadjuvanted vaccine re-
sponse. Application of this knowledge to adjuvant design
has yet to be published.
One caveat to the “-omics” approach as applied to ad-
juvants is the need for better data at the site of the adjuvant
effect (i.e., the site of injection and the lymph nodes), to
better characterise in-situ molecular and cellular responses.
Virtually all human studies have involved examining tran-
scriptome and proteome profiles of peripheral blood. With
current technology, muscle and lymph node sampling of in-
flammatory cells and parenchymal tissue is highly invas-
ive and not an option for ethical reasons in human studies.
Complicating matters is that murine models may differ in
the fundamental biology of key immune responses. For ex-
ample, there are significant differences in murine B-cell re-
sponses to some classes of TLR agonists [150].

In-silico screening
A successful adjuvant should be specific and selective for a
target receptor either in an agonistic or antagonistic fashion
to modulate the immune response. This could significantly
reduce any possible side effects and lead to a robust and
controlled modulation of the immune response. These side
effects signify a major problem in adjuvant development
and are not always predictable, as in the likely association
of narcolepsy with the AS03 adjuvanted influenza vaccine
[151, 152]. Nevertheless, computer-modelling (or in-silico)
techniques could be the new path of hope to develop nov-
el adjuvants that are potent, selective and safe (Figures 3A
and B).
For the last two decades, molecular modelling approaches
have been used to develop new drug candidates (small mo-
lecules or short peptides) that fit within a binding site in a
particular target (usually protein). The objective is to com-
plement a binding pocket that would regulate the activity of
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the target in terms of shape, charge and other physiochem-
ical properties. In order to reduce side effects and enhance
the pharmacological properties, this regulator has to be po-
tent for and selective toward the designated pocket, and to
be suitable for further modifications and optimisations. In
this regard, for an adjuvant to act as a modulator of the im-
mune response, it must be specific for one of the receptors
involved in this process and regulate its activity. Depend-
ing on the availability of a receptor structure or a number
of predetermined potent regulators, one of many modelling
strategies can be pursued.
If the target three-dimensional structure is available and the
binding site that would regulate the activity of the target
is known, one could use receptor-based virtual screening
[153]. In this technique, a set of small molecules is docked
to the surface of the identified pocket (Figure 3A). The
ones that best fit within the pocket are then retained and
their binding affinities are further calculated and used to
rank them for experimental testing [154–156]. Only a few
success stories reported in the literature followed this path
to discover immune-related adjuvants. This small number
of computer-developed adjuvants could be attributed to the
limited number of protein structures involved in the im-
mune response process. Among the few examples of suc-
cess is the work done by Goel et. al. to modulate the
chemokine receptor-4 (CCR4). They designed a set of
small molecules specific for CCR4, a protein that is ex-
pressed on Th2 cells [157–161].
When only a set of potent regulators is available, ligand-
based approaches are used. This may involve one of two
strategies: pharmacophore construction or quantitative
structure activity relationship (QSAR) modelling. In the
former, the common chemical and physical features that
exist in the training set are used to build a hypothetical
structure that distributes these features in space (Figure
3B). These features include hydrogen-bond donors and ac-
ceptors, hydrophobic regions, aromatic rings and excluded
volumes. QSAR usually uses two-dimensional properties
of the ligands to construct a mathematical model that would
predict the activity of a future ligand. These properties in-
clude, but are not limited to, the molecular weight, the hy-
drophobicity of the ligand, the number of hydrogen bonds
and many other properties.
All of the above-mentioned methodologies hold the prom-
ise to develop novel classes of adjuvants. Combining in-
formation from “vaccine-ome” studies identifying crucial
junctures in immune activation, together with powerful in-
silico modelling tools will certainly become the future for
adjuvant design.

Conclusion

Infectious diseases are a continuous threat. Without doubt
the development of vaccination has saved millions of lives.
However, immunosuppressed and elderly people remain
vulnerable to vaccine preventable disease as a consequence
of reduced vaccine responses. Despite profound advances
in the understanding of the immunological processes in-
volved in vaccine responses, we have failed to improve
further vaccine responses. In the last 150 years only a
few adjuvants have been discovered and applied clinically.

However, the future is bright. New small molecules may
help to significantly increase vaccine responses. Emerging
technology such as in-silico modelling of adjuvant receptor
interactions using super-computers; combined with RNA
sequencing and microarray SNP discovery, uncovering
critical steps in vaccine responses, will bring about the
design of novel classes of adjuvants.
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Figures (large format)

Figure 1

Key steps in B-cell activation and B-cell interaction with T-helper cells and monocytes, and monocyte derived macrophages and dendritic cells.

Review article Swiss Med Wkly. 2014;144:w13940

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 15 of 16



Figure 2

Possible work-flow to develop novel adjuvants. The following example is only used as an illustration and not based on “real” data – it should
highlight critical steps, which could be used for different vaccines and pathways. First step: observation of distinguished phenotypes, such as
antibody production different due to defective cytokine production. Second step: description of respective phenotype – identification of involved
genes using a genome-wide association study. Next, RNA sequencing could be used to describe the pathophysiological impacts of the newly
discovered SNP. Third step: generation of a genetic network to identify critical interaction points (so called gene hubs). In our “imaginary
example” an important cytokine receptor would be affected – the interleukin 4 receptor. In-silico design of small molecules, which can modulate
or compensate for the polymorphisms in the signalling cascade. In this example IL4 cannot bind sufficiently owing to a mutation within the
IL4-receptor. A small molecule could be specifically designed to overcome this.

Figure 3

In-silico drug discovery strategies. (A) Virtual screening campaigns usually identify small molecules that fit within a particular pocket in a protein.
(B) An illustration of a pharmacophore construction describing the distribution of important features for a drug that has three hydrophobic
regions with two hydrogen bond acceptors. Based on these models virtual screens can be performed to focus only on a couple of interesting
candidate compounds rather than screening a whole library.
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