Climatic change: possible impacts on human health

Martin Beniston

Head of the Department of Geosciences, University of Fribourg, Switzerland

Summary

This paper addresses a number of problems relating to climatic change and human health. Following an introduction outlining the overarching issues, a short summary is given on climatic change and its anthropogenic causes. The rest of the paper then focuses on the direct and indirect impacts of global climatic change on health. Direct effects comprise changes in the hygrothermal stress response of humans, atmospheric pollution, water quality and availability; indirect effects include the potential for the spread of vector-borne diseases outside their current range. The paper concludes with some comments on possible response strategies aimed at alleviating the adverse effects of climatic change on human health.

Key words: climatic change; climatic impacts; modeling; physiological stress; vector-borne disease

Introduction

In the coming decades humankind is likely to be subjected to the impacts of rapid environmental change triggered, at least in part, as a result of human activities. While the balance between humans and their resource-base has always been delicate, the accelerated changes resulting from industrialization and significant global population increase over the last century have resulted in definite and sometimes irreversible damage and loss of resources. According to Myers and Tickell [1], there have been more changes in the environment in the last 200 years than in the last 2000, and more changes in the last 20 years than in the last 200. The rate of species extinction is now well beyond the natural rate, in what is sometimes referred to today as the "biotic holocaust".

Global environmental change can be defined as a series of stress factors on the physical and biological systems of the planet (e.g. Beniston [2]). The Earth's environment has in the past been continuously subjected to various stresses through natural processes and, more recently, through human interference. Whether the global environment is capable of withstanding natural and anthropogenic stresses is a matter of constant debate, however, and examples of irreversible degradation have provided arguments to those who believe that environmental impacts are cumulative and difficult to reverse.

The root causes of environmental mismanagement are often to be found in economic policies and political options, and include:

- severe depletion of resources such as water and food availability;
- loss of territory following sea-level rise, for example;
- changes in the sanitary situation of many populations as a result of the expansion of vectorborne diseases;
- changes in extreme events; natural hazards related to extreme weather events are those that inflict the greatest damage on the environment and infrastructure, and take the heaviest toll of life.

This paper will thus provide a brief overview of these interrelated factors and the manner in which they can impact upon human health in different parts of the world.

Climatic change: possible trends in the 21st century

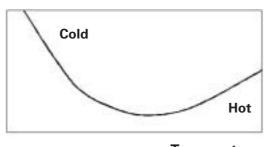
The so-called "greenhouse gases" (GHGs) are minor gaseous constituents which have radiation properties capable of warming the atmosphere. A fraction of the solar energy which is intercepted at the top of the atmosphere reaches the ground and warms the surface. The extent of direct solar heating depends on a number of factors, such as the reflectivity of the surface, the quantity of clouds or the amount of dust in the atmosphere. The interaction between the different major components of the Earth system, namely the atmosphere, the oceans, the cryosphere (snow and ice) and the biosphere (terrestrial and oceanic) are also important determinants of the manner in which energy is distributed around the globe.

To avoid continuously absorbing energy and overheating, the earth emits part of the absorbed solar energy back to space in the form of infrared radiation. GHGs absorb infrared radiation in certain wavebands of the infrared electromagnetic spectrum, and reemit this heat energy in all directions, i.e., including the atmosphere and the Earth's surface. In doing so, GHGs maintain lowlevel atmospheric temperatures at a level 35 °C higher than would otherwise be the case. In the absence of trace gases such as carbon dioxide, the Earth would be about -18 °C on average. Greenhouse gases are therefore life-sustaining; they represent less than 3% of the gaseous composition of the atmosphere. In other words, the gases which are climatically relevant make up, paradoxically, a very modest proportion of the atmosphere (e.g. [3]).

Human activity, through industry, agriculture, energy generation and transport, has released significant amounts of GHGs into the atmosphere since the beginning of the industrial era, and there is concern that this may be inadvertently modifying the global climate through enhancement of the natural greenhouse effect. According to the Intergovernmental Panel on Climate Change [4, 5], global mean temperatures could increase by 1.5 to 5.8 °C by the end of the next century in response to this additional radiative forcing. While this may appear to be a minor warming when compared to diurnal or seasonal amplitudes of the temperature cycle, it should be emphasised that this is a warming unprecedented in the last 10000 years. It is not only the amplitude of change but also the rate of warming which is generating concern in the scientific community, especially in terms of the vulnerability and response of environmental and socio-economic systems to climatic change.

Changes in planetary temperatures will be accompanied by shifts in the distribution of precipitation patterns and seasonalities. In addition, a greater frequency and intensity of extreme climatic events may emerge as climate continues to change in the coming decades. Because ecosystems, water quality and quantity, agriculture and air quality are sensitive to weather and climate, any significant and long-lasting changes in the climate system will impact upon human well-being, which has subtle dependencies on climate, food security, water quality and environmental health.

The possible impacts of climatic change on human health


It is often difficult to associate any particular change in the incidence of a particular disease with a given change in a single environmental factor. It is necessary to place the environment-related health hazards in a population context, such as age, hygiene practices, socio-economic level (access to adequate clothing and shelter), and medical and agricultural traditions [6]. Forecasting the climate change impacts on health is complex, because populations have different vulnerabilities to change and susceptibility to disease.

There are numerous side effects of environmental change that can impact upon health and well-being, including hygrothermal stress and enhanced levels of air pollution and the modification of natural ecosystems which may have repercussions on such aspects as food production and water

Figure 1 Schematic relation

between mortality and atmospheric temperatures, adapted from Keatinge et al. (2000).

Mortality

Temperature

quality. These in turn may affect the geographical distribution and celerity of propagation of vectorborne diseases, as well as the equilibrium between a number of other infectious and non-infectious diseases [6]. In addition, if climatic change were indeed to be accompanied by an increase in the intensity of certain forms of natural hazard, such as cyclones, floods, or drought, these would compound the effects on human health. Moreover, such catastrophes can generate large refugee and population movements, with a need for resettlement in what are often already densely populated areas [7].

The impacts of climatic change on human health are likely to be twofold, namely direct effects related to the physiological effects of heat and cold, and indirect effects such as the spread of vector-borne pathogens into areas where a disease currently does not exist or was eradicated in the past.

Direct effects of climatic change on health

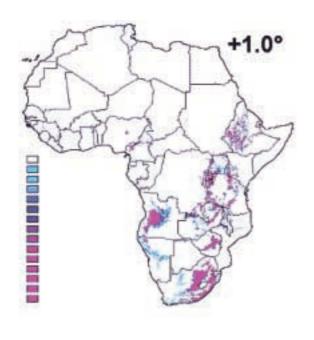
The physiological effects of temperature on the human body are well known, because extreme conditions of heat or cold can be detrimental to many body functions, both directly and in terms of the water stress imposed by high temperatures. In a recent survey of mortality, Keatinge et al. [8] have reported that deaths in mid- and high-latitude countries occur most frequently during conditions of extreme cold or extreme heat, as illustrated schematically in figure 1. Between the two extremes a physioclimatic "optimum" exists where mortality is at a minimum. The profile given in this figure is identical for many different parts of the world, although the temperature scale will vary from one location to another. This is because the physiological response to heat and cold stress will be vastly different for inhabitants in Helsinki and Athens, for example, since they are acclimatised to a particular range of temperatures under current climatic conditions; it is when temperatures begin to come out of the current range that health impacts may become significant.

Heat waves, particularly in large urban areas, are associated with episodes of strong pollution often linked to the formation of tropospheric ozone, a gas that is formed by chemical transformation of nitrogen oxides and other "precursor" gases released during the combustion of fossil fuels. Ozone is a highly corrosive gas that can irritate or damage lung tissues in addition to provoking eye irritation. "Los Angeles smog" has long been a persistent feature of southern California, as a result of socio-economic and meteorological conditions optimal for ozone formation, but today the very large cities in the south, such as Mexico City, New Delhi, or Cairo, are also severely affected by such pollution.

The probable increase in heat waves in a generally warmer climate and the concomitant effects of heat on atmospheric pollution will lead to greater mortality overall, even taking into account the probable reduction in cold-related deaths in many parts of the mid- and high-latitude countries. Studies conducted by the WHO [9] show, for example, that mortality from both cardiovascular disease and respiratory disease may increase in cities like Athens; in Amsterdam, on the other hand, deaths resulting from cardiovascular disease may decrease while respiratory-related mortality may increase. This is because, following the "Keatinge curve" illustrated in figure 1, the population of Athens would find itself at the high end of the temperature curve and would be subjected to both high levels of heat stress and air pollution. Dutch populations, however, would find themselves in the relative optimum region of the curve, resulting in less mortality from cardiovascular disease, while at the same time experiencing higher levels of pollution linked to generally warmer conditions – thus leading to greater risk of mortality from respiratory ailments.

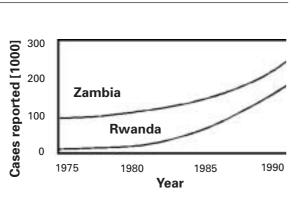
Water quality and quantity are also likely to change in the future, as precipitation patterns change and warmer conditions adversely affect the potential levels of aquatic-borne pathogens and water pollution. The United Nations currently consider the availability of 1000 m³ of water per capita and per annum as a minimum for wellbeing; this includes the use of water for agriculture, industry, and domestic water supply. Currently, 50% of the world population does not reach this level, and close to 350 million people in 20 countries do not have access to potable water. In a changing climate, and especially in a world whose population will continue to increase considerably in the developing countries, estimates point to reductions in water availability almost worldwide [10]. In addition, water quality issues will become even more crucial than today, with possibly over 1 billion people in more than 30 countries without access to a clean water supply. The potential for disease is thus enhanced in the poorer nations of the world.

Shifts in temperature and precipitation patterns can also impact upon agriculture and therefore affect food security in many parts of the world. Of all human activities, agriculture is probably the most sensitive to weather and climate. The IPCC [5] suggests that, while *global* food supply may be maintained through to the middle of the 21st century, many regions of the world will experience the adverse effects on crops of heat waves, droughts, and excessive moisture. In particular, the developing countries are likely to experience shortfalls of up to 30% in current food production, implying that they will need to import basic foodstuffs from producer countries such as the United States and the European Union.


The combined effects of poorer water quality, increased air pollution, uncertain food security and hygrothermal stress will impact on populations of the developing world in particular, but also increasingly in the countries of the North. Poor people are often exposed to greater health and environmental risks, and in countries with growing populations these risks will increase in the future. In terms of wealth distribution, the gap between rich and poor (both within individual nations and between rich and poor countries) has widened steadily since the 1960s [11]. 85% of the world's economic wealth is in the hands of 20% of the world's population, and this gap is likely to widen in the future because 95% of the projected increase in world population will take place in the developing countries. The people of the "South" are thus likely to bear the biggest burden of impacts related to climatic change.

Indirect effects of climatic change on health: the particular case of malaria

The occurrence of vector-borne diseases such as malaria is determined by the abundance of vectors and intermediate and reservoir hosts, the prevalence of disease-causing parasites and pathogens suitably adapted to the vectors, and the human or animal hosts and their resilience in the face of the disease [12]. Local climatic conditions, especially temperature and moisture, are also determinant factors for the establishment and reproduction of the *Anopheles* mosquito [13]. The possible development of the disease in mountain regions thus has relevance, because populations in


Figure 2

Changes in the incidence rate of malaria in Africa, following a modest 1 °C average temperature increase. Grev scale denotes the advance of the vector into reaions currently malaria-free. These are essentially the African highland regions above 1000 m; note that the spread of malaria is likely to occur because these upland regions will become increasingly hospitable to the Anopheles mosquito as climate warms (IPCC, 1998).

Figure 3

Infection rate in two African highland countries (Rwanda and Zambia), 1975–1990, according to Loevinsohn (1994).

uplands where the disease is currently not endemic may face a new threat to their health and wellbeing as malaria progressively invades new regions under climatic conditions favourable to its development [14].

The occurrence of vector-borne diseases is widespread, ranging from the tropics and subtropics to the temperate climate zones. With few exceptions, they do not occur in the cold climates of the world, and are absent above certain altitudes even in mountain regions of the tropical and equatorial belt [9]. At elevations above 1300–1500 m in Africa and tropical Asia, the *Anopheles* mosquito can currently neither breed nor survive; as a result, malaria is almost totally absent from many highlands of the tropical zone [15].

Vectors require specific ecosystems for survival and reproduction. These ecosystems are influenced by numerous factors, many of which are climatically controlled. Changes in any of these factors will affect the survival and hence the distribution of vectors [16]. Global climatic change projected by the IPCC [5] may have a considerable impact on the distribution of vector-borne diseases. A permanent change in one of the abiotic factors may lead to an alteration in the equilibrium of the ecosystem, resulting in the creation of either more or less favourable vector habitats. At the present limits of vector distribution the projected increase in average temperature is likely to create more favourable conditions in terms of both latitude and altitude for the vectors, which may then breed in larger numbers and invade formerly inhospitable areas.

The infection rate for malaria is an exponential function of temperature [17]; small increases in temperature can lead to a sharp reduction in the number of days of incubation. Regions at higher altitudes or latitudes may thus become hospitable to the vectors; disease-free highlands that are today found in parts of Ethiopia and Kenya, for example, may be invaded by vectors as a result of an increase in the annual temperature. If this were to occur, then the number of persons infected by malaria would increase sharply because many live in the uplands of the East African zone.

Lindsay and Martens [18] and Martens et al. [14] have investigated the possible changes in the distribution of malaria. Increases in temperature and rainfall would most probably allow malaria vectors to survive in areas immediately surrounding their current distribution limits. How far these areas will extend in terms of both altitude and latitude depends upon the extent of warming. The IPCC [19] has published maps of increases in the incidence rate of malaria in Africa, as given in figure 2 for a modest warming scenario of +1 °C. It is seen that the regions with the sharpest rise in the rate of infection are those which lie above 1000 m (as given in the inset map). In these highland regions, even a modest rise in temperature may lead to a spread of the disease into hitherto disease-free regions. Figure 3 shows that the trend may already be discernible in a number of highland regions of Africa, such as Zambia and Rwanda [20]. It is seen here that there is a quasi-exponential increase in the incidence of malaria, which is, at least in part, consecutive to changing climatic conditions for the period 1975-1990.

This conclusion is in apparent contradiction to a number of studies that attempt to play down any clearly discernible link between observed climatic change and increases in malaria in the East African highlands. One recent study by Hay et al. [21] concludes that, at least for Kenyan uplands, there have been no climatic trends of sufficient importance for transmission of the disease during the 20th century. The authors furthermore state that because of the high spatial and temporal variability of the East African climate, "claimed associations between local malaria resurgences and regional changes in climate are overly simplistic". While this may indeed be a logical conclusion for the relatively modest changes in climate observed in the region, it may not hold when changes are of greater amplitude. A particular example is the intensification of malaria in Colombia during episodes of El Niño, when mean temperatures increase and mean precipitation decreases relative to normal conditions [22]. Such links between abrupt but significant changes in climate and the annual cycle of malaria development and transmission may help further our understanding of cause-effect relationships between environmental and epidemiological factors, in both the short term (El Niño/southern oscillation cycles) and the longer term (climatic change).

Africa is not the only continent to be affected by the increase in vector-borne diseases; in certain countries where the disease was eradicated in the second half of the 20th century, particular strains of malaria are resurgent. There are reports from various low to medium elevation upland sites in Turkey, Tajikistan, Uzbekistan, Turkmenistan and the Urals that malaria is being transmitted in rural populations. Wilson et al. [23] report that the spread of malaria in the south-eastern sector of Anatolia, Turkey, is currently assuming near-epidemic proportions.

Other vector-borne diseases

Table 1 summarizes, on the basis of information provided by both the IPCC [5] Third Assessment Report and the WHO [9], some of the possible impacts of climatic change on a range of other major vector-borne diseases that are likely to affect increasing numbers of persons, particularly in the tropical zone.

Conclusions

Human health impacts of climatic change will depend on many factors, including existing infrastructure, financial resources, technology, access to adequate health care facilities and equity across different countries and regions. Climatic change will be one among many exacerbating factors, but possibilities do exist of adapting to global warming, through policy, economic, social and legislative action in the context of the United Nations Framework Convention on Climate Change (UN-FCCC).

Climatic change presents the decision-maker with numerous sets of challenges, however. In a set of issues in which there are considerable uncertainties, the policymaker needs to take into account the potential for irreversible damages or costs and the long time frames involved, i.e., decades to centuries. He must also be aware of the long time lags between greenhouse-gas emissions and the response of the Earth system to higher levels of these gases in the atmosphere, and the fact that there will be substantial regional variations in impacts.

In order to come to terms with global warming, international cooperation is essential but this is far from a trifling matter in view of the wide range of conflicting interests and the extremely heterogeneous income levels in the nations of the world. Economic growth, social development and environmental protection are interdependent and mutually reinforcing components of sustainable development, which is the framework for international efforts to achieve a higher quality of life worldwide. Responses to environmental change should be coordinated with social and economic development in an integrated manner. Any policy decision should aim at averting the adverse impacts of change, taking fully into account the legitimate priority needs of developing countries for the achievement of sustainable development and the eradication of poverty.

The measures required to reduce the healthrelated impacts of climatic change are not necessarily of an advanced, "technological" nature but are more in the realm of common sense. Indeed, if advanced technologies were necessary to face up to health issues in a changing climate, then the majority of countries would not have the financial resources to implement such measures. The WHO has suggested a portfolio of recommendations [9] that, if followed, would alleviate some of the negative effects of climatic change on human health. Recommendations include:

Table 1

Climatic factors influencing the range and propagation of vector-borne and waterborne diseases, and the probable human impacts of these diseases as a result of climatic change by 2050 (adapted from WHO, 2001).

Disease	environmental conditions	persons at risk by 2050 (millions)
Malaria	temperature and moisture dependency, water availability	2200
Dengue and haemorrhagic fever	temperature and moisture dependency	2500
Schistosomiasis	temperature dependency of snail reproduction and growth	600
African trypanosomiasis ("sleeping sickness")	temperature and moisture dependency of tsetse fly's reproductive range	55
American trypanosomiasis ("Chagas' disease")	temperature and moisture dependency of triatomine bug's reproductive range	100
Leishmaniasis	temperature and moisture dependency of phlebotomine sandfly's reproductive range	350
Onchocerciasis ("river blindness")	dependency of the blackfly's reproductive range on water availability	120

- Increasing the flexibility of managed systems, by allowing incremental adjustments to be made, reversing practices that encourage deforestation, desertification and loss of agriculturally-viable soils, and enhancing the adaptability of natural systems.
- Reversing trends that increase vulnerability, such as avoiding settlement and economic activity in high-risk areas such as floodplains, coastal zones or landslide zones.
- Improving social awareness and preparedness, in particular through information on the risks associated with climate change and health, early-warning systems and public education programmes.

Indeed, rising awareness among populations at risk may be the most effective manner by which the health-related risks associated with climatic change may be reduced. As the WHO (2001) states:

"Capacity building will certainly be an important step for adapting to climatic change, enabling people to take well-informed decisions for the long-term benefit of society."

Correspondence: Prof. Dr. Martin Beniston Department of Geosciences Geography, University of Fribourg Pérolles CH-1700 Fribourg E-Mail: martin.beniston@unifr.ch

References

- 1 Myers N, Tickell C. Cutting evolution down to our size. The Financial Times weekend supplement, October 27–28, 2001.
- 2 Beniston M. Environmental Change in Mountains and Uplands. London: Arnold Publishers: and New York: Oxford University Press; 2000. p. 172.
- 3 Beniston M. From Turbulence to Climate. Heidelberg / New York: Springer; 1997. p. 330.
- 4 IPCC. Climate Change. The IPCC Second Assessment Report. Cambridge and New York: Cambridge University Press; Volumes I (Science) II (Impacts) and III (Socio-economic implications) 1996.
- 5 IPCC. Climate Change. The IPCC Third Assessment Report. Cambridge and New York: Cambridge University Press; Volumes I (The Scientific Basis) II (Impacts, Adaptation, and Vulnerability) and III (Mitigation) 2001.
- 6 McMichaels AJ, Kovats RS. Climate change and climate variability. Adaptations to reduce adverse climate change impacts. Environmental Monitoring and Assessment 2000;61:49–64.
- 7 Pebley AR. Demography and the Environment. Demography 1998;35:377–89.
- 8 Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, et al. Heat related mortality in warm and cold regions of Europe: observational study. BMJ 2000;81:795–800.
- 9 WHO. World Health Report 2001. Geneva: World Health Organization; 2001.
- 10 Shiklomanov IA, ed. World water resources at the beginning of the 21st century. Paris: UNESCO Publications; 2001.
- Miller GT, Jr. Living in the environment. Belmont, California: Wadsworth Publishing Co; 1996. p. 727.
- 12 McMichael AJ, Haines A. Global climate change: the potential effects on health. BMJ 1997;315:805–9.
- 13 Epstein PR, Diaz HF, Elias S. Biological and physical signs of climate change. Focus on mosquito-borne diseases. Bull Am Meteorol Soc 1998;78:410–7.

- 14 Martens P, Kovats RS, Nijhof S. Climate change and future populations at risk from malaria. Global Environmental Change 1999;9:89–107.
- 15 Craig MH, Snow RW, LeSueur D. A climate-based distribution model of malaria transmission in Africa. Parasitology Today 1999:15:105–11.
- 16 Kay BH. Rearing temperature influences flavivirus vector competence of mosquitoes. Med Vet Entomol 1989;3:415–22.
- 17 WHO. Potential health effects of climatic change. Report of a WHO Task Group. Geneva: World Health Organization; 1990.
- Lindsay SW, Martens WJM. Malaria in the African highlands: past, present and future. WHO Bulletin 1998;76:33–45.
 IBCC. The project of climate change. Combridge and the set of climate change.
- 19 IPCC. The regional impacts of climate change. Cambridge and New York: Cambridge University Press; 1998. p. 517.
- 20 Loevinsohn M. Climatic warming and increased malaria incidence in Rwanda. Lancet 1994;343:714–8
- 21 Hay SI, Cox J, Rogers DJ, Randolph SE. Stern DI, et al. Climate change and the resurgence of malaria in the East African highlands. Nature 2002;415:905–9.
- 22 Poveda G, Rojas W, Quinones ML, Velez ID, Mantilla RI, et al. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ. Health Perspect 2001;109:489–93.
- 23 Wilson ML, Mahanty B, Wannebo A, MacDonald P, Gleason A, et al. Vector-borne Disease Associated with Irrigation Agriculture and Environmental Change in Southeastern Turkey: Application of Satellite Image Analysis. Yale-New Haven: Medical Center Report; 2001.

Swiss Medical Weekly

Official journal of the Swiss Society of Infectious disease the Swiss Society of Internal Medicine the Swiss Respiratory Society

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW's impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Impact factor Swiss Medical Weekly

Editorial Board Prof. Jean-Michel Dayer, Geneva Prof. Peter Gehr, Berne Prof. André P. Perruchoud, Basel Prof. Andreas Schaffner, Zurich (Editor in chief) Prof. Werner Straub, Berne Prof. Ludwig von Segesser, Lausanne

International Advisory Committee Prof. K. E. Juhani Airaksinen, Turku, Finland Prof. Anthony Bayes de Luna, Barcelona, Spain Prof. Hubert E. Blum, Freiburg, Germany Prof. Walter E. Haefeli, Heidelberg, Germany Prof. Nino Kuenzli, Los Angeles, USA Prof. René Lutter, Amsterdam, The Netherlands Prof. Claude Martin, Marseille, France Prof. Josef Patsch, Innsbruck, Austria Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors: http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd. SMW Editorial Secretariat Farnsburgerstrasse 8 CH-4132 Muttenz

Manuscripts:	submission@smw.ch
Letters to the editor:	letters@smw.ch
Editorial Board:	red@smw.ch
Internet:	http://www.smw.ch
Internet:	http://www.smw.ch