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Traditionally the nociceptive system was con-
sidered a “hard-wired” system. Stimulation of a pe-
ripheral pain receptor started an impulse that trav-
elled via the spinal cord to the brain. Here a sen-
sation of pain would be perceived, and appropriate
action started. In 1965 Melzack and Wall [1], with
their famous “Gate Control Theory”, indicated
that the nociceptive system is not a “hard-wired”
system but can undergo modulation. Their theory
stated that afferent nociceptive input could be
modulated at the dorsal horn level by afferent
input in larger non-nociceptive fibres. This served

as a regulatory or “gating” mechanism for the af-
ferent input to the cerebrum where pain was per-
ceived.

We now know that not only modulation but
also plastic changes may take place at the level of
peripheral receptors, at the spinal cord, or at
higher cerebral centres [2]. Due to different re-
ceptor populations with different response mech-
anisms and response times, the induced changes
can be of short duration, last days, months, or may
potentially be irreversible [3].

The nociceptive system is not just a system for the con-
duction of pain impulses from the periphery to the brain.
We now know that plastic changes can take place in the
periphery, the spinal cord and also in higher brain cen-
tres following injury or inflammation. These changes
may increase the magnitude of the perceived pain and
may contribute to the development of chronic pain syn-
dromes. Although our knowledge is growing, we are

now almost more confused as to how we should inter-
vene in order to attenuate or inhibit neuroplasticity. 
The present review examines the current knowledge on
mechanism, clinical significance and prevention of neu-
roplastic changes.
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Introduction

Mechanism of pain modulation

Peripheral modulation
Tissue injury caused by trauma or surgery will

lead to an inflammatory response with the libera-
tion of several substances at the site of injury.
These include potassium ions, substance P,
bradykinin, prostaglandins, etc. (often termed the
“inflammatory or sensitising soup”) [4]. The in-
flammatory response can induce a sensitisation of
peripheral receptors with changes in the response
characteristics of primary afferent fibres. Prior ac-
tivation of the nociceptor may also contribute to a
decrease in the response threshold [2]. Both result
in an increased input to the spinal cord [5]. 

Spinal modulation
Normal afferent input will lead to a fast post-

synaptic potential that usually signals the onset,
intensity and location of a noxious stimulus. An
increased afferent input will lead to a modulation
which is a reversible change in the excitability of
peripheral and central sensory neurones. The
modulation is enhanced by the peripheral inflam-
matory response, and an activation of further re-
ceptor systems in the dorsal horn (mainly via the
N-methyl D-aspartate (NMDA) receptor) results.
This induces a hyperexcitability of dorsal horn
neurones [6]. The peripheral sensitisation and the
central hyperexcitability decrease the threshold for
Aδ - and C-fibre pain, both within the injured area
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(primary hyperalgesia) but also in the surrounding
uninjured tissue (secondary hyperalgesia). Activa-
tion of normally non-painful Aβ -fibres by thermal
or mechanical stimuli may then be perceived as
painful (allodynia) (for review see Woolf and Salter
[2] and Coderre et al. [7]). The peripheral sensiti-
sation and the central hyperexcitability also lead to
an expansion of the receptive fields (the cutaneous
area which is innervated by a single spinal neurone)
of individual dorsal horn neurones. Inflammation
may induce a gene expression with increased syn-
thesis of peripheral receptors. This contributes to
the increased sensitivity of the peripheral nocicep-
tor [8]. Longer lasting modulation may lead to a
potentially irreversible modification. A-fibres may
start synthesising receptors that are normally only
found in C-fibres, thus simulating a phenotype
shift with the A-fibre adopting C-fibre character-
istics [9]. Recently the glia cells, which were ear-
lier regarded as purely supportive, have become
implicated in exaggerated pain states [10]. They
may be activated by infection or by excitatory neu-
rotransmitters, and then contribute to the mainte-
nance of the sensitisation and hyperexcitability. 

Supraspinal modulation
Research into nociceptive system plasticity has

mainly concentrated on the peripheral receptor
and the spinal cord. Descending facilitatory and
inhibitory pathways may influence spinal cord
hyperexcitability caused by tissue injury due to
trauma, inflammation or surgery (for review see
Dubner and Ren [11]). Already in 1967 Wall [12]
demonstrated that stimulation of brainstem struc-
tures could inhibit spinal cord nociceptive neu-
rones. The periaqueductal grey and endogenous
opioid peptides play a central role in this inhibi-
tion of spinal cord neuronal responses [13, 14].
Noxious stimulation may evoke the release of
encephalin at supraspinal and spinal levels [15, 16].
Further inhibitory modulation is exerted by sero-
tonergic [17] and noradrenergic systems [18, 19].
In patients with phantom limb pain a reorganisa-
tion of the cortical body map has been demon-
strated, and if the phantom limb pain is treated
with opioids it may reduce the cortical reorganisa-
tion [20, 21]. Sandkühler [22] has in a recent re-
view pointed at the striking similarities between
central sensitisation and the processes of learning
and memory, a further indication that long lasting
plastic changes are possible.
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Clinical significance of peripheral sensitisation and central hyperexcitability

Acute pain
Tissue injury caused by surgery or trauma will

lead to a fast, early but short lasting increase in af-
ferent nociceptive input. This may induce a first
wave of central hyperexcitability. Due to the de-
velopment of an inflammatory reaction to the tis-
sue injury, with sensitisation of peripheral recep-
tors, a second wave of longer lasting afferent input
will kindle a new increase in central hyperex-
citability [23]. The resulting hyperalgesia and al-
lodynia can lead to increased postoperative and
posttraumatic pain and maybe increase the likeli-
hood of chronic pain (see later).

Concept of pre-emptive analgesia
Attempting to block or attenuate the peripheral

sensitisation and the central hyperexcitability would
therefore seem logical. Early animal experiments
showed that an analgesic administered before
trauma resulted in less posttraumatic pain then when
the same analgesic was administered after the trauma
[24]. This was later termed pre-emptive analgesia. A
natural step was therefore to transfer the concept of
pre-emptive analgesia into the human postoperative
setting. An early study by McQuay and Caroll [25]
showed that morphine premedication and local
anaesthetic nerve blocks reduced postoperative pain
after orthopaedic surgery, indicating that if the af-
ferent traffic is blocked or attenuated this might re-
duce central hyperexcitability. In a famous and much
quoted study Bach et al. [26] demonstrated that
phantom pain after lower limb amputation could be

reduced if an epidural anaesthesia blocked the limb
pain before amputation. This indicated that pre-
venting central hyperexcitability induced by surgical
trauma might even prevent the development of
chronic pain syndromes. However a later study [27]
could not confirm these results. Later Katz [28]
showed that epidural fentanyl administered before
the start of surgery compared to after surgery re-
duced postoperative morphine consumption after
thoracotomy. Multiple studies, both positive and
negative, followed (for a review see Woolf and
Chong [23]). A Medline search using the search term
“pre-emptive analgesia” resulted in over 200 cita-
tions for the last 10 years. However, none of these
studies have had a significant impact on our clinical
practice. Why is this so? Firstly, most studies on pre-
emptive analgesia just looked at short-term out-
come, e.g. postoperative morphine consumption
during the first postoperative days. Is this a clinically
relevant outcome? Only if the reduced morphine
consumption leads to a reduction in postoperative
complications or length of hospital stay, and this is
very seldom recorded in studies on pre-emptive
analgesia. Secondly, opiates may not be an ideal drug
for preventing central hyperexcitability (see later).
Thirdly, many studies have probably used inade-
quate doses, or have had a faulty study design because
the pre-emptive interventions were not extended
into the postoperative period. Thereby, the “second
wave” of nociceptive input due to an inflammatory
response in the injured tissues was not attenuated
(see Woolf and Chong [23]).



Chronic pain
Direct measurements of spinal cord neurons

cannot be made in patients. However, hypersensi-
tivity can be investigated by quantitative sensory
tests. For instance, hypersensitivity is detected
when sensory stimulation evokes pain at stimulus
intensities that do not induce pain in normal sub-
jects. If hypersensitivity is observed after sensory
stimulation of healthy tissues its cause must be a
hyperexcitability of the central nervous system
(central hypersensitivity).

Using the above methodology, central hyper-
sensitivity has been observed in different chronic
pain syndromes such as neck pain after whiplash
injury [29–31], fibromyalgia [32], osteoarthritis
[33], tension-type headache [34], temporo-
mandibular joint pain [35], and post-mastectomy
pain [36]. In these investigations hypersensitivity
was observed after stimulation of areas surround-
ing the site of pain, as well as after stimulation of
areas that are distant from the painful areas. For
instance, in chronic neck pain after whiplash in-

jury, hypersensitivity has been found not only at
the neck but also at the leg [29]. These data show
that central hypersensitivity may be a condition
that is present in several, and possibly in all,
chronic pain syndromes. Central hypersensitivity
is not just confined to the painful areas, but may
involve the whole central nervous system.

Central hypersensitivity may have an impor-
tant role in the determination of the pain com-
plaints. In the presence of central hypersensitivity,
either no or minimal and undetectable tissue dam-
age is required to induce pain. In other words, in-
nocuous sensory stimulation or minimal nocicep-
tive stimulation of peripheral tissues would be able
to evoke exaggerated pain. This may provide a
neurobiological explanation for the discrepancy
between extent of tissue damage and pain com-
plaints that is frequently found in chronic pain pa-
tients. Furthermore, therapies that treat or prevent
central hypersensitivity could be an important part
of the therapeutic approach to chronic pain syn-
dromes.
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Prevention and treatment of peripheral sensitisation 
and central hyperexcitability

Most of our knowledge on peripheral, spinal
and central modulation of nociception is based on
animal research. But can we directly transpose an-
imal studies to the clinical situation in humans?
Species differences may be important, and due to
ethical reasons, animal studies are seldom per-
formed in intact, awake animals. The animals are
either under an anaesthetic, have been spinalized,
or isolated spinal cord slices or cells are studied.
Thereby, the important interaction of the different
components of the nociceptive system may be in-
fluenced or obliterated. In order to systematically
investigate therapeutical regimes in humans we need
to develop relevant human experimental models.

Further problems are what drugs should we
use, what are the optimal combinations, and where
in the nociceptive pathway should we intervene.
Should we inhibit sensitisation of the peripheral
receptor, block afferent nociceptive input, spinal
hyperexcitability, or central modulation? A recent
study [37] showed that a combination of an opioid
receptor agonist and NMDA-receptor antagonist
was necessary to inhibit sensitisation. We most
probably need to use a combination of drugs with
effect at different levels and receptors – the con-
cept of balanced analgesia [23, 38]. 

Role of the opioid receptor in central 
hyperexcitability

Opioids are still our mainstay in the treatment
of acute and some forms of chronic pain. However,
recent studies have shown that the role of opioids
may not be as simple as we have thought [39]. It
has been shown that acute tolerance to opioids may
develop very quickly [40], and that NMDA recep-

tor antagonists (see later) may reverse this acute
tolerance [41, 42]. If acute tolerance also develops
in humans, a large pre-emptive dose of opioids ad-
ministered before surgery might induce an acute
tolerance. This would lead to a decreased effect of
opioids and therefore an increased consumption of
postoperatively administered opioids. Chia et al.
[43] have shown that women receiving a large dose
of fentanyl at induction of anaesthesia had more
intense pain and larger opioid requirements in the
first postoperative hours compared to those re-
ceiving a small dose at induction. Development of
acute tolerance to opioids could be an explanation
for the negative pre-emptive analgesic studies
using opioid consumption as outcome parameter.
Further confusion as to the role of opioids has been
added by Celerier et al. [44] in an animal study.
They showed that fentanyl may induce a hyperal-
gesia lasting days! The hyperalgesia was dose de-
pendent: the more fentanyl the more hyperalgesia.
Interestingly the development of hyperalgesia
could be prevented by pre-treatment with the
NMDA receptor antagonist ketamine.

Role of the NMDA receptor in central 
hyperexcitability

Early animal studies showed an important role
of the NMDA receptor in the development of cen-
tral hyperexcitability, and that NMDA-receptor
antagonists may attenuate hyperexcitability in
both animals [45, 46] and humans [47–50]. Al-
though the pharmaceutical industry has worked
for several years on developing NMDA receptor
antagonists for human use, none have until now
reached clinical trials. For human use we are lim-



ited to ketamine, dextromethorphan, and amanti-
dine. The two last drugs are “dirty” drugs with
mixed effects other than NMDA receptor antago-
nism. Ketamine is a relatively selective NMDA re-
ceptor antagonist, but has severe psychometric
side effects limiting its use in humans. However,
ketamine has been shown to reduce hyperex-
citability in experimental human pain models [51,
52], and to reduce chronic neuropathic pain in pa-
tients [49, 53, 54]. Considering the multitude of
receptors involved in the nociceptive system, it
may be a too simplistic approach to just concen-
trate on the NMDA receptor. It might be more
fruitful to look for a more basic general mechanism
that is common for several receptor types (Andy
Dray, 2002, personal communication).

Role of local anaesthetics in inhibiting 
peripheral sensitisation and central 
hyperexcitability

A logical approach would be to block afferent
nociceptive traffic. This could be performed as
wound infiltration, peripheral nerve blocks or cen-
tral neural blockade (spinal or epidural blocks).
Many studies have used this approach but with
conflicting results (for a review see [23]). Wound
infiltration has only a short effect and does not
block the secondary hyperalgesia [55, 56]. But why
does epidural blockade not produce consistent re-
sults [57, 58]. It is a common assumption that
epidural anaesthesia produces a total blockade of
afferent impulses. Lund et al. [59], however,
showed that somato-sensory evoked potentials
could be recorded during epidural anaesthesia, and
Curatolo et al. [60] showed that epidural blockade
does not inhibit spinal temporal summation (in-
creased pain response to repeated stimuli) indicat-
ing that afferent impulses may reach the spinal
cord even during an epidural anaesthesia sufficient
for surgery. Therefore, local anaesthetics may pro-
vide an incomplete prevention of hyperexcitability
of the central nervous system.

Is preventing peripheral sensitisation and
central hyperexcitability clinically relevant?

Although there is ample evidence that periph-

eral sensitisation and central hyperexcitability is
present in animals and that indirect evidence indi-
cates they have a role in human acute and chronic
pain, we still have not answered the question of
whether this is clinically relevant in humans. 

We have stated earlier several reasons why the
concept of pre-emptive analgesia has not changed
clinical practice. One reason was that most studies
only examined short-term outcome. However,
many chronic pain syndromes develop after sur-
gery or trauma. The problems of phantom pain
after amputations and chronic pain after traumatic
whiplash neck injuries are well known. Prolonged
postoperative pain after thoracic surgery may be
experienced by 45% of the patients. Recently, ev-
idence for central sensitisation in patients with
neck pain after whiplash injury [29–31] and in pa-
tients with fibromyalgia [32] has been demon-
strated. This indicates that central hyperexcitabil-
ity may be an important factor in patients with
chronic pain.

If inhibiting or preventing peripheral sensiti-
sation and central hyperexcitability could decrease
the incidence of chronic pain syndromes this
would have an immense socio-economic impact.
Only recently have studies been published exam-
ining long-term outcome after pre-emptive inter-
ventions aimed at inhibiting hyperexcitability.
Stubhaug et al. [50] have published a very inter-
esting and elegant study. They demonstrated that
patients receiving low dose ketamine (a NMDA-
receptor antagonist) during the operation and the
first 2 postoperative days exhibited almost no hy-
peralgesia around the surgical incision compared
to a placebo control group. Interestingly, the re-
duced hyperalgesia was present not only during the
ketamine infusion, but also several days after the
ketamine infusion had been stopped. Obata et al.
[61] found that epidural block during and after a
thoracotomy reduced long-term pain by about
50% compared to patients who only received the
epidural postoperatively. Both studies indicate that
a perioperative inhibition of peripheral and central
sensitisation may have long-term consequences,
and that sensitisation could therefore be very im-
portant clinically. 
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Conclusions and future perspectives

There is ample evidence that peripheral sensi-
tisation and central hyperexcitability are important
factors for postoperative and posttraumatic pain in
animals. The sparse evidence in humans is mainly
due to methodological problems in measuring pe-
ripheral sensitisation and central hyperexcitability.
The few published human studies, however, indi-
cate that also in humans these may be important
determinants for acute and chronic pain. However,
we still do not know how to optimally inhibit pe-
ripheral sensitisation and central hyperexcitability.
Where in the pain pathway should we concentrate

our efforts, what drugs should we use and in what
combinations and concentrations, still remains to
be investigated.
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