Falsely positive dexamethasone suppression test in a patient treated with phenytoin to prevent seizures due to nocardia brain abscesses

Johann Debrunner^a, Christoph Schmid^b, Markus Schneemann^a

- ^a Medical Clinic B, Department of Medicine, University Hospital, Zürich, Switzerland
- Division of Endocrinology, Department of Medicine, University Hospital, Zürich, Switzerland

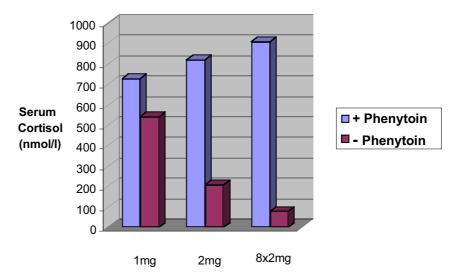
Glucocorticoid excess is a strong risk factor for invasive infections with opportunistic microorganisms such as *Nocardia sp.* [1, 2]. A 78-year-old white male patient with systemic nocardiosis including brain abscesses was given phenytoin 3 × 100 mg daily per os as prophylaxis against epileptic seizures. We considered Cushing's syndrome as a potential disorder predisposing for nocardiosis and performed dexamethasone suppression tests (DSTs) and urinary cortisol measurements, thus using the two best established tools to screen for endogeneous glucocorticoid ex-

cess. These tests have estimated sensitivities and specificities of around 90% each (these rates depend on the patients referred for evaluation and the cutoff values used). Neither 1 mg, 2 mg, nor 8×2 mg of dexamethasone suppressed serum cortisol (fig. 1). Phenytoin was stopped, and 7 days later when we carried out the second set of DSTs, serum cortisol levels were suppressible by dexamethasone (figure). Since phenytoin is a potent inductor of the cytochrome P450 liver microsomal enzyme complex it accelerates hepatic inactivation of dexamethasone, which therefore is cleared more rapidly from the circulation and fails to reliably suppress ACTH and serum cortisol, resulting in a falsely positive screening test for Cushing's syndrome. Several reports from the 1970s and 1980s have described these interactions of phenytoin with the DST [3-6].

Despite impaired kidney function, our patient also had an elevated urinary cortisol excretion: 140 mg/24 h (normal, <120 mg/24 h) after initiation of treatment. Urinary cortisol excretion fell to 30 mg/24 h four weeks later when his infection was being controlled. ACTH and glucocorticoid production are markedly enhanced in patients with severe infectious diseases, particularly if the CNS is concerned. When phenytoin was discontinued and the DST repeated, cortisol levels were partially suppressed after one week.

Cushing's syndrome could be excluded definitively in a later 1 mg overnight DST

when serum-cortisol was adequately suppressed.


Correspondence:
Dr. med. Markus Schneemann
Department of Medicine
University Hospital
Rämistrasse 100
CH-8091 Zürich
E-Mail: markus.schneemann@dim.usz.ch

References

- 1 Graham BS, Tucker WS Jr. Opportunistic infections in endogenous Cushing's syndrome. Ann Intern Med 1984;101:334–8.
- 2 Boscaro M, Fallo F, Sonino N. Disseminated nocardiosis in a patient with Cushing's syndrome. J Endocrinol Invest 1994;17:443–5.
- 3 Jubiz W, Meikle AW, Levinson RA, Mizutani S, West CD, Tyler FH. Effect of diphenylhydantoin on the metabolism of dexamethasone. N Engl J Med 1970;283:11–4.
- 4 McLelland J, Jack W. Phenytoin/dexamethasone interaction: A clinical problem. Lancet 1978/I: 1096–7.
- 5 Wong DD, Longenecker RG, Liepman M, Baker S, LaVergne M. Phenytoin-dexamethasone: a possible drug-drug interaction. JAMA 1985;254: 2062–3.
- 6 Putignano P, Kaltsas GA, Satta MA, Grossman AB. The effects of anti-convulsant drugs on adrenal function. Horm Metab Res 1998;30:389–97.

Figure 1

Dexamethasone suppression tests. Dexamethasone was administered at midnight at a dose of 1 mg, 2 mg, and at a dose of 8×2 mg within 2 days. Serum cortisol levels were measured 8 hours later. Even at 8×2 mg of dexamethasone, the serum cortisol was not inhibited when the patient was treated with phenytoin at a dosage of 3×100 mg per os.

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW's impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board

Prof. Jean-Michel Dayer, Geneva

Prof. Peter Gehr, Berne

Prof. André P. Perruchoud, Basel

Prof. Andreas Schaffner, Zurich

(Editor in chief)

Prof. Werner Straub, Berne

Prof. Ludwig von Segesser, Lausanne

International Advisory Committee

Prof. K. E. Juhani Airaksinen, Turku, Finland Prof. Anthony Bayes de Luna, Barcelona, Spain

Prof. Hubert E. Blum, Freiburg, Germany

Prof. Walter E. Haefeli, Heidelberg, Germany

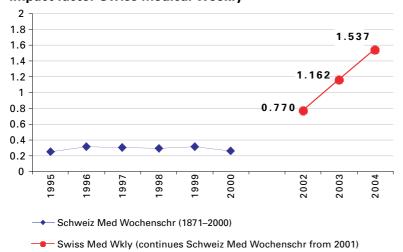
Prof. Nino Kuenzli, Los Angeles, USA

Prof. René Lutter, Amsterdam,

The Netherlands

Prof. Claude Martin, Marseille, France

Prof. Josef Patsch, Innsbruck, Austria


Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors: http://www.smw.ch/set_authors.html

Impact factor Swiss Medical Weekly

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd. SMW Editorial Secretariat Farnsburgerstrasse 8 CH-4132 Muttenz

Manuscripts: Letters to the editor: Editorial Board: Internet: submission@smw.ch letters@smw.ch red@smw.ch http://www.smw.ch