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Summary

The aim of the present review is to provide an update of
the epidemiological evidence of the effects of air pollu-
tion on neuropsychological development and impairment,
as well as of the evidence on individual susceptibility to
these effects. Animal studies have shown deposition of ul-
trafine particles containing metals in olfactory bulb and
frontal cortical and subcortical areas, and overexpression
of inflammatory responses, white matter lesions and vas-
cular pathology in these areas that could be the basis for
functional and structural brain effects. Several observation-
al studies in the general population have observed cognit-
ive deficits and behavioural impairment in children and the
elderly. These effects, however, are not conclusive given
the limited number of studies, their small size and their
methodological constraints.
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The brain and the environment

Mental capital, the cognitive and emotional resources, is
a life-course function increasing (or developmental phase)
during early childhood, that starts to flatten after age 4 up to
youth when it reaches a plateau phase until the fourth-fifth
decade of life. Afterwards, it starts a small decline that ac-
celerates after the seventh decade [1]. In the growing phase,
maturation of the cortex (i.e., wiring: synaptic changes, and
axonal myelination) during the first years of life is very
intensive, and the frontal cortex is the last to mature [2].
This period of life is considered an important window for
brain development, since the brain’s plasticity decreases
with age, and a long period of vulnerability in the devel-
opmental process where susceptibility to environmental in-
sults is elevated [3]. Environmental factors may also play a
role in accelerating the decline phase.

Traffic-related air pollution, basically urban outdoor pollu-
tion, is a global public health problem. Cardio-respiratory

effects and mechanisms have been fully investigated [4—7].
By contrast, the influence of air pollution on the brain is
unknown, with only some preliminary evidence [8].

The major suspected culprit of the systemic health effects
of traffic air pollution are the ultrafine particles (UFP; i.e.,
atmospheric particles with aerodynamic diameter of <100
nm) [9]. Particles from vehicle emissions can be divided
into primary particles formed in the vehicle and secondary
particles formed in the atmosphere after emission. Primary
particles are insoluble agglomerates of carbonaceous ma-
terial which may contain metallic ash and adsorbed or
condensed hydrocarbons; secondary particles, volatile and
comprised mainly of hydrocarbons, are generally in the
nanoparticle size range (below 30 nm) and mostly soluble.
Small insoluble particle size allows better penetration and
diffusion and major particle deposition in the respiratory
tract, translating to a systemic reaction as well as direct
translocation in the brain [10]. There is little information on
the trend in UFP in European urban atmospheres, but the
increased load of diesel vehicles and recent data [11-12]
suggest an upward trend. In cities such as Barcelona, traffic
is the origin of 90% of the UFP [13].

Particle deposition in the brain

In rats, intratracheal instillation of particles less than 100
nm labeled with radioactivity was subsequently detected in
several organs, including the brain [14]. Ultrafine carbon
particles [15] and Manganese (Mn) nanoparticles [16] have
been found in the olfactory bulb and the cerebrum and cere-
bellum after inhalation. Another pathway of deposition of
particles into the brain suggested particulate matter (PM)
>200 nm (TiO2) may be phagocytised by macrophages
and dendritic cells which may carry the particles to lymph
nodes in the lung or to those closely associated with the
lungs [17]. Changes in cytokine expression in brain mice
have been directly linked to intranasal exposure to ultrafine
carbon [18].
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Animal studies in neuroinflammation

Animals exposed to high levels of air pollution, such as
fine and ultrafine PM, lipopolysaccharides associated with
PM, ozone, and diesel engine exhaust, showed an increase
of proinflammatory cytokines in brain tissue [19-23]. Of
special interest is the sequence of studies by Calderon-
Gaciduedias et al. with dogs exposed to Mexico City air.
Healthy dogs younger than 1 year exhibited neuroinflam-
mation along with disruption of the blood-brain-barrier
and accumulation of beta amyloid 42 [24] which was also
observed in adult dogs [25]. Furthermore, dogs exhibited
frontal white matter upregulation of two important inflam-
matory genes: Cyclooxygenase-2 (COX2) and interleuk-
in-1beta (IL-1B), as well as diffuse vascular changes [19].
Noteworthy also a study on rats showing that levels of
the pro-inflammatory cytokines tumor necrosis factor alpha
(TNF-a) and interleukin-1alpha (IL-1a) were dependent on
the region analysed and increased in the striatum after ex-
posure to diesel exhaust [21]. Recently, Levesque et al.
found that rats exposed to diesel exhaust by inhalation had
increased levels of IL-6 protein, nitrated proteins, and ion-
ised calcium binding adaprot molecule-1 (IBA-1) protein
(microglial marker) in the whole brain, indicating gener-
alised neuroinflammation [22]. Moreover, diesel exhaust
increased TNFa, IL-1PB, IL-6, macrophage inflammatory
protein-lalpha (MIP-1a), receptor for advanced glycation
(RAGE), fractalkine, and the IBA-1 microglial marker in
most regions tested, showing a greater response in the mid-
brain.

Human studies in neuroinflammation

Autopsies from children and young adult residents in Mex-
ico City showed a significant upregulation of COX2, IL1
and cluster of differentiation 14 (CD14) in olfactory bulb,
frontal cortex, substantia nigrae and vagus nerves, disrup-
tion of the blood-brain-barrier, endothelial activation, ox-
idative stress, and inflammatory cell trafficking [26]. In a
second study on autopsies from children and young adults
residents in Mexico, UPF were found to accumulate in the
respiratory nasal epithelium as well as in olfactory bulb
neurons and in the endothelium and basement membranes
of olfactory bulb arterioles together with immunoreactivity
to beta-amyloid 42 and alpha-synuclein [27].

Epidemiological studies on child
neuropsychological development

Currently, there are some epidemiological studies in chil-
dren that translate for the first time evidence of the neuro-
psychological developmental hazards of air pollution from
animal studies into humans (table 1) [26, 28—38]. All these
studies have used well validated and widely used neuropsy-
chological tests in order to assess several cognitive areas
including global intelligence quotient (IQ), language de-
velopment, or executive function, and motor development.
These neuropsychological tests were administered in gen-
eral by trained interviewer or psychologist and recently by
computerised testing. Furthermore, behavioural outcomes
such as attention-deficit hyperactivity disorder (ADHD)

symptoms or autism disorder were assessed by question-
naires reported by the mother/teacher.

The first study assessed the relation between polycyclic
aromatic hydrocarbons (PAH) in particulate mode — col-
lected with individual pumps during two consecutive days
in a small sample of nonsmoking pregnant women from
New York City (USA) — and mental and psychomotor de-
velopment and behaviour problem measured in the off-
spring at different ages from 1 to 5 years old [31-32]. They
found that a reduced cognitive development emerged at
3 years old, while no association was shown at younger
ages. Moreover, no psychomotor development delay or in-
creased behaviour problem was found at any age. A small
cohort was set-up in Krakow (Poland) following the same
design and measurements for the air pollution exposure
during pregnancy [28]. A reduced IQ score was shown at 5
years old. A similar inverse association between PAH ex-
posure and child IQ at 5 years old has been found in these
both studies despite the different levels of PAH observed
in each study. However, though these studies were adjus-
ted for potential confounders, such as socio-economic con-
ditions, maternal 1Q, or internal doses of lead, they were
based on a short measurement of the exposure — only two
days — and an air pollution biomarker with low specificity,
the PAH. The principal source of PAH is tobacco smoke.
Though only nonsmoking pregnant women were included
and results were adjusted for second-hand smoking expos-
ure or cotinine levels, these design limitations resulted in
preliminary research being not very conclusive. Regarding
PAH exposure, another study was carried out in Tongliang,
Chongquing (China) where a seasonal coal-fired power
plant was operating [30, 35]. Two identical small prospect-
ive cohorts enrolled nonsmoking pregnant women and their
newborn until 2 years old, one before and the other after
the shutdown of the coal-burning plant. Prenatal PAH ex-
posure was measured by PAH-DNA adducts in umbilical
cord blood. Before the power plant shutdown, decreases in
motor and global 1Q were associated with increased cord
blood levels of PAH-DNA adducts [35]. However, the clos-
ure of the power plant was followed by a significant re-
duction of the mean PAH-DNA adduct levels, a signific-
ant improvement of the social developmental quotient, and
a non significant association between PAH-DNA adducts

Table 1

Epidemiologic data on the relation between air pollutants and
neuropsychological outcomes in children.
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and any infant developmental quotients [30]. These stud-
ies were the only using biomarkers of exposure, although
PAH-DNA is not specific of urban air pollution.

Some other studies have been focused on environmental
assessment of more specific markers of traffic-related air
pollution using geographic systems such as land use re-
gression modeling based on nitrogen dioxide (NO,), ben-
zene, black carbon environmental measures and, distance
to main road. In the largest study conducted so far, adverse
effects of residential NO, and benzene exposure during
the whole pregnancy — based on land use regression mod-
eling — on infant mental development around 14 months
were observed among subjects with low exposure to mater-
nal consumption of fruits and vegetables during pregnancy
in 4 Spanish regions [38]. These results were based on a
large sample size and were very stable in several sensit-
ivity analyses such as adjusting and stratifying for socio-
economic factors, noise, cord blood lead, indoor air pol-
lution, or smoking exposure. This was the only study that
took into account noise exposure as a potential confounder
although it was self-reported noise annoyance instead of
a direct measure of noise levels. However, children were
only 1.5 years old. Another study in a small cohort of chil-
dren 4 years old carried out in Granada (Spain) assessed
the role of residential NO, exposure — also based on land
use regression modeling — on cognitive and motor develop-
ment [29]. A nonsignificant reduction of several cognitive
subareas was found. A case-control study aimed to exam-
ine the association between autism and proximity of res-
idence to freeways and major roadways during pregnancy
and near the time of delivery, as a surrogate for air pollu-
tion exposure [37]. An increase risk of autism among the
10% of children living within 309 m of a freeway was ob-
served after adjusting for socioeconomic factors and ma-
ternal smoking during pregnancy compared to the 50% of
children living at a distance higher than 1,419 m. Living
near other major roads at birth was not associated with aut-
ism. In a birth cohort study carried out in Boston (USA),
exposure to black carbon was estimated on the basis of the
children’s residence — derived by spatial modeling — dur-
ing the study period where the neurocognitive assessment
was done [34]. A significant decrease of global 1Q, non-
verbal 1Q, and visual memory was observed in children
around 9 years old, even after adjustment for socioeconom-
ic status, birth weight, tobacco smoke exposure, and blood
lead levels.

Some studies have been carried out comparing cognitive
and behavioural assessments of children from two areas,
one significantly more polluted than the other. A study
in Quanzhou, China, compared neurobehavioural perform-
ance tests of 431 children from a school in a dense traffic
area with 430 children from a school in a clean air area
[36]. NO,, PM less than 10 pm aerodynamic diameter
(PM,(), and lead were measured by passive samplers in
both schools. Only NO, concentrations were statistically
different between schools. Regarding neurobehavioural
outcomes, they found a significant reduction in psychomo-
tor, attention, and sensory scales, although no changes in
cognitive function, among children from the school of a
dense traffic area compared to children from the school in
the clean air area. This study adjusted for a large number

of potential confounders including socioeconomic factors,
indoor air pollution, and smoking exposure. Calderon-Gar-
cidueiias et al. recruited 55 children from Mexico City with
chronically very high concentrations of pollutants and 18
children from Polotitlan, a control city with low levels of
pollutants [26]. Results suggested that Mexico City chil-
dren, but no Polotitlan children, performed significantly
behind their normative level of cognitive development, in-
cluding global IQ, verbal IQ, and several sub-tests of the
Wechsler Intelligence Scale for Children-Revised (WISC-
R) such as memory or executive function. However, this
study did not perform measurement of the exposure and
did not adjust for contextual cofactors that differed between
the two areas. Similarly another study carried out in India
aimed to compare 969 children from Delhi and 850 chil-
dren from two rural areas of the region of Delhi [33]. Am-
bient air pollution level was much less in the rural areas
due to lesser number of automobiles and air-pollution in-
dustries. Prevalence of ADHD symptoms was significantly
higher in children of Delhi than those from the two rural
areas. Indoor levels of PM,, were measured at households
and schools of the 60 participants from Delhi and 60 parti-
cipants from the two rural areas. PM;, was found to be pos-
itively and strongly associated with ADHD symptoms.
Two ecological studies were carried out in order to assess
the association between levels of air pollution around
schools and academic performance comparing areas with
different air pollution levels, but without any measurement
of the exposure. The unit of analyses in these studies were
the school [39—40]. Pastor et al. calculated a total respir-
atory hazard index associated with outdoor air toxics ex-
posures for each public school of California and examined
its relationship with the school academic performance in-
dex, a summary score of overall school performance [39].
Results indicated that schools located in areas with higher
respiratory hazards associated with air toxics also tend to
have lower academic performance, even after controlling
for a set of school-level variables including student socio-
economic status, teacher quality, parent education, and oth-
er factors. Another study set up in Michigan found that
schools located in areas with the highest air pollution levels
— measured as the distance to major industrial facilities
and major highways — had the highest proportions of stu-
dents who failed to meet state educational testing standar-
ds [40]. The analyses were adjusted for school attendance
rates, number of students in each school, school expendit-
ures, number of students eligible for the free lunch pro-
gram, and the racial and ethnic makeup of the school.

Two other studies explored the association between haz-
ardous air pollutants and autism spectrum disorders at 8-9
years, one in the San Francisco Bay area and another in
North Carolina and West Virginia following a case-control
design [41-42]. Hazardous air pollutants include hundreds
of metals, particulate, and volatile organic compounds
known to harm human health. The National Air Toxics
Assessment (NATA) programme from the US Environ-
mental Protection Agency uses emissions data to model
annual-average of hazardous air pollutants levels for each
census tract. Individual exposure to hazardous air pollut-
ants was assigned to each subject (cases and controls) using
the modelled levels corresponding to the census tract of the

Swiss Medical Weekly - PDF of the online version - www.smw.ch

Page 3 of 7



Review article: Current opinion

Swiss Med WKkly. 2012;141:w13322

birth address. Windham et al. found a significant associ-
ation of autism spectrum disorders with higher ambient air
concentrations of metals such as cadmium, mercury, and
nickel, although results were not adjusted for multiple test-
ing [42]. However, no relationship was shown with aromat-
ic solvents such as benzene, ethyl benzene, styrene, tolu-
ene, or xylene neither with PAH or diesel PM. Kalkbrenner
et al. estimated null associations between several pollut-
ants including PAH, arsenic, lead, manganese, mercury,
and toluene and autism spectrum disorders [41]. The main
limitation of this study was the selection of controls that
had speech and language impairments. They assume that
these problems would not be appreciably affected by air
pollution. Nevertheless, as we showed in this review, some
studies have pointed out a potential relationship between
air pollutants and language development [26, 32].

In related research, early-life exposure to household gas ap-
pliances and indoor NO, levels was found to be negatively
associated with general cognitive functioning and with a
higher risk for development of ADHD symptoms at age 4
on 398 preschool children from a birth cohort [43]. Gas
appliances produce complex mixtures including NO, and
UFP. These findings were replicated on four birth cohorts
recruited 7 years later though at younger age [44].

Another related research refers to second hand smoking,
measured by cotinine levels in children [45-46] and in
adults [47] though direct effects of nicotine and cotinine on
cognitive impairment and behaviour problems could be the
explanation rather than air pollutans.

Overall, these studies open a new horizon for research on
the hazards of air pollution for neuropsychological devel-
opment during childhood, an issue of major worldwide im-
pact.

Epidemiological studies on
neuropsychological decline

Few epidemiological studies have assessed the neuropsy-
chological effects of ambient air pollutants in adults (table
2) [48-51]. Chen et al. conducted an analysis using data of
the Third National Health and Nutrition Examination Sur-
vey (NHANES III) [51]. Individuals were assigned expos-
ure values based on distance between their residence and

Table 2

Epidemiologic data on the relation between air pollutants and
neuropsychological outcomes in adults.

the monitor. In models adjusted for a large set of variables,
increasing levels of estimated annual exposure to ambient
ozone prior the examination was associated with a reduced
performance in memory and attention tests in adults from
20 to 59 years. However, the association between PM,,and
cognitive and behavioural outcomes disappeared after ad-
justment for sociodemographic factors. A study of 399 wo-
men aged 68-79 years who lived for more than 20 years in
the same residence showed a significant reduction of cog-
nitive function in those of age less than or equal to 74 years
that lived within a distance range of 50 m to the next busy
road with a traffic density of more than 10,000 cars per
day [48]. Nevertheless, no effect in cognitive function was
found in relation to PM, levels. Recently, Power et al. re-
ported a significant reduction of cognitive function related
to black carbon exposure at residential addresses in a co-
hort of 680 men aged from 51 to 97 years [49]. Exposure
was assessed using land use regression based on black car-
bon measurements. Results remained similar after adjust-
ing for estimates of lead exposure.

A double blind randomised crossover study was carried out
with 10 human volunteers aged from 18 to 39 years [50].
They were exposed to dilute diesel exhaust (300 pg/m?) as
a model for ambient PM exposure and to filtered air (sham
condition) during one hour, separated by a period of two to
four days. Criits et al. showed an increased activity of the
left frontal cortex during and after diesel exhaust exposure
that indicated a delayed response to diesel exhaust in the
frontal cortex.

Individual susceptibility to air
pollutants

Genome wide studies for ADHD or cognitive function
have shown that genetic variants identified explain a small
proportion of the phenotypic variability [52—53], indicating
the need for new approaches such as incorporating the en-
vironmental exposures in the genetic studies.

In a birth cohort study, Morales et al. found a stronger
adverse effect of household gas appliances exposure and
indoor NO, concentrations in children with the GSTPI
Val-105 allele [43]. In another study, Vrijheid et al. rep-
licated these results showing a reduction of mental de-
velopment associated with the presence of a gas cooker
at home during pregnancy in children with the GSTPI
Val-105 allele [44]. GSTPI protect against oxidative stress
and it represents the most strongly expressed glutathione
S-transferase isoenzyme in the human brain during early
life [54]. Given that GSTPI Ile105Val results in a less act-
ive enzyme, brain cells from children with the less active
GSTPI Val-105 variant are more susceptible to biochemic-
al changes induced by early-life air pollution exposure and
that modulation in expression levels of antioxidant genes as
a result of gene polymorphisms could alter the magnitude
of effects caused by UFP.

Another study identified a number of significant interac-
tions between maternal genetic markers and PAH, as well
as interactions between newborn genetic markers and PAH,
on mental development from 1 to 3 years old before ad-
justing for multiple comparisons [55]. However, no single
marker-PAH interaction remain significant after Bonferroni
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correction. Significant interaction effects between haplo-
types and PAH were observed in mothers and their new-
borns after Bonferroni correction, particularly haplotypes
of CYPIAl and CYPIBI. The cytochrome P450 genes
CYPIAI and CYPIBI have been shown to play important
roles in the metabolic activation of PAH [54].

High intakes of antioxidant nutrients have been proposed
as an important potential modifier of air pollution impair-
ment [58]. Villareal-Calderon et al. found a sustained dorso
vagal complex inflammation in mice exposed to Mexico
City air, which were mitigated by dark chocolate adminis-
tration, rich in polyphenols which are potent antioxidants
[59]. Regarding other outcomes effects, Jedrychowski et al.
reported a non-significant greater reduction of birth weight
among those newborns whose mothers reported low fish
intake during pregnancy [60]. Within data from the same
study, Jedrychowski et al. showed a reduction of the ad-
justed risk of coughing over the first 2 years of life related
with the prenatal exposure to PM less than 2.5 um aero-
dynamic diameter (PM,; 5) in infants whose mothers con-
sumed more fish in pregnancy [61]. Moreover, a protective
effect of antioxidant micronutriens such as alpha-tocopher-
ol and carotenoids on the DNA damage associated with
prenatal PAH exposure was reported [62].

This research on individual susceptibility will open new
fields of knowledge about mechanisms underlying UFP-re-
lated neurological effects, as well as identifying susceptible
subgroups.

A hypothesis

Based on the above toxicological and epidemiological data
the hypothesis that we draw is the following: UFP activates
pro-inflammatory genes inducing pro-inflammatory cy-
tokines in human bronchial epithelial cells [63], lung epi-
thelial cells [64], and macrophages [65]. The interaction of
macrophages with epithelial cells amplifies cytokine pro-
duction in those cells, and these cytokines are also present
in the blood of subjects during episodes of acute atmo-
spheric air pollution. Furthermore, there is evidence that
oxidative stress and induced inflammation translates sys-
temically [66]. Even though most of the available research
about inflammatory effects of air pollution refers to the
lungs, there is evidence that the oxidative stress and inflam-
mation induced by PM translate systemically beyond the
lungs as a result of increased expression of inflammatory
genes [9]. For example, elevated particle number counts in-
creased markers of systemic inflammation (IL-6 and fib-
rinogen peripheral levels) [67], particularly in subgroups
with a given genotype [68—69].

UFP are enriched in organic carbon content as well as
prooxidative PAH that promote oxidative stress and in-
flammation. It is not only the particle number concentra-
tion, but also particle compositions since different com-
position may produce different neurological effects. Car-
bon particles themselves generally adsorb transimetals (in-
cluding antimony, barium, copper, iron, zinc) emitted from
traffic exhaust and also from tire and brake wear. These
metals are mainly generated by traffic in current urban at-
mospheres [70]. Changes in cognitive function in children
have been shown to be associated with relatively low in-

ternal doses of lead [71] and mercury [72]. In addition to
being linked to cognitive deficits in children, lead has been
related to a diversity of behavioural problems [73]. Metals
have been shown to induce oxidative stress in animal brain
[14].

Conclusion and needs

Overall, either deposition of UFP containing metals in ol-
factory bulb or frontal cortical and subcortical areas, or
alternatively the neuroinflammation following the inflam-
matory systemic responses secondary to oxidative stress
triggered by air pollution, could result in white matter le-
sions and vascular pathology in these areas that could be
the basis for the cognitive deficits and behavioural impair-
ment observed in children and elderly. The epidemiological
research in the two edges of life (during mental develop-
ment and during mental decline) is recent and limited and
there is need for multicentre and large studies assessing
both the growth and the decline of the global mental func-
tion, and its specific areas such as memory or executive
function, as well as on the clinical impact in social impair-
ment, ADHD, autism or Alzheimer. The potential role of
lead and other metals, as well as of noise, as the underlying
cause must be ruled out. Furthermore, the epigenetics and
the role of the susceptibility genes are a key area of interest.
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