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Summary

The anti-inflammatory actions of therapeutic glucocortic-
oids are well established and these drugs are widely used
to treat a variety of inflammatory conditions. It is also clear
that endogenously synthesised glucocorticoids have an im-
portant role in regulating inflammatory responses. Tradi-
tionally, our understanding of the effects of endogenous
glucocorticoids has been based on the levels of glucocor-
ticoids within the circulation. These levels are controlled
by the hypothalamic-pituitary-adrenal axis. However, more
recently it has been established that the local level of gluc-
ocorticoids is of potential importance. Situations where the
local level of glucocorticoids may differ from the level in
the circulation are illustrated in this review. In addition, the
mechanisms regulating local glucocorticoid levels and ac-
tions are identified. Increasingly, it will be important to un-
derstand how the levels of glucocorticoids within the circu-
lation and within the tissues are regulated in a coordinated
manner.

Key words: inflammation, cortisol; glucocorticoids,
11beta-hydroxysteroid dehydrogenase

Introduction

Since their initial discovery by Kendall, Reichstein and
Hench, glucocorticoids (GCs) have proven to be a highly
effective tool in the treatment of all manner of inflammat-
ory conditions. Consequently, our understanding of the ad-
renal synthesis of the endogenously active GC ‘cortisol’
and its regulation by the hypothalamic-pituitary-adrenal
(HPA) axis has grown significantly, as has our knowledge
of the complex metabolic pathways that regulate local GC
bioavailability. Unfortunately, it rapidly became apparent
that prolonged exposure to elevated therapeutic GCs also
results in a range of detrimental side effects, collectively
termed ‘Cushings syndrome’. Consequently, a variety of
modified GC analogues were developed, with varying side
effect profiles and altered metabolic properties that have
proven effective as therapeutic agents. Inflammation has
also been shown to be an effective inducer of circulating
endogenous cortisol, through its modulating effects on the

HPA axis, however, the actions of inflammation on local
GC metabolism have proven equally as complex. In this re-
view we report the latest finding on the mechanisms regu-
lating local and systemic levels of endogenous and thera-
peutic GCs during inflammatory disease. Increasingly, to
balance the positive and negative properties of GCs, it will
be important to understand how their levels within the cir-
culation and within tissues are regulated in a coordinated
manner.

Glucocorticoids

Glucocorticoids are a class of steroid hormones named for
their affects on glucose metabolism. Cortisol, the active
physiological GC in humans (referred to as hydrocortisone
when given as a pharmaceutical), is synthesised primarily
in the zona fasciculata of the adrenal gland, and elicits a
diverse array of homeostatic effects. These include modi-
fying carbohydrate, protein and fat metabolism as well as
complex immune suppression and modulator actions. The
isolation and first use of cortisone (the metabolic precurs-
or to the active GC cortisol) was first achieved by Kend-
all, Reichstein and Hench, for which they received a No-
bel prize following its successful use in the treatment of
rheumatoid arthritis (RA). Since then, therapeutic GC use
in the treatment of inflammatory diseases has expanded
dramatically, although their diverse biological actions con-
tinue to cause significant complications collectively re-
ferred to as Cushing’s syndrome [1].

The systemic metabolic actions of GCs include a general
decrease in the uptake and utilisation of glucose in conjunc-
tion with an increase in hepatic gluconeogenesis, favouring
increased circulating glucose levels. This is accompanied
by increased muscle proteolysis and lipolysis. Other not-
able roles of GCs include maintenance of the circulation,
influencing vascular tone and increasing salt and water re-
tention. Both endogenous and exogenous GCs also have di-
verse anti-inflammatory and immune modulatory actions.
These effects are mediated through a number of distinct
mechanisms. These include actions on leukocyte popula-
tions, interfering with their trafficking, chemotaxis, pha-
gocytosis and inflammatory activation as well as reducing
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the synthesis and release of many secreted mediators of in-
flammation [2]. Many of the direct clinical signs of inflam-
mation, such as pain, warmth and swelling are directly op-
posed through increased annexin-1 expression and interfer-
ence with pro-inflammatory prostaglandin and leukotriene
production in conjunction with interference with intracellu-
lar pro-inflammatory pathways such as AP-1, MAPK and
NF-«B [3].

The molecular mechanisms of GC signalling have been
extensively characterised and reviewed [3, 4]. Classically,
GCs elicit their actions through their binding to cytosolic
glucocorticoid receptors (GRs). Circulating free cortisol,
being lipophilic, passes directly across the cell membrane
into the cytoplasm. In the absence of ligand, the GR exists
within the cytoplasm bound to various heat shock proteins
(HSP). Upon ligand binding, the GR detaches from these
HSPs and translocates to the nucleus where it dimerises
with another ligand bound GR. The resulting dimer binds
to sequences of GR target genes termed glucocorticoid re-
sponse elements. Consequently, the GR dimer can recruit
multiple co-activators or repressors to either up or down-
regulate gene expression. Further diversity is introduced
through multiple GR isotypes. Of these GRa, the dominant
GR isoform, is the primary mediator of GC effects [5]. In
contrast GRP appears to possess partial agonist activity,
and acts as a competitive negative regulator of GR sig-
nalling [6-8]. Many of the anti-inflammatory actions of
GCs occur through non-genomic mechanisms. In particu-
lar, the ligand bound GR can interfere with both AP-1 and
NF-kB pro-inflammatory signalling [3]. There may also be
a role for membrane bound GR in these responses [9].

The HPA axis

Systemically, circulating cortisol levels are regulated by
the HPA axis (fig. 1). The hypothalamus produces corti-
cotropin releasing hormone (CRH) in response to many
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Figure 1

Systemic regulation of circulating cortisol levels by the
hypothalamic pituitary adrenal (HPA) axis. Signalling to the
hypothalamus by the normal circadian rhythm, stress, and pro-
inflammatory cytokines increase release of corticotropin releasing
hormone (CRH) from the hypothalamus. This acts on the pituitary
to increase release of adrenocorticotropic hormone (ACTH) that
acts to increase cortisol synthesis and secretion from the adrenal
gland. Cortisol suppresses both CRF and ACTH at the pituitary and
hypothalamus and a negative feedback loop.

distinct circadian, neurosensory, blood-borne and limbic
signals [10]. CRH in turn acts on the pituitary gland res-
ulting in the secretion of adrenocorticotrophic hormone
(ACTH) into the circulation where it acts on its target or-
gan, the adrenal gland, resulting in the synthesis and re-
lease of cortisol. Within the circulation cortisol is primarily
bound to corticosteroid binding protein (CBG), with only
a small fraction (~10%) existing as free, biologically act-
ive, cortisol. Circulating cortisol negatively regulates both
CRH and ACTH release at the hypothalamus and pituitary
respectively, creating a classical negative feedback loop.
In additional to the normal homeostatic regulation of
cortisol secretion, a wide range of stressors are potent stim-
ulators of CRH release and lead to an increase in the level
of circulating cortisol. This can be clearly observed in pa-
tients who have undergone surgery or in patients with
severe illness, who present with significantly higher circu-
lating levels of cortisol [11, 12]. This normal response of
the HPA axis to stress and inflammation has been well doc-
umented and characterised. During the early onset of in-
fection, tissue damage and autoimmune disease, many cy-
tokines produced as part of the innate immune response
increase cortisol output via activation of the HPA axis.
These include TNFa, IL-1f, IL-6 and the type I interferons
(IFN-a/B) which are produced by macrophages, vascular
endothelial cells, fibroblasts, and neurons [13]. Similarly,
cytokines produced as part of the adaptive immune re-
sponse such as IL-2 and IFN-y are also effective in increas-
ing HPA cortisol output [14]. In humans, these cytokines
act not only on the hypothalamus to increase CRH release,
but on the pituitary and adrenals resulting in marked in-
creases in circulating ACTH and cortisol. Their respective
mechanisms of action and effects on ACTH and cortisol
are reviewed extensively by Turnbull et al. [15]. The result-
ing increase in circulating GCs has several important anti-
inflammatory actions. Firstly the increased GC levels are
able to minimise some of the detrimental effects of ex-
cessive inflammation, protecting the body from excessive
inflammatory tissue damage and autoimmune shock [16].
Secondly they are able to modify the immune response, fa-
vouring a switch to a humoral Th2 rather than cell medi-
ated Th1 response [17].

Abnormal HPA axis regulation in
disease

The normal HPA axis response to inflammation appears to
be important and beneficial. Abnormal HPA axis responses
are implicated in a range of acute and chronic diseases.
Structural abnormalities that reduce the function of the
HPA axis are associated with an impaired acute response to
stress and a greatly increased risk of death. This is seen in
patients with untreated pituitary disease (hypopituitarism)
or Addison’s disease [11]. The prolonged use of the an-
aesthetic agent etomidate in the ITU setting was associated
with a dramatic increase in mortality, an effect that was
subsequently determined to be due to this drug’s powerful
inhibition of adrenal cortisol synthesis [18]. An area of in-
tense debate in the critical care community is whether some
patients develop functional abnormalities of the HPA ax-
is during severe illness. This has been termed Critical Il1-
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ness Related Corticosteroid Insufficiency (CIRCI) but it re-
mains unclear how this condition should best be defined or
treated. A complicating factor in the interpretation of HPA
axis responses during acute illness is the alteration in the
binding of cortisol to CBG. This is partly through a de-
crease in CBG synthesis as part of the acute phase response
and partly due to peripheral degradation of CBG at sites of
inflammation [11, 19]. The result is that the ratio of ‘free’
to total cortisol within the circulation and within tissues
changes during inflammatory illness with an increase in the
relative amount of free cortisol.

Abnormal HPA axis responses have also been implicated
in the pathogenesis or persistence of chronic inflammatory
disorders such as RA and inflammatory bowel disease
(IBD). The reasoning behind this was partly that patients
with these conditions respond very well symptomatically
to therapeutic steroids suggesting there might be a defi-
ciency of endogenous GCs through a failure of the HPA to
respond to inflammation [20]. This view also arose from
animal experiments which demonstrated that related histo-
compatible strains of rats had markedly different sensitiv-
ities to the induction of chronic experimental arthritis. The
susceptibility in the arthritis prone animals was found to be
due to failure of the HPA axis to increase GC levels in re-
sponse to inflammation [21]. Administration of RU486, a
GC receptor antagonist, made arthritis resistant rats more
susceptible to experimental arthritis and the administration
of the synthetic GC dexamethasone to arthritis prone anim-
als rendered them arthritis resistant. These findings sugges-
ted that a similar defect might be present in humans who
develop chronic inflammation. However, it has proven dif-
ficult to find such a defect. Patients with established RA
who have never received therapeutic GCs have no con-
sistent clinical or biochemical evidence of adrenal insuf-
ficiency when undergoing standard endocrine testing [22].
More recent research has examined the hypothesis that in
patients with inflammatory diseases such as RA and IBD
there might be relative corticosteroid insufficiency, with
‘normal’ levels of cortisol in the circulation actually being
inappropriately low for the degree of inflammatory stress
[23]. In some patients with RA there does appear to be
an inappropriately low level of serum ACTH for the level
of inflammation. The impairment of ACTH production ap-
pears related to chronic exposure to either inflammation
or TNFa since treatment with anti-TNF therapy increases
ACTH secretion and cortisol levels in a subset of these in-
dividuals. In IBD, abnormalities in the normal relationship
between measures of inflammation and cortisol and adren-
al androgen levels have been reported [24]. Both cortisol
and adrenal androgens are regulated by ACTH suggested
an alteration of the signaling pathways between the hypo-
thalamus and the adrenal gland.

The major endpoint of these experiments was generally the
level of cortisol in the systemic circulation. However, it is
now clear that the HPA axis extends into the tissues and
the axis itself can be influenced by changes occurring at the
tissue level. This raises the possibility that the underlying
defect in the HPA axis could be at a level beyond the cir-
culation. The mechanism most likely to be important in the
action of GCs at a tissue level is local GC metabolism.

Local glucocorticoid metabolism

In addition to the systemic regulation of GCs by the HPA
axis, local GC bioavailability can be further modified
through their pre-receptor metabolism. The most important
enzymes in this regard are the 11B-hydroxysteroid dehyd-
rogenases (11B-HSDs). These intracellular enzymes regu-
late the metabolism of the active GC cortisol with its inact-
ive precursor cortisone (fig. 2) and thus alter the exposure
of GC receptors to their ligands. There are two 113-HSD
enzymes termed 118-HSD1 and 113-HSD2. The first is a
bidirectional enzyme that under physiological conditions
favours the activation of cortisol from cortisone, increasing
local GC concentrations greatly above circulating levels
[25]. This enzyme is expressed in a range of tissues, includ-
ing the liver, adipose, and bone, as well as showing marked
expression within inflamed tissues such as the synovium
[26]. Although widely used as an oral steroid, cortisone ac-
tually has no direct ability to bind to the GR. Instead, its
action depends on its first pass metabolism to cortisol by
11B-HSD1 activity within the liver. In contrast, 113-HSD2
solely inactivates GCs, converting active cortisol to inact-
ive cortisone. Expressed within the kidney, pancreas and
other mineralocorticoid sensitive tissues, 113-HSD2 pro-
tects the mineralocorticoid receptor (MR) from occupation
by cortisol, which circulates at a much higher concentra-
tion than aldosterone. 11B-HSD2 thus confers specificity
on the MR. In addition to metabolism of endogenous GCs,
these enzymes also metabolise synthetic therapeutic GCs
and their 11-keto derivatives. Of note, prednisolone and
its inactive metabolite prednisone share a similar metabol-
ism to that of cortisol and cortisone [27]. In contrast, dexa-
methasone, as a result of a substitution of a fluoride mo-
lecule at the 9a position of the glucocorticoid structure,
undergoes very different metabolism by the 11B-HSD en-
zymes. For example, 113-HSD2 is less effective at inactiv-
ating dexamethasone and interestingly, whereas 113-HSD2
solely inactivates endogenous GCs, it is bidirectional for
dexamethasone, favouring steroid activation [28].

Tissue expression of 113-HSD1
enzyme

The 11B-HSD1 enzyme has an extensive distribution
throughout human tissues including liver, adipose tissue,
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Overview of the cortisol activating enzyme 118-HSD1, and the
cortisol inactivating enzyme 118-HSD2 and their regulation within
different leukocyte subsets.
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skin, muscle, bone, gonads, eye, adrenal, pituitary and
lymphoid tissues [29]. Of these, the highest 113-HSD1 ex-
pression has been reported within tissues that are known to
be highly GC sensitive such as liver, gonads, adipose and
brain. 11B-HSD1 has diverse roles, including the regula-
tion of development, adiposity, glucose metabolism, bone
turnover and neurological development [30, 31]. More re-
cently 118-HSD1 has been implicated in the regulation
of the local immune responses through its expression in
stromal cells and in leukocytes at sites of inflammation.

Stromal expression of 118-HSD1
enzymes

11B-HSD1 is expressed in a wide range of mesenchymal
derived stromal cells, including adipocytes, osteoblasts,
myoblasts, fibroblasts, and vascular smooth muscle cells
[29]. Its expression has been explored most extensively in
fat tissue (where it might play a role in visceral obesity)
and bone (where it might regulate bone formation relative
to resorption [32]). 113-HSD1 has been examined in mul-
tiple fibroblast populations, including those isolated from
thymus, bone marrow, skin and synovium [33, 34]. These
fibroblasts possess variable basal expression of 113-HSD1
that is highly site specific and retained over prolonged cul-
ture. Despite these differences, the level of enzyme activity
in all of these cells was strongly upregulated by pro-inflam-
matory cytokines such as TNFa and IL-1p. Interestingly
this upregulation of enzyme activity occurred in the pres-
ence of GCs and, in many of these cells, the combina-
tion of proinflammatory cytokines and GCs dramatically
increased enzyme expression further still [35].

Of particular relevance to the local immune response in
inflammatory arthritis are synovial fibroblasts that play a
diverse role within connective tissues (fig. 3). Early stud-
ies by Gay et al. identified that when activated during in-
flammatory joint disease, synovial fibroblasts take on an
aggressive, invasive phenotype, breaking down articular
cartilage through the action of matrix metalloproteinases
(MMPs) [36]. This was supported by further discoveries
that their production of secreted factors such as RANKL
increases osteoclast differentiation, survival and activity,
thus contributing to bone erosion, dysregulation of bone
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Figure 3

Overview of the diverse roles of stromal fibroblasts within
connective tissues.

metabolism and juxta articular osteoporosis [37]. Synovial
fibroblasts are also actively involved in maintaining the
inflammatory process, activating leukocyte populations to
regulate their migration, survival and retention. In their
basal state, primary synovial fibroblasts possess significant
11B-HSD1 expression and activity [33]. This has been
shown for synovial fibroblasts isolated from patients with
inflammatory arthritis but also for patients with non-in-
flammatory joint conditions. The 11B-HSD1 activity in
synovial fibroblasts is greater than that seen in matched
fibroblasts from skin or bone marrow obtained from the
same donor. Enzyme activity also increases dramatically
in response to pro-inflammatory cytokines [33]. Enzyme
activity appears functionally important since synovial
fibroblasts isolated from inflamed tissues are able to at-
tenuate IL-6 and CCL-2 expression in response to endo-
genously derived GCs, following stimulation with TNFa
and IL-1B [33]. As mentioned above, endogenously de-
rived GCs can synergise with pro-inflammatory cytokines
in stromal fibroblasts, significantly increasing 11B-HSD1
by an autocrine feed-forward mechanism [35]. Expression
of 11B-HSD1 in synovial fibroblasts has also been demon-
strated in synovial tissue in vivo. Schmidt et al. demon-
strated that 113-HSD1 was expressed in synovial tissue and
that the level of expression increased in relation to the ex-
tent of inflammation [34]. Hardy et al. also demonstrated
11B-HSD1 expression in synovial tissue fibroblasts using
immunohistochemisty [26]. Enzyme activity assays in syn-
ovial tissue also demonstrated the ability of synovial tis-
sue to interconvert cortisone and cortisol including the abil-
ity to regenerate cortisol — an exclusive property of 11f-
HSDI. Despite this, Schmidt et al. went on to show that
11B-HSD1 activity varied between different disease states,
with rheumatoid arthritis synovium having less cortisol ac-
tivation relative to OA [34]. One implication of this is that
persistent inflammatory disease may arise as a result of an
attenuated 11B-HSD1 response in susceptible individuals.

Immune system; - monocytes,
lymphocytes

Many cells of both the innate and adaptive immunity also
possess 11B8-HSD1 activity. These include macrophages,
dendritic cells, mast cells and T cells [33, 38, 39]. Whilst
circulating peripheral blood mononuclear cells have no
identifiable 118-HSD1 expression, it is significantly up-
regulated during macrophage differentiation [38, 40]. In
type 1 macrophages (anti-microbial, phagocytic, lymph-
okine producing), elevated expression of 118-HSD1 in-
creases their sensitivity to endogenous GCs. This in turn
down regulates their pro-inflammatory behaviour and re-
duces their survival. In contrast endogenously derived GCs
boost the capacity to clear apoptotic neutrophils and cell
debris in type 2 macrophages (wound healing, repair, anti-
inflammatory) [41]. The role of GC signalling in macro-
phages is further complicated by the discovery of 11p-
HSD2 within the inflamed synovium and tissue macro-
phages specifically [26, 34, 42]. This could be particularly
important as macrophages expressing this enzyme may be
rendered insensitive to local endogenous cortisol, as well
as certain therapeutic GCs such as prednisolone. As a con-
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sequence these cells may be protected from the normal pro-
resolution actions of GCs. Schmidt et al. in particular iden-
tified that 113-HSD2 was elevated to a greater extent than
11B-HSD1 in RA, suggesting that this may account for re-
lative GC insensitivity in these tissues, although this was
not observed in following studies [26, 34]. Identifying and
characterising the expression of 11HSD?2 in different mac-
rophage subtypes remains to be achieved. Detectable levels
of 11B-HSD1 have been identified within CD4+ T cells,
CD8+ T cells, mast cells, B220+ and CD11+ dendritic cells
of lymph nodes and spleen [39, 43]. Closer examination
of CD4+ cells confirmed that they up-regulated this ex-
pression upon activation and polarisation into Th1 and Th2
cells. It is believed that the presence of this enzyme in these
cells will perform multiple functions, supporting resolution
of inflammation but also influencing function, survival and
differentiation of T cells.

Evidence for a role of 113-HSD1 in
regulating inflammation in vivo

In addition to regulation of GCs via the HPA axis, there
is a growing body of work demonstrating the importance
of 11B-HSDI1 in regulating local GC levels during inflam-
mation in vivo [43]. At the tissue level in patients with
colitis or inflammatory bowel disease, 11p-HSD1 is in-
creased, whilst 113-HSD2 expression is decreased com-
pared to normal controls [44, 45]. Similarly, when looking
at inflamed synovium isolated from patients with either
RA or osteoarthritis, there is a marked increase in both
11B-HSD1 expression and its associated steroid activating
activity [26]. Furthermore, within the synovium of RA pa-
tients it was shown that the capacity for the tissue to gen-
erate cortisol correlated with disease activity. This was
mirrored in systemic measures of 118-HSD1 activity in
these individuals (based on urinary corticosteroid metabol-
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The integration of the local metabolism of cortisol within the liver,
kidneys and inflamed tissues, with systemic regulation of circulating
cortisol by the HPA axis. Hepatic 113-HSD1 reactivates circulating
cortisone, whilst renal 113-HSD2 expression inactivates cortisol.
During inflammation, elevated 113-HSD1 expression within
inflamed tissues amplifies the local cortisol concentration, which
can result in detrimental side effects such as bone loss in
inflammatory disease. Persistent 113-HSD2 expression within
specific leukocyte subsets during inflammation will confer steroid
resistance.

ite analysis), with the greatest activity being seen in pa-
tients with the highest levels of CRP and ESR.

The possible functional role of 118-HSD1 in the immune
response has been examined in vivo in studies using chem-
ical inhibitors of 11B-HSD1 and in transgenic animals with
global deletion of 113-HSD1. A major limitation of these
studies is that it is difficult to examine the relative con-
tributions of 11B-HSD1 within different cell populations
to the immune response. A particular limitation is the in-
ability to separate out the contribution that stromal 11f-
HSDI1 makes relative to enzyme expression within leuko-
cytes. The earliest reports examining the effect of 113-HSD
inhibition were performed before the widespread appreci-
ation that there are two distinct 113-HSD enzymes and that
11B-HSD1 predominantly mediates a steroid activating re-
action. Systemic inhibition of 11B-HSD activity using gly-
cyrrhetinic acid resulted in reduced resistance to infection
with Listeria monocytogenese [46]. Experiments in 11p-
HSDI knockout mice have shown defects in macrophage
phagocytosis of apoptotic neutrophils during peritoneal in-
flammation [41]. This was attributed to failure of upregu-
lation of macrophage 11B-HSDI since glucocorticoids are
known to stimulate the clearance of apoptotic neutrophils
by macrophages. 11-HSD1 knockout mice also display
enhanced sensitivity in response to LPS injection [47]. This
effect was attributed to enhanced cytokine production from
macrophages, an effect associated with their abnormally
rapid differentiation after reduction in cortisol levels (in the
absence of 113-HSD1).

A wider range of immune responses were recently ex-
amined in global 11B-HSD1 knockout mice [48]. These in-
cluded models of joint inflammation, peritonitis and lung
inflammation. Inflammation was greater in these models
and took longer to resolve. A few studies have gone further
to examine the possible role of inflammation associated
11B-HSD1 in humans in vivo. As discussed above, 11p-
HSDI activity measured at a tissue or systemic level, in-
creases substantially with inflammation in patients with
RA [26]. It seems likely that the consequent increase in
cortisol production within the joint limits inflammation
locally. In keeping with this, administration of metyrapone,
an inhibitor of 113-HSDI1 activity, worsened synovial in-
flammation in patients with RA [49]. There is also evid-
ence that IBD is associated with increases in 11B-HSD1
activity. This has been demonstrated at mRNA and protein
levels in biopsies of colonic tissue obtained from patients
with or without colitis [45]. Patients with IBD with acute
exacerbations of their condition show a significant increase
in systemic 11B-HSD1 activity, most likely originating
from the inflamed bowel [50]. Interestingly, patients with
IBD who are in clinical remission also have high levels
of systemic 11B-HSDI activity compared to healthy volun-
teers. This suggests local GC production within inflamed
tissues might be sufficient to suppress the clinical features
of inflammation. Overall these findings suggest that 11f-
HSDI is probably an important regulator of the immune re-
sponse and limits the degree of acute inflammation. This is
probably through increased 113-HSD1 activity in inflamed
tissues (and the consequent increase in tissue GC levels)
and through effects of altered 11B-HSD1 activity in im-
mune cells (fig. 4).

Swiss Medical Weekly - PDF of the online version - www.smw.ch

Page 5 of 10



Review article: Medical intelligence

Swiss Med WKkly. 2012;142:w13650

What determines whether responses
are systemic or local?

It appears that a rise in tissue GC levels is a common fea-
ture of the inflammatory response. However, it remains un-
clear the extent to which the increased level of GC within
the tissue is due to activation of the HPA axis or to local
tissue responses. This is further complicated by the find-
ing that two potent stimulators of the HPA axis (TNFa and
IL-1p) are also potent stimulators of 113-HSD1 expression
in many tissues [35]. In the most simplistic model, low
levels of inflammation within a tissue might be countered
by a rise in local GC production that might be sufficient
(along with other components of the immune response)
to contain inflammation and lead to its resolution. With
greater degrees of inflammation the local production of GC
might be insufficient to control inflammation locally so a
systemic response might be required. However, in chronic
inflammatory disease such as RA and IBD neither local nor
systemic steroid responses, nor their combination, appear
sufficient to control inflammation. Further studies will be
required to clarify whether differences in GC response at a
local or a systemic level are linked to the phenotypic mani-
festations of inflammatory conditions or to whether inflam-
mation resolves appropriately or inappropriately.
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Figure 1

Systemic regulation of circulating cortisol levels by the hypothalamic pituitary adrenal (HPA) axis. Signalling to the hypothalamus by the normal
circadian rhythm, stress, and pro-inflammatory cytokines increase release of corticotropin releasing hormone (CRH) from the hypothalamus.
This acts on the pituitary to increase release of adrenocorticotropic hormone (ACTH) that acts to increase cortisol synthesis and secretion from
the adrenal gland. Cortisol suppresses both CRF and ACTH at the pituitary and hypothalamus and a negative feedback loop.
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Overview of the cortisol activating enzyme 11B-HSD1, and the cortisol inactivating enzyme 113-HSD2 and their regulation within different

leukocyte subsets.
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Figure 3

Overview of the diverse roles of stromal fibroblasts within connective tissues.
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The HPA axis & local steroid metabolism
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Figure 4

The integration of the local metabolism of cortisol within the liver, kidneys and inflamed tissues, with systemic regulation of circulating cortisol by
the HPA axis. Hepatic 113-HSD1 reactivates circulating cortisone, whilst renal 113-HSD2 expression inactivates cortisol. During inflammation,
elevated 11B-HSD1 expression within inflamed tissues amplifies the local cortisol concentration, which can result in detrimental side effects such
as bone loss in inflammatory disease. Persistent 113-HSD2 expression within specific leukocyte subsets during inflammation will confer steroid

resistance.
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