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Summary

Personalised medicine is an emerging model that will re-
volutionise our current healthcare system. In the last dec-
ade, several genomic aberrations were discovered that are
now used as predictive markers for treatment with targeted
therapeutics. The technological advances in the last few
years, such as the development of high resolution DNA
microarrays or second generation sequencers, have led to
a dramatic increase in the number of ongoing genomic
profiling studies. These studies, in turn, are leading to an
enormous number of detected genomic aberrations whose
biological interpretation is still pending. This review will
provide an overview on the current state of personalised
medicine in cancer. Discussion of the use and development
of the various technologies will help us to understand the
opportunities and challenges that arise when novel techno-
logies are implemented.
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Introduction and overview

Personalised medicine or healthcare is an emerging model
using novel methods of molecular analysis to improve our
management of a patient’s disease or even a predisposition
toward a disease. The fundamental aim of personalised
medicine is individualisation of each patient’s treatments
for und thus optimisation of medical care, outcome, side
effects and costs. According to a recently published report
by PricewaterhouseCoopers, personalised medicine is cre-
ating a booming market which is projected to grow by 11%
annually [1]. This new healthcare also creates new chal-
lenges for pharmaceutical companies, since this develop-
ment will shift the business model from the blockbuster
drug towards a more collaborative model combining spe-
cialised therapies and molecular diagnostics. In informal
terms, personalised medicine can be described as “the right
treatment for the right person at the right time”.
One of the main principles which form the rationale for
personalised medicine is assessment of the individualised
risk of a given disease. In a very simple manner, this has
been in use for many years in several applications, e.g. by
calculation of the Framingham Risk Score for the predic-

tion of future coronary heart disease events, or by analysis
of the family history [2]. The latter represents results from
a shared genomic background and the environmental influ-
ences. First degree relatives share half of their genomic in-
formation and thus their disease history is frequently used
to estimate susceptibility to a given disease. In the last dec-
ade the use of genomic information from the germ line for
risk assessment and thus for preventive health care has sig-
nificantly increased. The presence of single or defined sets
of single nucleotide polymorphisms (SNPs) has been asso-
ciated with the risk of given diseases or reported as pre-
dictive for a certain therapy [3–4]. SNPs are single base
DNA sequence variations occurring between members of a
species or between paired chromosomes of an individual.
SNP association studies have been boosted by the devel-
opment of SNP microarrays, which allow simultaneous de-
tection of up to 900,000 different SNPs of an individual’s
DNA. These studies have identified hundreds of sequence
variants that are associated with the risk of a specific dis-
ease, such as breast cancer [5], prostate cancer [6], dia-
betes [7], tuberculosis [8] and many more [9]. This inform-
ation has been capitalised on by companies offering the
service of analysing a specific set of SNPs to estimate the
probability of developing a particular disease. The com-
pany 23andMe (California) provides an SNP microarray
test starting at USD 207.00 and, based on the findings, it of-
fers information on susceptibility for 215 diseases and con-
ditions (e.g. drug responses). The same technology is used
for the AmpliChip450®, the first pharmacogenetic microar-
ray test approved by the FDA in 2005 and manufactured by
Roche. This test classifies the patient on the basis of SNP
profiles of the cytochrome P450 (CYP) genes CYP2D6 and
CYP2C19 into poor, intermediate, extensive or ultrarapid
metaboliser. This information can then be used by the clini-
cians to adapt the dose specifically for therapeutics that are
metabolised by these two enzymes [10].
These examples are only intended to illustrate the versat-
ility of the field of personalised medicine. To cover all as-
pects would go beyond the scope of this review. We will
focus on personalised medicine based on cancer genomics
and especially on the advances that have been made in the
last decade due to the development of novel technologies
such as array comparative genomic hybridisation (aCGH)
and next-generation sequencing (NGS). However, it is of
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the utmost importance to understand the opportunities and
challenges that will be encountered when novel technolo-
gies are implemented. For this purpose, we will address the
experience gained using transcriptomic analyses for per-
sonalised medicine in cancer.

Analysis of the transcriptome for
personalised medicine in cancer

During the last decade, genome-wide gene expression ana-
lysis has become a commonly used tool of the research
community. These analyses were performed by use of so-
called RNA expression microarrays (also called cDNA mi-
croarrays or GeneChips®, depending on the manufacturer).
This technology allows simultaneous measurement of the
expression levels of large numbers of genes. As with all
experiments, the correct setup, including appropriate selec-
tion (“input material”) and standardised preparation of the
samples prior to hybridisation on the microarray as well
as consistent post-hybridisation processing (such as wash-
ing and scanning of the microarrays) are essential if the
findings are to be reliable and reproducible. Further, and
in contrast to other classic experiments in the laboratory,
the data analysis (including biostatistics and bioinformat-
ics) in microarray expression experiments dramatically im-
pacts on the results [11]. This is especially the case when
the number of analysed variables far exceeds the number
of samples. Despite this challenge, the novel technology
provided a unique opportunity to identify molecular mark-
ers that might be used for diagnosis, prognosis or as pre-
dictor of clinical outcome. In many cases these markers
were not single genes, but were composed of a combined
expression pattern of multiple genes. However, most of
these so-called multi-gene prognostic and predictive signa-
tures could not be independently validated and were never
used in a clinical environment. The MammaPrint® (Agen-
dia) was one of the very few exemptions: this RNA mi-
croarray is based on a 70-gene expression signature for di-
chotomous classification of nodal negative breast cancer
patients into low and high risk of distant recurrence [12].
This classification is the basis for deciding whether breast
cancer patients will either receive (high risk) or not receive
(low risk) chemotherapeutic treatment. This test was
cleared by the FDA in 2007 for nodal negative breast can-
cer patients with tumours smaller than 5 cm and represents,
after the AmpliChip450®, the second microarray test ap-
proved by the FDA. At present this assay is undergoing
further validation in a prospective multi-centre phase III
European clinical trial called MINDACT (Microarray In
Node negative and 1–3 positive lymph node Disease may
avoid ChemoTherapy) in which breast cancer patients with
up to three positive lymph nodes are included [13]. In con-
trast to the MammaPrint® assay, the Oncotype DX (Ge-
nomic Health) analyses a 21-gene signature by use of real-
time PCR [14]. It is used for prediction of risk recurrence
in ER positive lymph node negative breast cancer patients.
Based on the expression levels of the genes, the breast can-
cer patient is classified into low, intermediate or high risk
of recurrence. The result is similar to that from the Mam-
maPrint® test: in case of ‘low risk’, the patient does not re-
ceive adjuvant chemotherapy. The meaning of the ‘inter-

mediate risk’ group is further assessed in the large clinical
trial called TAILORx (Trial Assigning IndividuaLised Op-
tions for Treatment (Rx)). Interestingly, the gene lists of
these two tests (MammaPrint® and Oncotype DX®) which
have a very similar aim, only share one gene. However,
both tests interrogate the same three pathways that chiefly
impact on breast cancer outcome to a large degree: pro-
liferation, ER and HER2 [15]. Other commercially avail-
able tests for prediction of clinical outcome are the Theros
Breast Cancer IndexSM (BCI) (Biotheranostics) and the
MapQuant DX by Ipsogen (reviewed in [16]). The Theros
BCI is also used for risk prediction in ER positive patients,
by the use of a combinatorial assay of a 2-gene ratio com-
prising the genes HOXB13 and IL17R1, and a molecular
grade index composed of the expression of five genes [17].
Similar to the Oncotype DX, the Theros BCI uses real-
time PCR and allows for the use of FFPE material. The
MapQuant DX is an Affymetrix microarray based assay
with the aim of reclassifying histological grade 2 tumours
into grade 1 or grade 3. This gene signature comprises 97
genes, proliferation genes being the main component [18].

In breast cancer, gene expression microarray studies have
also been used to define the so-called intrinsic molecular
subtypes. The most prominent was published by Perou and
Sorlie, and classifies breast cancer samples into four differ-
ent subtypes with a distinct clinical outcome [19–20]: one
chiefly ER positive group, called luminal; and three chiefly
ER negative groups, called basal-like, HER2 and normal-
like. Later on, the luminal group was further divided into
luminal A and B. Although the existence and prognostic
significance of these groups has been confirmed by oth-
ers, this classification has proved of little use in a clinic-
al setting since its discovery did not lead to reconsidera-
tion of the existing or development of novel therapeutic
strategies. At present stratification of breast cancer samples
into these molecular subtypes is controverted. In recent
studies, up to half of the HER2 clinically positive cases
(as ascertained by immunohistochemistry and FISH) could
not be assigned to the HER2 group [21]. However, high-
er concordance is achieved if subtype classification mod-
els (SCMs) are used instead of the above mentioned pre-
diction models, which are based on hierarchical clustering
[22]. Further, none of the microdissected breast cancer spe-
cimens with more than 90% tumour content could be as-
signed to the normal breast-like group, suggesting that the
existence of this group might be an artifact due to contam-
ination with normal tissue [21, 23].
Similar to breast cancer, several distinct molecular sub-
types with prognostic significance have been identified for
lung cancer. There was very little correlation between the
different gene expression signatures used for the classi-
fication. In a recent report, Subramanian et al compared
the 16 most relevant studies in non-small cell lung cancer
(NSCLC) from 2002 until 2009 and concluded that none
of the studies succeeded in showing improvement in pre-
dictive power over and above known risk factors [24]. Fur-
ther, the authors conclude that most of the studies con-
tained serious problems, such as unfocused study design
and inappropriate data analysis, and that much more at-
tention has to be given to statistical validation and re-
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producibility [24]. However, the discovery and approval
of targeted therapeutics in lung cancer, such as gefitinib
and crizotinib for EGFR mutated and EML4-ALK translo-
cated NSCLC, respectively, and BRAF mutation in melan-
oma, has shifted the attention from gene expression signa-
tures/studies towards the development of novel therapeutic
strategies based on the presence of genomic aberrations.

Genomic aberrations as predictive
markers

The technological advance in cancer genomics
In 1914, Theodor Heinrich Boveri first hypothesised that
cancer could be a chromosomal disease [25–26]. Nearly
100 years later, it is generally accepted that cancer is
caused and driven by a sequential accumulation of genomic
changes (so-called mutations) in cancer-relevant genes
[27–31]. Analogous to the Darwinian evolutionary process,
cancer development is thought to be based on the acquis-
ition of genetic variability by mutations followed by the
natural selection that acts on the resulting phenotype (re-
viewed in [32]). These mutations may affect only one or
more nucleotides (so-called small scale mutations) or even
larger segments with an effect on the structure of a chro-
mosome, such as is the case for deletions, amplifications
and translocations [32–35]. The effect on the protein level
of genomic mutations, such as deletions, insertions or sub-
stitutions, can be multifaceted. Most of the detected muta-
tions (so-called silent mutations) have no effect on the
protein level; others can lead, for example, to a truncated
protein with an aberrant function or to a constitutively act-
ive protein. Up to the present, thousands of such genom-
ic aberrations have been reported and listed [36]. However,
the impact of these mutations on cancer development has
not yet been completely elucidated. For this purpose, it was
intended to classify each somatic mutation in a cancer cell
genome either as a driver mutation (i.e., a mutation that is
causally implicated in oncogenesis and has been selected
for) or a passenger mutation, which is not causally involved
in cancer development (reviewed in [32]). This classifica-
tion and the estimated number of driver mutations required
for cancer development have been challenged and are the
subject of controversy in the literature [37–39].
Until the technological advances in recent decades, the
findings of genomic aberrations with clinical (predictive)
impact were chiefly restricted to haematological malignan-
cies. This was mainly due to the restrictions imposed by
the analyses that were required for the discovery of nov-
el structural chromosomal aberrations: classic cytogenetic
analyses, such as karyotyping, depend on the availability of
high-quality preparations of metaphase chromosomes. In
epithelial tumours the chromosome morphology required
for metaphase analysis is often poor, yielding only par-
tial and poor-quality karyotypes. It is thus not unexpected
that the first and most prominent example of a predictive
genomic aberration in cancer applies to chronic myelo-
genous leukaemia (CML): the discovery (1960) and de-
scription (1973) of the Philadelphia chromosome, a recip-
rocal translocation between chromosome 9 and 22 [40].
This translocation results in the BCR-ABL gene fusion that

leads to the expression of a chimaeric protein, BCR-ABL
tyrosine kinase. In 1996, Druker et al demonstrated the
use of a specific inhibitor (hereafter known as imatinib)
against the kinase activity of this BCR-ABL protein [41].
Nowadays this translocation is detected by fluorescence
in-situ hybridisation (FISH) or polymerase chain reaction
(PCR) and used as a predictive marker for treatment of
CML patients with imatinib mesilate (Glivec®). This exem-
plary case is regarded as a milestone in personalised medi-
cine. The discovery of the ERBB2 (HER2) gene amplific-
ation with overexpression of the protein is an analogous
milestone in epithelial cancers. In 1989, Hudziak et al. first
described the monoclonal antibody 4D5 against the extra-
cellular domain of the HER2 protein. This antibody was
later modified and is now known as trastuzumab [42]. Test-
ing for this aberration to select breast cancer patients for
treatment with trastuzumab is nowadays diagnostic routine.
The discovery of novel genomic aberrations in carcinomas
notably increased with the development of comparative
genomic hybridisation (CGH) in 1992 [43]. This techno-
logy obviated the need for metaphases from tumour mater-
ial by using fragmented and fluorescent-labelled reference
(normal) and sample (tumour) DNA, followed by compet-
itive hybridisation to normal metaphases. This procedure
allowed the detection of DNA copy number gains (ampli-
fications) and losses (deletions) with a resolution of 10 Mb.
This method was then further developed by hybridisation
of the labelled DNA fragments on microarrays instead of
normal metaphases. The current generation of high-resol-
ution microarrays contains up to one million different oli-
gonucleotide probes, each of them specific for a region in
the genome. This technology allows the detection of gene
copy number transitions and therefore the detection of de-
letions and amplifications at a resolution of only a few
kb. However, resolution at a single base level can only
be achieved by sequencing. In the last few years, sever-
al companies have developed instruments of the so-called
second generation of sequencing. In contrast to the classic
Sanger sequencing, this technology (also known as next-
generation sequencing (NGS) or massive parallel sequen-
cing) allows the parallelisation of the sequencing, thereby
producing millions of sequences in a single run. A further
advantage of this technology is its versatile area of applic-
ations: whole genome, full exome, transcriptome or even
the microRNAome can be efficiently sequenced. The dra-
matic reduction in costs for this previously very expensive
technology has led to its widespread use. Nowadays, com-
panies offer whole-genome sequencing services for less
than USD 5,000, which has led to a dramatic increase in
the number of ongoing genomic profiling studies as well
as in the number of cancer samples used in these stud-
ies. Indeed, the Cancer Genome Atlas and the International
Cancer Genome Consortium have started to sequence hun-
dreds of genomes per cancer type. The bottleneck of the
generated whole genome profiles is not only bioinformat-
ic and biostatistical analyses, but more and more their bio-
logical interpretation. The whole genome sequencing of a
smoker’s primary non-small cell lung cancer (NSCLC) and
a cell line derived from a melanoma revealed 50,000 and
33,000 somatic mutations respectively [44–45]. Although
these examples are extreme, since both samples originate
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from tumours that have been exposed to mutagens for a
long time, they are intended to illustrate the complexity of
such genomes and the challenges that have to be faced in
reliably identifying driver mutations.

Increasing number of predictive genomic aberrations
in solid tumors
In the last few years several genomic aberrations have been
identified that are regarded as clinically relevant, since
their presence influences drug treatment. The US Food and
Drug administration (FDA) lists 22 medicaments used in
oncology whose label section includes pharmacogenomic
information [46]. In lung cancer, especially NSCLC, ma-
jor advances have been made in selecting patients for novel
targeted therapeutics. The most recent example is the ap-
proval of crizotinib, a small-molecule dual inhibitor against
the kinases of the proteins MET and ALK. This inhibit-
or has recently been approved for patients whose tumours
harbour an ALK rearrangement (chiefly EML4-ALK gene
fusion). Further, EGFR inhibitors, such as gefitinib and
erlotinib are chiefly effective if the EGFR protein is con-
stitutively active due to a mutation in the EGFR gene.
However, many EGFR mutated lung cancers become res-
istant to EGFR inhibitors because of additional genomic
aberrations, such as the secondary T790M mutation of the
EGFR gene or MET gene amplification
Many of the genes conferring either sensitivity or resist-
ance to specific therapeutics are components of the PI3K
or the RAS/RAF pathway. This is not surprising, since
these interconnected pathways are downstream of the
(trans)membrane receptors, i.e. inhibition of an upstream
protein cannot be successful if a downstream kinase is con-
stitutively activated due to the presence of a mutation. This
is for example the case of the KRAS mutation, which has
also been found in up to 40% of colorectal cancers [47–48].
Similarly to lung cancer, patients with colorectal adenocar-
cinomas harbouring this mutation do not respond to anti-
EGFR therapies. The comparable mechanism is observed
with the BRAF gene: usually, patients whose gastrointest-
inal stromal tumours of the stomach (GISTs) harbour spe-
cific mutations in the CKIT or PDGFRA gene are subjected
to therapies involving the kinase inhibitors imatinib or
sunitinib. Again, however, this therapy is only effective if
the BRAF gene does not harbour the V600E mutation. In-
triguingly, this activating mutation has become a success
story in malignant melanoma. Approximately two thirds of
these tumours harbour this activating BRAF mutation. In
a recently published clinical study, Flaherty et al. demon-
strated that the majority of melanoma patients with this
mutation (V600E) responded to vemurafenib, an inhibitor
specific for the serine-threonine kinase of the BRAF pro-
tein [49]. However, resistance to BRAF inhibitors emerges,
and in up to 30% of the patients treated secondary tumours
(non-melanoma skin cancers) have been described. Very
recently it was reported that the majority of these secondary
tumours (21 out of 35 in this particular study) harboured
RAS mutations, predominantly affecting the HRAS gene
[50–51]. Further, up to 25% of malignant melanomas har-
bour an NRAS mutation. In most of the cases this mutation
leads to constitutive activation of the RAS signalling path-

way. Thus far, however, no clinical trials with NRAS inhib-
itors have been started.
These examples illustrate the complexity of personalised
cancer medicine. Depending on the site of the mutation, a
mutated gene can either be interpreted as a negative or a
positive predictor for a specific targeted therapeutic. It is
noteworthy that the above mentioned mutations were all
discovered with the first generation of sequencers, most of
them even before the human genome was sequenced for the
first time. In the meantime, hundreds of cancer genomes
have been sequenced and even more will follow [42]. It
will be exciting to observe how this wealth of data and res-
ults can be translated into clinically relevant information.

Outlook and concluding remarks
The discoveries from the genomic analyses conducted in
the last two decades now impact daily on diagnostic
routine. For some tumour types, such as NSCLC, standard
diagnostic procedure requires the analysis (sequencing) of
several genes (hotspots) to determine the optimal treat-
ment. Findings from large scale sequencing projects will
sooner or later find their way into the diagnostic depart-
ments. Further, many recurrent mutations that are now be-
ing discovered are present at low or very low prevalence
(1–5%), but in different tumour types. These facts will
prompt increasing demand for sequencing requests in the
near future, and thus it is not surprising that most of the
manufacturers of the second generation of sequencers
(NGS) are now offering bench-top sequencers, such as GS
Junior (454, Roche), MiSeq (Illumina) or the Ion Torrent
system (life technologies). The accessibility of genomic
profiling technologies will also impact on the design of
clinical studies. In the near future it may be necessary to
include whole genome sequencing of cancer samples from
patients enrolled in clinical studies, especially if targeted
therapeutics are being used. The resulting wave of new
molecular data will most probably identify sub-cohorts of
patients who specifically benefit from the therapy inter-
rogated. On the other hand, the comprehensive genomic
analyses in the context of clinical trials bring new chal-
lenges: the increase in data complexity and its analysis may
lead to delay in the approval of the drugs. In addition, the
traditional way of conducting clinical trials in a stepwise
manner (i.e., phase I–III trials) is not suited to small sub-
populations of cancers with rare but well-druggable genetic
alterations, calling for new clinical trial concepts.
Similar to other experiments in the laboratory, correct clas-
sification and selection of the input material before profil-
ing is a crucial step. Pathology departments with their large
archives of formalin fixed, as well as fresh frozen tumour
samples are assuming a major role in the research area of
personalised cancer medicine and in decision-making on
how these technologies are to be implemented into clinic-
al and diagnostic routine [52]. Proper classification of the
material followed by macro- or microdissection is a cent-
ral issue in defining the optimal material and enriching tu-
mour tissue for genomic analyses. Further, tumor hetero-
geneity, a phenomenon that pathologist observe every day,
has its origin at the genomic level: tumours can consist
of distinct clonal tumour populations. We and others have
recently shown that these clonal populations can harbour
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population-specific genomic aberrations [53–54]. Al-
though the technological advances introduced in this re-
view are promising, a test for diagnostic routine must still
fulfill one important criterion: it must be applicable to
the material that is available in pathology departments. In
most patients, cancer diagnosis is made on small, formalin-
fixed biopsies or cytological specimens. Performing com-
prehensive and technically advanced genomic profiling on
these specimens remains a major challenge.
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