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Three decades of endothelium research
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Summary

The endothelium is more than just a passive interface
between the blood and the vessel wall. Since the pioneering
discovery of nitric oxide as an important endothelium-de-
rived vasorelaxing molecule three decades ago, vascular
research has developed exponentially and remains fascin-
ating for the entire research community. Endothelial dys-
function is a pathological condition characterized by an im-
balance between vasodilatating and vasoconstricting sub-
stances. Most, if not all, cardiovascular risk factors have
been attributed with endothelial dysfunction and their
therapeutic modification with an improvement in vascular
function. This overview aims to provide a glimpse into this
fascinating research field with the emphasis on vasoactive
substances and the assessment of endothelial function.
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Introduction

In the past the endothelium was believed to represent a
simple semipermeable membrane covering the endolumin-
al part of all blood vessels. However, in recent years,
abundant research on the endothelium and its function has
brought to light its impressive and indeed indispensable
physiological functions, especially in maintaining the
homeostasis of vascular tone and structure. Loss of func-
tion of the endothelium not only makes the vessel prone

to vasoconstriction, but also leads to atherothrombotic
changes such as proliferation of vascular smooth muscle,
expression of proinflammatory molecules and thrombosis.

Moreover, in humans endothelial dysfunction is one of
the first detectable vascular alteration in the evolution of
atherosclerosis, and its presence also correlates well with
future cardiovascular events.

It is the aim of the present article to provide an over-
view of the physiological and pathophysiological function
of the endothelium, its main vasoactive substances, and
the possibilities of measuring and therapeutically influ-
encing vascular function. The article is based upon the
recently published overview article in a special issue on
endothelium-dependent vasodilatation in honour of Robert
Furchgott [1].

The vascular endothelium and its
vasoactive substances

The endothelium represents the inner layer of the vessel
wall. It is a continuous and smooth monolayer of cells
providing a nonthrombogenic surface with highly selective
permeability properties. In total, it represents a surface area
of about 4000 to 7000 m2. The endothelium controls vascu-
lar permeability and actively regulates the exchange of mo-
lecules in response to environmental and molecular signals
(fig. 1) [2]. Moreover, healthy endothelial cells are crucial
in the prevention of thrombotic events. A feature of note is
that endothelial cells express antiplatelet and anticoagulant
molecules [3], whereas dysfunctional cells make the ves-
sel prone to thrombotic events with tissue factor playing an
important role [4].

However, the endothelium is able to do much more;
indeed, it is known to be a highly complex organ able to
respond to a broad variety of endogenous and exogenous
stimuli which also synthesizes and releases a vast amount
of vasoactive substances.

Many endothelium-derived relaxing factors (EDRF)
have been characterised chemically in recent years; most of
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them are released in response to an increase in intracellular
calcium. The most studied EDRF molecules are nitric ox-
ide (NO), prostacyclin (PGI2) and endothelial-derived hy-
perpolarisation factors (EDHF).

Furthermore, there are also important endothelial-de-
rived constricting factors (EDCF), endothelin-1 (ET-1) rep-
resenting the most potent molecule.

Given these important physiological (inter)actions of
endothelial mediators, prompt repair of damaged or apop-
totic cells by endothelial progenitor cells is essential. Thus,
these cells are not only important for angiogenesis, but also
prompt repair of defects in the endothelial lining of the ves-
sel wall (for review see [5]).

Nitric oxide (NO)
Thirty years ago, Furchgott and Zawadzki demonstrated
that endothelial cells produce a then unknown signaling
molecule, which was at the time named endothelium-de-
rived relaxing factor (EDRF) [6]. This molecule was shown
to be able to relax vascular smooth muscles. Later on, Ig-
narro and Furchgott demonstrated that EDRF was indeed
nitric oxide [7]. Since these discoveries a wealth of basic
and clinical research has been triggered. For this seminal
discovery Robert Furchgott and Louis Ignarro, together
with Ferid Murad, were co-awarded the Nobel Prize in
1998.

In the course of further research, NO has not only been
shown to have vasodilatory properties. Indeed, it also pre-
vents platelet adhesion and aggregation, as well as leuko-
cyte adhesion and migration into the arterial wall and in-
hibits smooth muscle cell proliferation, all key events in the
development of atherosclerosis [8–13]. NO is a highly dif-
fusible small molecule and is synthesised by NO synthase
(NOS) from L-arginine. It is released by endothelial cells

Figure 1

Endothelium-derived vasoactive substances.
Endothelial nitric oxide synthase is induced by shear stress and a
variety of receptors and leads to a release of nitric oxide (NO),
which exerts relaxation of vascular smooth muscle cells and other
important effects such as antiproliferation and inhibition of
thrombocyte aggregation and leukocyte adhesion. Other
endothelium-derived relaxing factors including endothelium-derived
hyperpolarisating factor (EDHF) and prostacyclin (PGI2) are also
shown. ACE denotes angiotensin-converting enzyme, Ach,
acetylcholine; AI, angiotensin I, AII, angiotensin II, AT1, angiotensin
1 receptor; Bk, bradykinin; COX, cyclooxygenase; ECE, ET-
converting enzyme; EDHF, endothelium-derived hyperpolarizing
factor; ETA and ETB, endothelin A and B receptors; ET-1,
endothelin-1, L-Arg, L-arginine; PGH2, prostaglandin H2; ROS,
reactive oxygen species; S1, serotoninergic receptor; TH, throm-
boxane receptor; Thr, Thrombin; TXA2, thromboxane; 5-HT,
serotonin.

mainly in response to shear stress, but also by many oth-
er molecules such as acetylcholine, bradykinin, thrombin,
and ADP among others, leading to a relaxation of vascular
smooth muscle cells [6, 14–21].

Prostacyclin
Prostacyclin (PGI2) is another endothelium-derived relax-
ing factor which is released partly in response to shear
stress [14, 22–24]. PGI2 is synthesised by cyclooxy-
genase-1 (COX-1) from arachidonic acid [25] and in-
creases cAMP in smooth muscle cells as well as in plate-
lets. In contrast to NO, PGI2 does not contribute to the
maintenance of large conduit arteries’ basal vascular tone
[20]. Importantly, however, it has potent platelet inhibitory
effects. In contrast to NO, which is released continuously
by agonists [26], PGI2 is released only in a transient man-
ner [27]. PGI2 facilitates the release of NO by endothelial
cells [28] and vice versa, the action of PGI2 in the vascular
smooth muscle is also potentiated by NO and the half-life
of the second messenger of prostacyclin is prolonged [29].

Endothelium-derived hyperpolarising factor(s)
Endothelium-derived hyperpolarising factors (EDHF) are
molecules causing hyperpolarisation of smooth muscle
cells. Their involvement in regulating vascular reactivity
is defined as the endothelium-dependent response that per-
sists in the presence of combined inhibition of NO and
PGI2. They might represent a compensatory mechanism for
endothelium-dependent vasodilatation in the presence of
reduced NO availability [30].

Studies have identified several molecules or mediators
that might act as EDHF in different tissues and species
[31]: among them K+ [32], cytochrome P450 metabolites
[33–35], lipoxygenase products [36], NO itself [37], react-
ive oxygen species (H2O2) [38], cyclic adenosine mono-
phosphate [39], C-type natriuretic peptide [40], and elec-
trical coupling through myoendothelial gap junctions [41,
42].

Endothelin
Some years after the detection of NO, the vasoconstrictor
peptide endothelin (ET), which is also synthesised by vas-
cular endothelial cells, was discovered [43, 44]. ET acts as
a natural counterpart of NO [45]. Three isoformes of the
peptide (ET-1, ET-2 and ET-3) exist, which are converted
by the endothelin converting enzyme (ECE) from their pre-
cursors big endothelin originating from pre-proendothelin
peptides cleaved by endopeptidases [46–50]. Similar to the
expression of NO, there are also several factors modulat-
ing ET-1 production and release, among them shear stress,
angiotensin II, thrombin, adrenaline, oxidised low-density
lipoproteins and inflammatory cytokines [8, 51–62].

In humans, ET raises blood pressure [63, 64] and in-
duces vascular and myocardial hypertrophy [65–67], both
risk factors for cardiovascular morbidity and mortality
[68–70].

Endothelial dysfunction

The term endothelial dysfunction is widely used to describe
any form of abnormal activity of the endothelium. An im-
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balance of the above-mentioned vasoactive substances due
to endothelium dysfunction affects vascular function neg-
atively. Most commonly, endothelium dysfunction is char-
acterised by an impaired NO bioavailability due to reduced
production of NO by NOS or increased breakdown by re-
active oxygen species [71]. In the early stages, endothelial
function may be partly maintained by compensatory upreg-
ulation of prostacyclin and/or EDHF.

Endothelial dysfunction has been documented in al-
most every condition associated with atherosclerosis and
cardiovascular disease. In humans, endothelial dysfunction
has been observed in patients with hypertension [72, 73],
in normotensive subjects with a family history of hyperten-
sion [74], in smokers [75, 76] and passive smokers [77],
in dyslipidaemia [78, 79], in aging [73], diabetes mellitus
[80–84], in obesity [84] in hyperhomocysteinemia [85, 86]
and in patients with inflammatory or infectious diseases
[87–89]. Many of these conditions also are characterised
by overproduction of reactive oxygen species (ROS) and
in turn increased oxidative stress [90]. ROS might interact
with NO and reduce its bioavailability, and might directly
damage cellular structures via the production of peroxyni-
trate. Hence oxidative stress is probably one of the major
mechanisms in the development of endothelial dysfunc-
tion, if not its major contributor.

However, other factors also contribute to endothelial
dysfunction, e.g. local factors such as chronic increases in
shear stress, pressure and pulsatility as well as genetic pre-
dispositions and other so far unknown factors. Endotheli-
al function therefore represents an integrated index of both
the overall cardiovascular risk factor burden and the sum of
all vasculoprotective factors in a given individual [91].

Given its role in the atherosclerotic process, it is not
surprising that many studies demonstrate a prognostic role
for endothelial function measurements in the coronary as
well as in the peripheral and central circulation. First evid-
ence came from patients with non-obstructive coronary
artery disease, where two independent groups demon-
strated a higher incidence of cardiovascular [92, 93] and
cerebrovascular events in those with impaired coronary
vascular function [94]. Coronary endothelial dysfunction
predicts the incidence of further cardiovascular events even
in patients without coronary artery disease [95, 96] and in
heart transplant recipients [97]. Later on several other stud-
ies demonstrated incremental prognostic impact of peri-
pheral endothelial dysfunction in patients with risk factors
for coronary artery disease. Flow-mediated vasodilation
was predictive for cardiovascular events beyond traditional
risk factors in a large cohort of elderly patients [98], in pa-
tients with peripheral vascular disease [99], after elective
vascular surgery [100], in postmenopausal women [101],
in patients with chest pain [102], or in patients with coron-
ary artery disease [103]. Similarly, venous occlusion
plethysmography predicted CV events in patients with
coronary artery disease [104] and in patients after acute
coronary syndromes [105]. A recent study in patients with
risk factors demonstrated that non-invasive peripheral ar-
terial tonometry is able to predict late cardiovascular events
[106]. However, whether peripheral endothelial dysfunc-
tion adds incremental information beyond classical risk
factors in healthy humans is still debated. In a recent study

in 3500 healthy subjects FMD was unable to predict the
incidence of hypertension [107], whereas another study
demonstrated the predictive value for incident CVD with
FMD in 3026 healthy people [108].

Importantly, however, therapeutic interventions, which
positively influence the cardiovascular risk profile of indi-
viduals, typically impact beneficially on endothelial func-
tion. In hypertension, for example, most classes of anti-
hypertensive drugs improve endothelium-dependent vas-
odilatation in animals [109–116]. Depending on the an-
tihypertensive drug and its pharmacological profile, im-
provements in endothelium-dependent vasodilatation can
also be achieved in humans [117–136]. Indeed, calcium
antagonists, ACE inhibitors and angiotensin-receptor ant-
agonists, but not beta-blockers (with the exception of the
NO-containing molecule nebivolol) improve endothelial
function in hypertensives. Similar interventions with drugs
or lifestyle changes have been studied with other risk
factors and have shown similar results. The perhaps
nowadays most important drugs in the prevention and treat-
ment of atherosclerosis, the statins, have consistently been
shown to improve endothelial dysfunction not only due to
their lipid lowering properties but also due to their pleio-
tropic effects [137, 138]. Furthermore, direct infusion of
reconstituted HDL is able to improve endothelial function
significantly in hyperlipidemics [79].

Interestingly, not only drugs improve endothelial func-
tion in patients with cardiovascular risk factors, but also
lifestyle modifications such as regular exercise [139, 140]
or dietary interventions with foods rich in polyphenols, es-
pecially fruit, tea and cocoa [141–143].

Methods for assessing human
endothelial dysfunction in vivo

Different techniques for measurement of endothelial dys-
function have been developed recently. The first demon-
stration of endothelial dysfunction in atherosclerotic coron-
ary arteries using intracoronary infusion of acetylcholine
was published in 1986 [144]. However, soon afterwards
other less- and also non-invasive techniques have been de-
veloped to assess endothelial dysfunction mainly in the
forearm circulation [145]. All the different techniques have

Figure 2

Flow-mediated vasodilatation.
Example of a typical ultrasound image of the brachial artery is
demonstrated. Arterial diameter is shown schematically at baseline
and after reactive hyperaemia induced flow-mediated
vasodilatation. Blood pressure cuffs can be placed on the upper or
the lower side of the transducer in the antecubital fossa, although
the latter is the preferred method. On the right hand side, the time
course of an FMD measurement is shown. See text for further
explanation.
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their advantages and disadvantages and, importantly, dif-
ferent vascular beds are examined. The principle, however,
is simple: large conduit arteries such as the brachial or ra-
dial artery dilate in response to reactive hyperaemia (flow-
mediated vasodilatation) or upon intraarterial infusion of
substances such as acetylcholine (Ach), bradykinin or sero-
tonin in the presence of a functionally intact endothelium,
capable of releasing NO or other vasodilator substances
(see above).

Flow-mediated vasodilatation as measured by
ultrasound of the brachial artery
Due to its non-invasive properties flow-mediated vas-
odilatation of the forearm arteries has become the most im-
portant mode of measuring endothelial dysfunction. Many
groups take advantage of this technique, which relies on
the fact that endothelial cells release NO and other
endothelium-derived relaxing factors in response to react-
ive hyperaemia (after a short occlusion of the brachial

Figure 3

NO in flow-mediated vasodilatation.
Radial artery flow (mL/min) and radial artery diameter (mm)
measured at baseline and during reactive hyperaemia before and
after infusion of NG-monomethyl-L-arginine (L-NMMA). **P <.01 vs
Base; P <.05 and P <.01 vs corresponding control value. Modified
from Johannides et al. [20].

Figure 4

Measurement of coronary vascular reactivity.
Small catheters are positioned in proximal coronary arteries.
Acetylcholine or nitroglycerin are infused to test conduit vessel
endothelium-dependent and -independent vasodilatation
respectively. Changes in vascular diameter are measured by
quantitative coronary angiography. Doppler flow-velocity
measurements are used to assess small vessel vasoreactivity to
acetylcholine and adenosine respectively. Modified from Ganz
[161].

artery with a blood pressure cuff). Celermajer and his col-
leagues were the first to measure this response in vivo, and
developed an elegant non-invasive technique to measure
flow-mediated vasodilatation (FMD) of the conduit bra-
chial or radial artery (fig. 2) [146]. We then demonstrated
that indeed this response was nitric oxide dependent [20,
21] (fig. 3). The change in brachial or radial artery dia-
meter in response to the increased shear stress induced by
reactive hyperemia is measured by ultrasound technique.
A feature of note is that peripheral endothelial function
as assessed by FMD correlates with coronary artery en-
dothelial function [147]. However, although the principle
of this technique is simple, it is technically very challen-
ging and therefore requires extensive training and standard-
ization. Several attempts have been made to standardize the
different protocols [148, 149].

Venous occlusion plethysmography
Although this technique is limited by its semi-invasive
nature, requiring cannulation of the brachial artery, forearm
venous plethysmography has the advantage that molecules,
hormones or drugs can be infused intra-arterially, for in-
stance acetylcholine (Ach) or nitroglycerine, to quantify
endothelial-dependent and endothelial-independent vas-
odilatation respectively [72, 150]. It is of course also pos-
sible to administer other agonist and antagonists and even
novel substances in a very low, systemically not effective
dose into the brachial artery, with the contralateral limb
serving as an internal control. Changes in forearm blood
flow are measured by plethysmography in both forearms
and results are expressed as the ratio of the changes in
flow measured in both arms. Although the microcirculation
in the forearm (which is assessed essentially by this tech-
nique) is not a target organ for atherosclerosis, it seems that
the response to Ach nevertheless has an independent pre-
dictive value for future cardiovascular events [149].

Coronary endothelial function measurements
Coronary endothelial function can be measured in the cath-
eterisation laboratory, but it is always limited by its in-
vasive nature. Nevertheless, if applied appropriately, it
provides very valuable information on the coronary vascu-
lar bed itself. Most protocols work with an intracoronary
infusion of Ach to measure endothelial-dependent and ni-
troglycerine to measure endothelial-independent function
respectively (fig. 4). As expected, coronary arteries with an
intact endothelium will respond to intra-coronary Ach in-
fusion with epicardial and microvascular dilatation, result-
ing in an increase in coronary blood flow. However, if the
endothelial layer is dysfunctional or even interrupted, Ach
produces a paradoxical vasoconstriction and a decrease in
144]. Similar to the other techniques, the response to in-
tracoronary Ach gives important prognostic information
[92].

Finger plethysmography
Because all present accepted methods of measuring en-
dothelial function were either invasive or suffered from
high inter- and intraobserver variability, other techniques in
assessing vascular reactivity have been under investigation.
Recently, a finger plethysmographic device which detects
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pulsatile arterial volume changes has been introduced [151,
152]. A decrease in arterial blood volume in the finger-
tip causes a decrease in pulsatile arterial column changes,
thus decreasing the measured signal and vice versa. Sim-
ilarly to the assessment of endothelial function via the
FMD technique by ultrasound of the brachial artery, a pres-
sure cuff is placed on one upper arm while the other arm
serves as a control. After measuring baseline blood volume
changes, the blood pressure cuff is inflated above systolic
pressure and is deflated after 5 minutes to induce reactive
hyperaemia on one arm. The calculated index between the
arm with reactive hyperaemia and the control represents a
measure for endothelial function. Similar volume changes
after nitroglycerin can be measured. However, augmenta-
tion of the pulse amplitude after reactive hyperaemia is a
complex response to ischaemia. It may reflect changes in
flow, as well as in digital microvessel dilatation, and is only
partly dependent on nitric oxide [153]. Studies demon-
strated that impairment of peripheral finger endothelial
function is correlated with coronary microvascular function
in patients with early atherosclerosis [154]. In a cross-sec-
tional study in 1957 patients in the Framingham cohort, di-
gital vascular dysfunction was associated with traditional
and metabolic cardiovascular risk factors [155].

Pulse wave analysis
The principle of this non-invasive technique is measure-
ment of the pulse wave and velocity profile of the propaga-
tion of the arterial wave form and its reflected wave. The
central aortic wave form can be calculated as the augment-
ation index [156]. Although not the only contributor, en-
dothelial function plays an important role in arterial stiff-
ness and thus affects the results of this methodology as
well. It therefore has been used to determine effects of
endothelial mediators on arterial stiffness (for review see
[157]). Importantly, aortic stiffness expressed as aortic
pulse wave velocity is a strong predictor for future cardi-
ovascular events and mortality, especially in those patients
with a higher baseline risk, as demonstrated recently in a
meta-analysis in over 15 000 subjects [158].

Other methods of assessing endothelial function
There are other imaging tools capable of assessing vascular
function, including magnetic resonance technique, but
these will not be described in greater detail as their import-
ance has still to be determined.

Other possible ways of evaluating endothelial function
include direct measurement of biochemical and circulating
endothelium markers. One possibility is to measure the
plasma levels of endothelium-derived substances directly
involved in vasoconstriction and vasorelaxation (e.g. en-
dothelin, endothelial-derived NO compounds or prostacyc-
lin metabolites). Because atherosclerosis is believed to be,
at least in part, a chronic inflammatory disease and the ex-
pression of pro-inflammatory cytokines and adhesion mo-
lecules may play an important role in the development
of endothelial dysfunction, serum levels of (pro-)inflam-
matory markers such as C-reactive protein, interleukins
and other cytokines, phospholipases and others have been
measured. Due to their pro-atherogenic properties and their
involvement in endothelial dysfunction, markers of oxid-

ative stress (e.g. isoprostanes, oxLDL) or pro-angiogenic
factors (e.g. VEGF) may provide further insights into early
vascular changes. These markers certainly hold the poten-
tial to provide mechanistic insights, though significant con-
founding with other diseases and conditions has to be taken
into account.

Recently circulating endothelial progenitor cells (EPC)
have emerged as a powerful marker of endothelial dys-
function. Indeed, endothelial dysfunction may reflect an
imbalance between vascular injury and EPC-based repair
[5, 159] and might indicate pre-clinical endothelial damage
and a target for vascular protection [149]. Furthermore, ge-
netics may provide more insights into the molecular mech-
anisms of endothelial function. In particular, single nucle-
otide polymorphisms of endothelial genes such as endoth-
elin-1, eNOS among others, have been studied [149]. In
the future, gene polymorphisms might help to further refine
individual risk assessment for endothelial dysfunction and
future events. For instance, coronary endothelial dysfunc-
tion in patients with coronary artery disease correlates with
cytochrome P450 polymorphisms [160].

The future of endothelial dysfunction

In the last 30 years, an enormous number of studies have
been published on endothelium function in experimental
animals and humans. Currently, a search in PubMed results
in 175 454 displayed studies, more than 10 000 in the year
2009 alone. This underscores the persistent interest and im-
portance of endothelial research. Future areas of interest
are the relation of endothelial dysfunction to endothelial
progenitor cell number and function and their therapeutic
modulation, as well as genetic factors influencing en-
dothelial function. Finally, the assessment of endothelial
function remains an important tool for assessment of the
vascular effects of novel therapeutic agents in their clinical
development.
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