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Summary

Kras, a small intracellular GTPase, is a central intermedi-
ary of the epidermal growth factor receptor (EGFR) and
other tyrosine kinase receptor pathways. Increased EGFR
and Kras signalling is involved in colorectal carcinogenesis
and tumour progression. Mutations of Kras result in the
loss of its GTPase activity and thus in a constitutive ac-
tivation of Kras signalling. Kras mutations are found in
30-60% of colorectal cancers. The concordance between
Kras mutations in the primary tumour and related metastat-
ic sites is high. Since mutation of Kras confers resistance
to anti-EGFR-antibody therapy, it is critical to assess Kras
mutational status in colorectal cancer patients. Anti-EGFR-
antibody therapy improves survival in patients with meta-
static colorectal cancer and wild-type Kras.
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Introduction

With an age-adjusted incidence of 49 out of 100 000 per
year, colorectal cancer is one of the most frequent malig-
nant human tumours [1]. With regard to its pathogenesis,
it is also one of the best understood. The evolution of
colorectal cancer from polyps was first proposed by Mor-
son [2]. Since the seminal publication of Vogelstein and
Fearon [3], we understand that most colorectal cancers
arise in a multistep process progressing from mucosal hy-
perplasia to adenomas and carcinomas. Many crucial mo-
lecular alterations underlying this tumour progression have
been delineated. They include loss of common tumour sup-
pressors such as APC (adenomatous polyposis coli), p53
and DPC4 (deleted in pancreatic cancer, Smad4), and ac-
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tivation of oncogenes such as Kras. However, until recently
this knowledge has been irrelevant to cancer therapy. In
2008, the European Medicines Agency (EMEA) approved
cetuximab, a monoclonal antibody directed against the epi-
dermal growth factor receptor (EGFR), as a novel therapy
for Kras wild-type (wt) metastatic colorectal cancer. At last
the knowledge of colorectal tumour biology became use-
ful for clinical decision-making. Since then our understand-
ing of the signalling pathways involved in colorectal cancer
progression has further increased, but in daily routine Kras
remains the most important molecular marker for therapy-
related decisions. The aim of this article is to review the
molecular biology of Kras, to highlight the clinical conse-
quences of Kras mutations and to discuss the role of Kras
in metastatic colorectal cancer.

Pathogenesis of human colorectal
cancer: the adenoma-carcinoma
sequence

Human colorectal cancer develops through a series of ge-
netic alterations. These genetic changes in intestinal epi-
thelial cells lead first to mucosal hyperplasia and then to
adenomas and carcinomas (the so-called adenoma-car-
cinoma sequence). These somatic mutations occur in a
defined spatial and temporal manner, i.e., only mutations
occurring in a specific cell type and at a defined time-point
lead to the development of colorectal cancer. In a mouse
model of intestinal cancer, APC deletion in the stem cell
compartment of the colonic crypts causes the formation of
adenomas, whereas the deletion of APC in short-lived cells
outside the crypts does not [4]. In the model proposed by
Vogelstein and Fearon [3], APC mutations are thought to
occur very early in the development of colorectal cancer.
Loss of APC results in decreased degradation of -catenin
and thereby activation of Wnt signalling and the expression
of genes inducing cell proliferation and invasion (reviewed
by [5]).

A second mutation that occurs rather early in adenomas
is the activation of Kras (Kirsten rat sarcoma viral onco-
gene homologue). Kras is a small GTPase (guanosin tri-
phosphate cleaving enzyme) involved in intracellular sig-
nal transduction. Importantly, it is the main transduction
pathway for EGFR (epidermal growth factor receptor) sig-
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nalling. A typical example of a mutation occurring late
in the adenoma-carcinoma sequence is the inactivation of
p53, which relaxes cell cycle control and enables the tu-
mour cells to evade apoptosis and continue proliferation. In
addition, there is also evidence that mutant p53 can directly
promote tumour cell invasion and metastasis [6].

The concept of the adenoma-carcinoma sequence has
been verified in large patient series, and clinical evidence
for the sequence is abundant. For example, the average age
of patients with adenomas is 7-8 years lower than that of
patients with colorectal cancer. Moreover, in surgical speci-
mens benign adenomatous tissue can be found contiguous
with cancerous lesions. In addition, 30% of patients with
colorectal cancer also have synchronous adenomas, and
metachronous adenomas develop in about the same propor-
tion of patients after colorectal cancer has been diagnosed
(reviewed by [7]). Nevertheless, it is probable that altern-
ative pathways of carcinogenesis exist in colorectal can-
cer. One argument in favour of an alternative, non-polypoid
origin of colorectal tumours is the fact that the anatomic-
al distribution of adenomas and carcinomas is not identic-
al. Histological analysis of colorectal cancers in patients
and mouse models of human cancer has identified a group
of flat tumours that most probably do not develop through
a polypoid stage and may account for up to 10-20% of
all colorectal cancers. Although they seem to be associated
with more advanced pathologies, the frequency of muta-
tions in Kras or in Braf, a serine/thereonine-protein kinase
acting downstream of Kras, is the same as in the classical
polypoid colorectal cancers [8]. The clinical relevance of
non-polypoid carcinogenesis is a matter of ongoing debate
and there is no final conclusion on this issue yet [9].

Structure of Kras and mutational sites

Kras is a small GTPase consisting of 188 or 189 amino
acids (depending on the isoform). Somatic mutations in tu-
mours occur at codons 12, 13, 61 or 146. Amino acids
12 and 13 are located in the GTP-binding P-loop, whereas
amino acid 61 is situated in the switch-II region (fig. 1A).
The switch regions control binding to Ras regulators and
effectors. The G-domain of Kras is highly conserved. The
hypervariable region controls membrane localisation
through farnesylation and palmitoylation of amino acid
residues. Kras is found mutated in colorectal (30-60%),
pancreatic (60%), biliary (33%), ovarian (17%) and endo-
metrial cancer (15%). In lung cancer Kras mutations occur
in 30-40% of adenocarcinomas but are infrequent in oth-
er histologies and in non-smokers [10]. In rare cases Kras
mutations are found in bladder, breast, cervical, kidney, liv-
er and thyroid cancer as well as in melanomas and myel-
oid leukaemia [11]. Ras mutations found in human tumours
usually result in a severe reduction of GTPase activity and
are thus constitutive in activating Ras signalling [12] (fig.
1B). In experimental systems, mutant Kras is capable of
transforming adult somatic cells of a variety of organs and
thus of inducing tumour formation [13].

In colorectal cancer, mutations of Kras occur almost
exclusively in exon 2, usually involving codons 12 or 13.
Most studies conducted in patients with colorectal cancer
have therefore focused on sequencing these two codons
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[14]. However, mutations in codons 61 and 146 have been
described and may account for up to 10% of patients bear-
ing Kras-mutant tumours [15]. The two most frequent Kras
mutations in microsatellite-stable tumours are G12D and
G12V. In microsatellite-instable colorectal cancer and in
hereditary non-polyposis coli cancer (HNPCC), G12D and
G13D mutations are most common [16]. How these differ-
ent Kras mutations may specifically modulate intracellular
signalling is not well understood and remains a matter of
ongoing research.

The mutations discussed above occur in coding regions
of the Kras gene. Recent experimental evidence has un-
covered the presence of mutations in the 3’-untranslated re-
gion (3’-UTR) of Kras. 3’-UTR mutations have been as-
sociated with poor prognosis in colorectal cancer patients
with cetuximab/irinotecan salvage therapy [17]. Interest-
ingly, poly-ADP-ribose polymerase 1 (PARP1) binds direc-
tly to the murine Kras gene promoter and thus upregulates
Kras expression and Kras signalling [18].
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Kras: structure and activation.

(A) The Kras gene. Mutations in human tumours occur most
commonly in codons 12 or 13 but mutations in codons 61 and 146
have been described.

(B) Kras activation. Following the activation of a receptor tyrosine
kinase (RTK), a complex containing the activated receptor, GRB2
(growth factor receptor-bound protein 2) and Sos (son of seven-
less) is formed on the cytosolic face of the cell membrane. Binding
of Sos to Kras-GDP leads to a conformational change of the switch
1 and 2 regions, thereby mediating the exchange of GDP for GTP.
This triggers a second conformational change that allows Ras-GTP
to bind to and activate Raf. In wild-type Kras (top panel), signalling
is terminated by hydrolysis of GTP to GDP. In mutated Kras (bottom
panel), the GTPase activity of Kras is severely impaired, making
hydrolysis of GTP and termination of signalling impossible.

GEF = GTP exchange factor.

GAP = GTPase activating proteins.
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Kras in the adenoma-carcinoma
sequence

In patients with adenocarcinomas of the colon or the
rectum Kras is mutated in about 30-60% of the cases. The
frequency of Kras mutations does not depend on the TNM
or Dukes stage of the carcinoma and the same mutation
rate is found in familial colorectal cancer. Compared with
carcinomas, approximately the same fraction of adenomas
larger than 1 cm also harbour Kras mutations, whereas the
rate drops to 10-15% in adenomas smaller than 1 cm. This
underlines the notion that Kras is involved in carcinogen-
esis and that Kras mutation is an early event in colorectal
cancer [19].

Many studies have investigated the concordance
between Kras mutations in the primary tumour and in re-
lated metastases. Concordance has been found to range
between 68 and 100%, and recent data indicate that it prob-
ably lies between 92 and 96% in an unselected popula-
tion of patients with metastatic colorectal cancer [20-27].
However, metachronous single or multiple mutations of
Kras in metastases from Kras-wild-type primary tumours
have been reported and may, in some instances, account
for acquired resistance against anti-EGFR-antibody ther-

apy [28].

Kras in tumour progression and
metastasis formation

Kras is a central player in intracellular signalling (fig. 2).
It may be activated by the EGF receptor or possibly other
receptor tyrosine kinases. Through interaction with phos-
phatidylinositol-3 kinase (PI3K) and activation of the
downstream effectors such as mammalian target of rapa-
mycin (mTOR), Kras indirectly modulates cell survival.
Through the Braf/mitogen-activated kinase (MAPK) path-
way it also influences cell proliferation (reviewed by [29]).

Whereas the relevance of Kras mutations in the patho-
genesis of colorectal cancer is undisputed, the data regard-
ing the role of Kras in tumour progression are conflict-
ing. On the one hand, the frequency of Kras mutations has
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Figure 2

Principal signalling pathways activated by the EGF receptor.
Activated EGF receptors dimerise and start signalling through the
PI3K-AKT/PKB-mTOR and the Kras-Braf-MEK pathway. Activation
of Kras and Braf triggers not only MAPK signalling but also MAPK-
independent signal transduction.
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been reported to be independent of the tumour stage [19].
On the other hand, in a Spanish cohort of 230 patients the
mutation rate of Kras in the primary tumour was 35% if no
lung metastases were present, while the probability of Kras
mutations increased to 57% in patients with lung meta-
stases [20]. In an American study including patients with
colorectal cancer and liver metastases, the presence of Kras
mutations in the metastases was an independent predictor
of poor survival after resection of liver metastases [30].

Preclinical data indicate that there are different mech-
anisms through which Kras may promote tumour progres-
sion and metastasis formation. Not surprisingly, oncogenic
Ras can promote tumour cell proliferation through Braf and
mitogen-activated protein kinase kinase (MEK) signalling
(fig. 2) [31]. Nevertheless, the extent to which neoplastic
proliferation occurs is dependent on the cellular context
[32]. Interestingly, in colorectal cancer cell lines and mouse
intestinal epithelial cells, Kras, Braf and MEK signalling
do not necessarily lead to MAPK activation. It therefore
seems probable that oncogenic Kras, Braf and MEK sig-
nalling occurs, at least in part, through MAPK-independent
pathways [33] (fig. 2).

Although the preclinical data are quite robust, it is less
appreciated that mutant Ras is also capable of stimulating
angiogenesis through induction of interleukin-8 (IL-8) syn-
thesis [34]. Expression of mutant Kras in murine fibro-
blasts is sufficient to up-regulate genes involved in pro-
liferation and angiogenesis [35]. Finally, activated Kras
inhibits DNA repair-related genes in colonic crypts in a
3-dimensional culture system [36]. One can easily imagine
that the combination of tumour cell proliferation, induction
of angiogenesis and inhibition of DNA repair is a potent
mechanism for enhancement of tumour progression and
metastasis. However, in contrast to these preclinical results,
available clinical data are somewhat less convincing and
further studies are warranted.

Detection of Kras mutations in
patients

The guidelines of the American Society of Clinical On-
cology (ASCO) state that all patients with metastatic
colorectal cancer who are candidates for anti-EGFR-anti-
body therapy should be tested for Kras mutations in the tu-
mours. If a mutation is detected in codons 12 or 13, these
patients should not receive anti-EGFR antibodies as part
of their treatment [14]. Analysis of the primary tumour
for Kras mutations seems sufficient, since the concordance
between Kras mutations in the primary tumour and muta-
tions in related metastases is very high [20]. Kras mutations
can be detected in formalin-fixed surgical or biopsy tumour
samples embedded in paraffin [37]. If paraffin-embedded
samples are not available, Kras testing may be performed
on cytological specimen. In a small study with 19 patients,
concordance between formalin-fixed paraffin-embedded
samples and cytological samples was 18/19 [38]. In another
study of 76 patients, Kras mutations were detected in circu-
lating tumour cells isolated from peripheral blood in 30 out
of 33 patients with Kras mutations in the primary tumour
[39]. Detection of mutant DNA in the peripheral blood can
be used not only to search for Kras mutations, it is also
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a useful tool to monitor tumour dynamics in patients with
colorectal cancer [40]. Mutations in the DNA of colorectal
cancers, including mutant Kras, can also be detected in
stool. In a clinical study, 23 of the 25 stool DNA samples
analysed contained mutations that were present in the cor-
responding tumours from the same patients [41]. However,
from a clinical perspective determination of Kras mutations
in the primary tumour remains the most reliable technique
and should therefore be considered the standard procedure
for the time being.

Kras mutation as a biomarker
predicting response to anti-EGFR-
antibody therapy

Several targeted therapies against EGFR signalling activ-
ities have been established. Cetuximab is a human/mouse
chimaeric IgG1 monoclonal antibody that binds to the ex-
tracellular domain of the EGFR and inhibits EGFR-medi-
ated signalling [42]. Panitumumab is a fully human IgG2
monoclonal antibody targeting EGFR (reviewed by [43]).
Initial evaluation of cetuximab as monotherapy in patients
with EGFR-expressing chemotherapy-refractory tumours
yielded response rates of approximately 10%. Detection of
EGFR expression by immunohistochemistry was not suf-
ficient to predict response to EGFR blocking antibodies.
Hence, based on the knowledge of EGFR signalling, down-
stream effectors of the EGFR pathway have been invest-
igated as potential surrogate markers of cetuximab therapy
response. Activating mutations of Kras induce constitutive
Kras-Braf-MEK signalling, which cannot be suppressed by
inhibition of EGFR. Thus, one of the first surrogate mark-
ers to be investigated was Kras [44]. In a well-designed
study, Karapetis et al. have shown that patients with activ-
ating Kras mutations did not benefit from anti-EGFR-an-
tibody therapy [45]. In this trial, 572 patients with meta-
static colorectal cancer were randomly assigned to either
cetuximab plus best supportive care or best supportive care
alone. Cetuximab was given in a dose of 400 mg/m? at day
one and then weekly in a dose of 250 mg/m?. Cetuxim-
ab was continued until disease progression or until the pa-
tient could not tolerate the toxic effects. 394 patients were
retrospectively evaluated for Kras mutational status. In pa-
tients with wild-type Kras the median survival on cetux-
imab monotherapy in comparison to best supportive care
was increased from 4.8 to 9.5 months, whereas there was
no difference in overall survival in patients with activating
Kras mutations [45]. Based on this study, anti-EGFR-anti-
body therapy has been approved in patients suffering from
metastatic colorectal cancer with unmutated Kras. Combin-
ing the cytotoxic agents irinotecan or oxaliplatin with anti-
EGFR-antibodies in metastatic colorectal cancer is only ef-
fective in Kras-wild-type tumours, a notion that has been
confirmed by a further analysis of the data obtained from
the CRYSTAL and OPUS trials [46—48]. Importantly, re-
cent data have raised concern about a possible detriment-
al effect of anti-EGFR-antibody therapy in Kras-mutated
colorectal cancer. In the PRIME trial, patients received
either Folfox or Folfox plus panitumumab as first line ther-
apy for metastatic cancer. Patients with wild-type Kras had
better progression-free survival (PFS) if treated with pan-
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itumumab, yet PFS was inferior if patients with mutated
Kras received anti-EGFR-antibody therapy in addition to
Folfox [49]. This underlines the necessity of timely Kras
testing in colorectal cancer. Taken together, there is sound
clinical evidence in favour of anti-EGFR-antibody therapy
in wild-type Kras colorectal cancer. However, in the light
of new data from recent studies such as the British COIN
trial, the efficacy of anti-EGFR-antibody therapy may vary
according to the type, schedule and administration route of
the accompanying chemotherapy [50].

Although Kras mutations are clearly predictive for re-
sponse to anti-EGFR-antibody therapy, there are conflict-
ing results concerning their prognostic relevance in early
and advanced colorectal cancer. Recent data indicate that
Kras mutations do not influence prognosis [51]. In addi-
tion, Kras mutations do not predict response to treatment
with oxaliplatin or irinotecan [52].

In summary, anti-EGFR-therapy improves OS in pa-
tients with metastatic colorectal cancer and wild-type Kras.
Testing is necessary, since anti-EGFR-therapy in patients
with mutated Kras may not only be ineffective but also det-
rimental.

Other biomarkers predicting response
to anti-EGFR-antibodies

Kras mutations account for 30-40% of colorectal cancer
patients who are not responsive to anti-EGFR-antibody
therapy. This finding has motivated a search for other com-
ponents of the MAPK or the PI3K pathway that might
provide additional predictive information. Braf is a cyto-
plasmatic kinase which is activated immediately down-
stream of Kras and therefore seems to represent a suitable
target when searching for other predictive markers (fig.
2). Notably, mutant Braf V60OE induces constitutive Braf-
MEK signalling, similar to the effect of activating Kras
mutations, and Kras and Braf mutations seem mutually
exclusive [53]. This may be due to reduced survival and
proliferation of cells concomitantly bearing Kras and Braf
mutations. However, combined mutations do occasionally
occur in tumour cells capable of escaping apoptosis, and
these cells may be observed in association with an aggress-
ive, pro-angiogenic tumour phenotype [54]. Braf mutations
occur more often in mismatch repair-deficient cancers, but
mutations in premalignant lesions and mismatch repair-
proficient colorectal tumours have been described as well
[53]. The concordance between Braf status in the primary
tumour and in related metastases is high in wild-type Braf
tumours (>90%), whereas it is low in primary colorectal
cancers with mutated Braf [55].

Braf may be both prognostic and predictive for re-
sponse to treatment with anti-EGFR-antibodies [56].
However, a recent retrospective analysis of pooled data
from the OPUS and CRYSTAL trials does not support the
notion that Braf mutations have a predictive value [57].
However, the sample size in the latter analysis was very
small. Thus, in the absence of reliable prospective data, the
question of Braf mutations and their predictive significance
is unresolved and further studies will be necessary to clari-
fy the issue.
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Whether EGFR gene amplification is a valuable pre-
dictor for a response to anti-EGFR therapy is still fiercely
debated. The conflicting data are probably due to both tech-
nical difficulties in determining the exact copy number and
to confounding factors such as downstream mutations of
the MAPK signalling pathway. A recent study has con-
sidered these factors and has found a weak but statistically
significant correlation between EGFR gene copy number
and response to anti-EGFR-antibody therapy [58].

Mutational analysis of the tumour suppressor gene
PTEN in patients with colorectal cancer has shown that
mutations of PTEN are prognostically relevant. However,
there is still debate as to whether they predict response to
anti-EGFR-antibody therapy [58-60]. Concerning the role
of PI3K, the data are conflicting as to whether mutations
of the catalytic subunit of class 1A PI3K (PIK3CA) have
an impact on tumour response to anti-EGFR-antibody ther-
apy [59, 61]. These contradictory results may at least in
part be due to the fact that we still do not possess a reliable
and readily available test to indicate activation of the EGFR
pathway. In the future this problem may be tackled, for in-
stance, using serum proteomics, thereby identifying clin-
ically significant tumour-dependence on EGFR signalling
[62].

Kras mutations and their impact on
Braf inhibitors

When it became clear that Kras mutations precluded a be-
neficial effect of anti-EGFR-antibodies, attention shifted to
blocking EGFR signalling downstream of Kras, in partic-
ular on the level of Braf. Indeed, first-generation Braf in-
hibitors can suppress proliferation of Braf mutant cell lines
in vitro and in vivo. However, they are unexpectedly inef-
fective against Kras mutant cells and cannot block MAPK/
Erk activation in these cells [63]. Paradoxically, blocking
one ATP-binding site of dimeric Braf stimulates the kinase
activity of the other. This occurs only in cells bearing
mutant Kras and wild-type Braf. However, this is a setting
found in 30-60% of colorectal cancer patients and thus rep-
resents a serious obstacle to successful therapy. Different
mechanisms have been proposed to explain the phenomen-
on but further research is required before the EGFR-in-
duced signalling cascade downstream of Kras can be suc-
cessfully blocked in the clinic [63—-65].

Conclusions

The EGFR signalling pathway is a major player in
colorectal tumourigenesis and tumour progression. Kras
mutations mimic continuous EGFR signalling activation
and thus induce tumour cell proliferation and tumour an-
giogenesis.

All patients with colorectal cancer who may qualify for
anti-EGFR-antibody treatment should be tested for Kras
mutations. Patients with Kras-wild-type tumours benefit
from therapy with anti-EGFR-antibodies, while patients
with mutant Kras do not. In patients with metastasised
colorectal cancer and wild-type Kras, a first line therapy
with Folfox or Folfiri in combination with cetuximab or
panitumumab is a good option. The addition of anti-EGFR-
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antibody therapy to standard Folfox or Folfiri regimens in-
creases response rates, progression-free survival and over-
all survival (OS) in this population. In patients with
mutated Kras, anti-EGFR-antibody therapy should be
avoided. As an alternative, therapy with Folfox or Folfiri in
combination with bevacizumab may be considered.

In the future, we will need better predictive biomarkers
in order to choose the best therapy for the patients, and we
will depend on new therapeutic targets both within and out-
side the setting of EGFR and Kras signalling. However, un-
derstanding Kras is a first and important step towards indi-
vidualised therapy of colorectal cancer.
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