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Summary

Osteoarthritis (OA), also known as degenerative joint dis-
ease, is the most frequent chronic musculoskeletal disease
and the leading cause of disability in elderly persons. There
are currently at least 27 million persons afflicted with OA
in the United States, and the annual cost to society in med-
ical care and wage loss is expected to reach nearly $100
billion dollars by 2020, with consequent increased spend-
ing on its diagnosis and treatment, side effect prevention,
and loss of productivity. Despite this enormous burden,
many aspects of OA are still unknown, with implications
not only in terms of diagnosis and assessment but also with
regard to therapy. Awareness of this state of affairs has
attracted many researchers to this field, making OA one
of the most actively studied sectors of rheumatology. Al-
though some clinicians are unaware of recent advances,
there is a large body of publications indicating that much
has been achieved. Major progress has been made in for-
mulating better definitions of risk factors, in particular in
indicating the responsibility of biomechanical and genet-
ic factors, and, with regard to pathogenesis, underlining
the role of subchondral bone, cytokines and proteinases.
Assessment of OA activity and its progression has been
improved with the advent of biomarkers and new imaging
procedures, in particular sonography and magnetic reson-
ance imaging (MRI), but also of better clinical instruments,
including more reliable patient questionnaires. Information
from ongoing studies may improve the to some extent in-
complete definition of OA phenotypes. Finally, promising
new horizons have been opened up even with regard to the
treatment of OA, which is still for the most part unsatis-
factory except for surgical replacement therapy. Numerous
new substances have been formulated and the findings of
trials studying their effects are encouraging, although much
has yet to be done.
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Introduction

Osteoarthritis (OA) is the most frequent chronic musculo-
skeletal disease and is undoubtedly by far the most com-
mon cause limiting the daily activities of the elderly pop-
ulation [1]. There are currently at least 27 million persons
afflicted with OA in the United States, costing the economy
approximately $60 billion annually [2, 3]. The annual cost
to society in medical care and wage loss due to arthritis is
expected to reach nearly $100 billion dollars by 2020, with
consequent increased spending on diagnosis and therapy,
side effect prevention and lost earnings. At present, approx-
imately 40% of adults aged over 70 suffer from OA of the
knee, of these 80% suffer from limitation in movement and
25% are impaired in carrying out their daily activities [4].
It is also important to underline the synergistic effects of
other conditions coexisting with OA, in particular obesity
and cardiovascular diseases [5, 6].

Despite this enormous burden, OA has not received ad-
equate attention from civil authorities and clinicians, in-
cluding rheumatologists themselves. An increasing number
of researchers have, nevertheless, been attracted to this in
some respects “unpopular” field. The reason for this in-
congruence may at least in part be explained by the pres-
ence in the past of a series of misconceptions such as an
epidemiologic approach for the most part focussing on the
patient’s radiographic profile rather than on clinical char-
acteristics and phenotypes, excessive attendance to tradi-
tional radiographic signs, which in this case often become
evident only late in the disease’s progression, inadequate
exchanges between basic researchers and clinicians on sci-
entific findings and patients’ needs, and limited therapeut-
ic alternatives that have frequently proved disappointing.
Awareness of these inconsistencies may perhaps facilit-
ate the search for untried paths aiming to uncover new
data clarifying unresolved questions such as the role of
risk factors, fostering early diagnosis even in the pre-radi-
ological phase, identifying reliable disease activity indices
and, finally, verifying new therapies. Some of these object-
ives are close to attainment, as demonstrated by numerous
findings published in the literature and outlined in this re-
view.
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Risk factors

OA, classified as primary or idiopathic, usually develops
without known cause. An increasing body of evidence sug-
gests that some risk factors such as genetic predisposition,
age, obesity, female sex, greater bone density, joint laxity,
and excessive mechanical loading may play a part in its de-
velopment. Although age is the most important risk factor
in OA it is still unclear whether it should be considered
an ageing process or a “true” disease, since the former oc-
curs in all members of the population while the latter af-
fects only a limited subset [7, 8]. In addition, despite the
fact that almost all elderly people show radiographic find-
ings of OA, the number of subjects who actually com-
plain of symptoms directly related to the disease is much
lower [9, 10]. Heberden’s nodes are, for example, a case in
point, as few patients complain about their bony hand out-
growths despite the frequency with which radiographic al-
terations of these bone swellings are noted in the general
population. Some investigators have recently voiced con-
jecture regarding the role of genetic factors in determining
longevity and the predisposition to age-associated diseases
including OA [11], while others speculate that some envir-
onmental factors, in particular mechanical factors, may ac-
celerate and accentuate these processes [12].

Genetic predisposition

Genetic predisposition may have an effect on OA in a vari-
ety of ways, by e.g. influencing susceptibility to the dis-
ease, age at onset, progression, subtype and, probably, re-
sponse to treatment. Identifying susceptibility genes may
be useful in helping to explain the disease’s mechanisms,
since it may uncover the primary biological events causing
OA [13].

The familial aggregation of clinical and radiographic
features of OA was first demonstrated in the 1940s by the
classical studies carried out on Heberden’s nodes, and has
since been confirmed, with regard to hand and knee OA, by
several community-based studies [14–17]. A recent analys-
is of x-ray features of hand and knee OA in twins recruited
from a healthy population demonstrated that genetic factors
accounted for between 39% and 65% of the variation in li-
ability to disease at these two sites [18].

With regard to the most important susceptibility genes
recently identified, frizzle-related protein 3 (FRZB) [19]
and asporin (ASPN) [20] are particularly interesting. Stud-
ies carried out in the UK have reported that two single nuc-
leotide polymorphisms (SNP) of FRZB increase the risk
of knee and hip OA in Caucasian women but not in men
[21, 22]. SNP’s role was not confirmed in a Spanish pop-
ulation, in which another SNP tended to be more frequent
in patients with clinical disease in multiple joints, and spe-
cifically in women with hip OA [23, 24]. With regard to
ASPN, its association with knee or hip OA has been ob-
served in the Japanese [20], but not in European popula-
tions [25–28].

Many of the gene defects affecting the formation of the
cartilage matrix and patterning of skeletal elements dur-
ing development result in a variety of congenital cartil-
age dysplasias with Mendelian inheritance, though occur-

ring only very rarely [29]. Interestingly, OA is most often
site-specific in individuals with skeletal dysplasias. Muta-
tions in the type II collagen gene (COL2A1), for example,
cause spondyloepiphyseal dysplasia congenita. Although
this cartilage-specific collagen is the most abundant com-
ponent of articular cartilage in all joints, the OA pheno-
type of the disease is site-specific [30]. Hip OA is very
severe, spine and knee OA is moderately severe, but the
hand is normal. Mutations in COMP (cartilage oligomeric
matrix protein), another abundant component of articular/
epiphyseal cartilage, cause early, severe OA but the spine
and peripheral joints are unaffected [31]. The adverse ef-
fects of joint malalignment and congruity in these patients
may contribute to the possible loss of articular cartilage and
in some cases early OA onset [29–31].

Genetic predisposition may also influence the type of
reactivity of some innate functions involved in the inflam-
matory response. Botha-Scheepers et al. have demonstrated
that joint space narrowing (JSN) was present 24 months
after baseline in 33.7% of symptomatic patients with knee
OA [32]. After stimulation of whole blood samples with
lipopolysaccharide (LPS) it was found that patients in the
highest quartile of tumour necrosis factor (TNF)α produc-
tion had a sixfold increased risk while patients in the
highest quartile of interleukin (IL)-10 production had a
fourfold increased risk of JSN progression, as compared,
in both cases, with values in patients in the lowest quartile
[32]. No significant associations were found between vari-
ations in IL-1β and IL-1Ra production and JSN progres-
sion. The innate capacity to produce TNFα and IL-10 upon
LPS stimulation is thus associated with radiological pro-
gression of knee OA, even over a relatively short follow-up
period of 2 years. Another study by the same group pro-
duced similar results. In the Genetics of Osteoarthritis and
Progression (GARP) study, the role of the C-reactive pro-
tein (CRP) gene in hand OA (HOA) was evaluated by de-
termining serum levels of CRP using a high sensitivity (hs)
method and assessing genetic variations of the CRP gene
by genotyping five tagging SNPs [33]. A haplotype of the
CRP gene, linked to a high basal hsCRP level, was asso-
ciated with severe HOA, indicating that innate high basal
serum-hsCRP levels may influence OA onset and severity
[33].

Another interesting study by Stern et al. supports the
hypothesis of a genetic association between erosive hand
OA (EHOA), a severe subtype of hand OA, and an SNP on
gene encoding IL-1β [35].

Biomechanical reactivity

Biomechanics is the term commonly used in OA to define
the biochemical reaction to mechanical stimuli, a process
considered crucial for the disease’s modern pathogenesis.
Joint structures are organised for functions essentially re-
lated to joint motion, including load transfer across the
joint. Thus, while “normal” loading is useful and necessary
to stimulate physiological changes of joint structures, “ab-
normal” loading, especially during activity, may accelerate
the disease’s onset and progression [36, 37]. The biological
events induced by mechanical factors may destabilise the
normal coupling of degradation and synthesis of articular
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cartilage chondrocytes, extracellular matrix and subchon-
dral bone. Several studies have demonstrated that some
mechanical joint derangements due to meniscectomy or
anterior cruciate ligament injuries may dramatically in-
crease the incidence and progression of knee OA [36, 37].
However, just as with age, these events occur only in some
subjects who are probably predisposed. Clarifying the rela-
tionship between mechanical injuries and the development
of articular cartilage abnormalities can be considered one
of the major challenges facing modern rheumatological re-
search.

Chondrocytes are programmed to respond to direct bio-
mechanical perturbation and act as “mechanosensors” by
means of specific sensitive receptors, many of which bind
to extracellular matrix (ECM) components [38, 39] (fig. 1).
The best studied are the integrins, which act as receptors
for fibronectin (FN), and type II collagen fragments
[38–40]. Activation of these receptors can stimulate the
production of inflammatory cytokines, chemokines, and
matrix-degrading proteinases, mainly metalloproteinases
(MMP)s [40]. In a physiological setting integrins modulate
cell /ECM signalling, which is essential in regulating
growth and differentiation as well as in maintaining cartil-
age homeostasis. Abnormal integrin expression during dis-
ease activity may alter cell /ECM signalling and modify
chondrocyte synthesis activity with subsequent imbalance
of destructive or catabolic cytokines over regulatory factors
and/or anti-inflammatory or anabolic cytokines [41]. “Ab-
normal” mechanical loading stimulates depletion of pro-
teoglycans, damages the collagen network and reduces the
synthesis of cartilage matrix proteins [42]. In response to
traumatic injury global gene expression is activated, result-
ing in increased expression of inflammatory mediators, in-
cluding that of cytokines and proteinases [38–42].

Cytokines, growth factors and
metalloproteinases

Cytokines, involved in cell-cell interactions, are hormone-
like proteins that regulate the intensity and duration of
the immune response [43]. Cytokines and growth factors
involved in OA may be released from different cellular
sources, such as chondrocytes, synovial cells or osteocytes.

It is almost certain that cytokines are involved in OA de-
velopment and progression, and that blocking cytokines is
useful in protecting cartilage from damage [44–46].

IL-1 and TNF are the most important and best studied
cytokines in OA. IL-1, released either by the synovium [47]
or the chondrocytes [48], could stimulate the latter to pro-
duce most or all of the proteinases involved in cartilage
destruction [49, 50]. TNFα and IL-1 may also inhibit the
synthesis of proteoglycans and type II collagen [51, 52].
Chondrocytes in OA cartilage express IL-1, IL-1β convert-
ing enzyme (caspase-1) and type 1 IL-1 receptor (IL-1RI)
[38]. In turn, IL-1 synthesised by chondrocytes may be able
to induce the expression of MMPs and aggrecanases [51,
52], the synthesis of prostaglandin E2 (PGE2) [53, 54] and
the production of nitric oxide (NO) via inducible NO syn-
thetase (iNOS, or NOS2) [48,55, 56]. IL-1β also induces
other proinflammatory cytokines such as IL-6, leukaemia
inhibitory factor (LIF), IL-17, and IL-18 and chemokines,
including IL-8 [38, 57]. IL-6 plays an important role in in-
fluencing cartilage metabolism. When Guerne et al. ana-
lysed the effects of IL-6 on proteoglycan synthesis by hu-
man articular chondrocytes in the presence of sIL-6R [58],
they found that sIL-6R potentiates the inhibitory effect of
IL-6 on proteoglycan synthesis by articular chondrocytes,
but the overall effect of IL-6 + IL-6sR is moderate com-
pared to that of IL-1 [58].

Table 1

Most relevant biomarkers in osteoarthritits.

Figure 1

Chondrocyte changes induced by mechanical stress. Chondrocytes can respond to direct
biomechanical perturbation by increasing expression of inflammatory mediators, including
cytokines and proteinases, and stress response factors. Chondrocytes have receptors for
responding to mechanical stimulation (mechanoreceptors), many of which are also
receptors for extracellular matrix (ECM) components, including: integrins, a receptor for
fibronectin and type II collagen fragments; discoidin domain receptor-2 (DDR-2), a
receptor of native II collagen fibrils; annexin-V, a receptor of collagen II fragments. All
these receptors interacts with intracellular signaling molecules to transduce mechanical
signals into biochemical responses which lead to a production of number of
proinflammatory substances, including cytokines, proteolytic enzymes, NO and PGE2.
The most important among these intracellular signal cascades are NF-kB and MAPK

pathways. The MAPK family, which include p38, Erk 1 and 2, and JNK, is of critical importance for cell survival, cell differentiation, and
chondrogenesis. Other interesting ways stimulated by mechanical forces are the stretch-activated ion channels (SACs), which are believed to
respond to membrane tension, interacting with integrins and leading to an elevation of intracellular calcium. This may stimulate mitochondria to
release AIF and cytochrome c, which in turn activate pro-caspases 9 and 3 to produce caspase 9 and capsase 3, involved in chondrocyte
apoptosis. To this process may also contributes calpains, a family of proteolytic enzymes stimulated by the rise in cytoplasmatic calcium from
the ERG and mitochondria.
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Cytokines involved in cartilage metabolism can be
grouped into three categories: catabolic cytokines, which
include IL-1β, TNFα, IL-17, and IL-18; inhibitory cy-
tokines, which include IL-4, IL-10, IL-11, IL-13, IL-1 re-
ceptor antagonist, and interferon-γ; and anabolic cytokines,
which comprise insulin-like growth factor 1, TGFβ1,
TGFβ2, TGFβ3, fibroblast growth factor (FGF)-2, FGF-4,
FGF-8, BMP-2, BMP-4, BMP-6, BMP-7, BMP-9, and
BMP-13 [46].

Cytokines synergise with one another in normal joint
tissues in maintaining a perfectly balanced network [59].
An imbalance in this system could have important implica-
tions for the pathogenesis of most arthropathies, including
OA [60, 61]. In this context the role of subchondral bone
region, in combination with or independently of the synovi-
al membrane, which represents the most abundant source
of cytokines in OA, seems increasingly relevant [62, 63].

As underlined above, the most relevant destructive ef-
fects of cytokines on the cartilage are mediated by MMPs,
including ADAMTS (a disintegrin and metalloproteinase
with thrombospondin motifs) [64–68]. Among the mem-
bers of the MMP family relevant roles are played by
MMP-13, involved in the degradation of collagen type II in
OA cartilage [67], and by ADAMTS4 and ADAMTS5, be-
lieved to be key proteases in the degradation of aggrecans
[69, 70].

Adipokines

The term “adipokine” is generally applied to biologically
active substances found in the adipocytes of white adipose
tissue (WAT), although they may be synthesised at other
sites too [71]. Adipokines include a variety of pro-inflam-
matory peptides or cytokines which contribute to the “low-
grade inflammatory state” of obese subjects [72, 73]. The
best known of this family are leptin, adiponectin and res-
istin. Leptin is a 16 kDa non-glycosylated peptide hormone
belonging to the class I cytokine superfamily chiefly pro-
duced by adipocytes [74]. Leptin can be considered a
cytokine-like hormone with pleiotropic actions exerting
biological influences by binding to its receptors [75]. Lept-
in is able to modulate cells involved in immune/inflammat-
ory reactions, including monocytes/macrophages, neutro-
phils, dendritic cells and T-cells [76]. Leptin production is
much higher in OA human cartilage than in normal car-
tilage [77]. The finding that administration of exogenous
leptin increases IGF1 and TGFβ1 pro-duction by rat knee-
joint cartilage has suggested that high circulating leptin
levels in obese individuals may protect cartilage from de-
generation [77]. Under pathological conditions, however,
control of matrix homeostasis by chondrocytes in the joint
is lost. In cultured human and murine chondrocytes, NOS2
activation by IL-1 is increased by leptin via a mechanism
involving JAK2, PI3K, MEK1 and p38 [78]. It has recently
been demonstrated that leptin is also able to induce syn-
thesis of relevant MMPs involved in cartilage damage,
such as MMP9 and MMP13 [79].

Adiponectin is produced largely by WAT and has struc-
tural homology with collagens VIII and X and complement
factor C1q [80]. Adiponectin acts via two receptors, one
(AdipoR1) found predominantly in skeletal muscle and the

other (AdipoR2) in the liver [81]. Adiponectin has a wide
range of effects in immune and inflammatory diseases and
exerts relevant actions on innate and adaptive immunity
[71]. In contrast to a “protective” role against obesity and
vascular diseases, it seems that in skeletal joints adipon-
ectin may be proinflammatory and involved in matrix de-
gradation [79]. Chondrocytes present functional adiponec-
tin receptors, activation of which leads to the induction of
NOS2 via a signalling pathway involving PI3 kinase; and
adiponectin-treated chondrocytes similarly increase IL-6,
TNF and MCP1 (monocyte chemotactic protein 1) synthes-
is [82].

Resistin is a dimeric protein that received its name from
its apparent induction of insulin resistance in mice, thus
providing a possible link between obesity and insulin res-
istance [83]. Levels of both resistin and leptin are elev-
ated in obese individuals. Resistin is produced by WAT and
monocyte/macrophages, but also by cartilage itself, and is
a very powerful proinflammatory cytokine, increasing pro-
duction of IL-1, TNF-α, and various chemokines [84]. Fol-
lowing traumatic joint injury, resistin levels are increased,
causing matrix degradation and release of inflammatory
cytokines from articular cartilage [85].

Serum levels of adiponectin and resistin were recently
measured in 48 women with erosive HOA (EHOA), 27
with non-EHOA and 20 without HOA as controls [86].
Adiponectin but not resistin were significantly higher in
EHOA than in non-EHOA or healthy controls. Both
adiponectin and resistin neither correlated with the levels
of CRP nor were related to Body Mass Index, thus suggest-
ing that adiponectin may play a role in the pathophysiology
of the erosive subset of HOA [86].

Subchondral bone

An increasing body of evidence shows that subchondral
bone is actively involved in the pathogenesis of OA
through several possible mechanisms, including a defect in
its role as a shock absorber; abnormal osteocyte function;
increased production of bone-derived products, cytokines,
and MMPs [38, 62, 63]. It is still unclear whether changes
occurring in subchondral bone precede or follow OA onset.
In any case, it is possible that a crucial role is played by
the vascular invasion of bone marrow tissue into this region
[87]. In agreement with this, it has been seen that concen-
trations of some inflammatory cytokines such as IL-1, TNF
and IL-6 are significantly upregulated, supporting the hy-
pothesis that vascularised subchondral plates may increase
the synthesis of cytokines and proteolytic enzymes, thereby
contributing to the degradation of adjacent hyaline cartil-
age [88].

The importance of angiogenesis in OA has recently
been discussed in detail [89]. Angiogenesis and inflamma-
tion are closely integrated processes in OA and may af-
fect disease progression and pain. Angiogenesis may pro-
mote chondrocyte hypertrophy and endochondral ossifica-
tion, contributing to radiographic changes in the joint. In
association with inflammation it may sensitise nerves and
thus increase pain. Innervation may also accompany vas-
cularisation of the articular cartilage, where compressive
forces and hypoxia may stimulate these new nerves.
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Several experiments have demonstrated that inadequate
fluid flow round osteocytes may result in osteocyte apop-
tosis, attraction of osteoclasts and excavation of the nonvi-
able bone [90, 91]. In some cases partial or total collapse of
subchondral bone may take place, as can be seen in avascu-
lar necrosis (AVN) [87, 92]. Subchondral bone ischaemia
may be crucial to OA development in several ways, first of
all by blocking the nutrient and oxygen supply, usually fur-
nished by the dense subchondral vasculature in close prox-
imity to the cartilage, and via microchannels that penetrate
the subchondral mineralisation zone, permitting commu-
nication between bone and cartilage [87].

These events at the subchondral bone level are clearly
demonstrated by high resolution magnetic resonance ima-
ging (MRI) of the joints. Bright areas of subchondral bone
on MRI, commonly observed in both early and established
OA and in individuals with painful joints [93], probably
correspond to areas of bone marrow-like oedema lesions
(BMLOL), occurring idiopathically or in response to bone
trauma [93]. Longitudinal studies have shown that BMLOL
are an important risk factor for structural deterioration in
knee OA [94–96]. It has recently been shown that subchon-
dral cysts, characteristic of established and severe OA, de-
velop in preexisting regions of subchondral BMLOL [97].
While BMLOL’s origin is unknown, it may be secondary
to ischaemic episodes perhaps exacerbated by reperfusion
injuries [98, 99].

Biomarkers

Molecular markers in OA have been the object of growing
attention due to their potential usefulness in formulating
early diagnosis, in assessing disease activity and severity
and in evaluating drug effects [100]. In this respect, bio-
chemical markers or biomarkers are ideal, as they are non-
invasive and inexpensive measures [101]. The NIH-funded
Biomarkers Network, a multidisciplinary group interested
in the development and validation of biomarkers, has re-
cently proposed the “Burden of Disease, Investigative, Pro-
gnostic, Efficacy of Intervention and Diagnostic” (BIPED)
biomarker classification [102]. It may be concluded,
however, that although a great number of substances are
continually proposed, only a few can be considered true
OA “disease markers” [100–108].

Until now no biomarkers appear to have been able to
assist in OA disease diagnosis in the preradiological stages,
but with the recent introduction of highly sensitive (hs) im-
munoassays, a growing number of studies have suggested
that CRP may be a marker of OA activity and severity
[106]. It would seem that higher CRP levels may predict
worse disease outcomes over the next four years [109].

It has been observed that serum hsCRP levels are high-
er in patients with EHOA than in non-EHOA patients
[110]. This probably reflects disease activity rather than
subtype, since hsCRP levels correlate with clinical activity
scores [110]. As MMPs are particularly involved in cartil-
age degradation, their levels or activities have been invest-
igated in an attempt to obtain information concerning OA
severity or progression [111]. The most abundant MMP
both in serum and SF is MMP-3 [111, 112]. It has been

hypothesised that pro-matrix MMP-3 acts as a marker for
posttraumatic cartilage degradation [113, 114].

The molecular markers most useful in identifying car-
tilage synthesis or degradation originate from different ar-
ticular sources such as cartilage, bone and synovial tissue
[101, 102]. Serum hyaluronan (HA), a marker of synovial
proliferation and hyperactivity, appears to reflect OA pro-
gression [115, 116]. Other interesting biochemical markers
are serum keratin sulphate (KS), COMP, YKL-40, and ur-
inary C-terminal crosslinking telopeptides of collagen
types I and II (uCTX-II) [106]. COMP concentrations in
synovial lavage fluids as well as in serum are an early in-
dicator of radiographic progression at follow-up [117–119].
It has also been seen that COMP is the most sensitive test
for identifying subjects affected with the genetic form of
premature OA [120, 121]. In the ECHODIAH study, per-
formed by French investigators to determine whether sys-
temic markers of bone, cartilage, and synovium can predict
structural progression of hip OA, 10 markers were eval-
uated: N-propeptides of collagen types I and III, COMP,
YKL-40, HA, MMP-1 and MMP-3, CRP and urinary C-
terminal crosslinking telopeptides of collagen types I and
II (uCTX-II) [122]. Combined measurements of uCTX-II
and sHA were found to be the best predictor of structural
progression in hip OA [122]. Coll 2-1 and Coll 2-1 NO2,
new serum biochemical markers, have recently been used
to study oxidative-related type II collagen network degrad-
ation in patients with OA and RA [123]. No relationship
was found between radiological OA severity and serum
levels of these markers, but, interestingly, Coll 2-1NO2
was correlated with CRP in the sera of OA and RA patients
[123]. Coll 2-1, Coll 2-1NO2 and myeloperoxydase (MPO)
were all higher in the serum of patients with EHOA than in
that of non-EHOA subjects, although only the rise in MPO
was significant [124]. In another study, Col 2-3/4C epitope
levels were higher in the EHOA patients than in the nodal
non-EHOA subjects and controls [125].

Phenotyping osteoarthritis

In their daily practice clinicians are no doubt frustrated by
the bulk of basic research activities concerning OA com-
pared with the few products really available for their pa-
tients. The task of clearly defining markers that can be
used for early preradiological diagnoses and assessment
of disease activity or progression is, on the other hand,
quite arduous in the absence of a well-established clinical
definition. It must be said that much effort continues to be
expended in improving the quality of clinical observation.

In this context an important step was taken by the
American College of Rheumatology in establishing criteria
for diagnosis and classification of OA with emphasis on the
role of pain [126]. Since that time constant advances have
been made in the assessment of symptoms and signs, facil-
itating early diagnoses and, at times, identification of a sub-
type or variant not yet detectable by means of radiographic
or laboratory findings. EHOA, for example, can be iden-
tified by assessment of clinical features even before x-ray
identification is possible. In fact, this subtype of hand OA
is characterised clinically by frequent inflammatory epis-
odes at times persisting for years and, at times, involving
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several joints simultaneously [127]. By contrast, flares of
nodal HOA occur chiefly at the onset of each joint’s in-
volvement, in a “stuttering” onset polyarthropathy of distal
interphalangeal (DIP)s and proximal interphalangeal (PIP)s
resembling a “monoarthritis multiplex” [127]. Typically,
the patient develops discomfort followed by swelling of a
single interphalangeal joint, later involving another IP joint
and then another, producing the “stuttering onset” of pol-
yarthritis of distal and proximal IP joints. Instability and
ankylosis of IP joints are, moreover, almost always a fea-
ture only of EHOA [128]. Since EHOA is commonly de-
tected by MRI [129], in future the criteria defining EHOA
will probably also include specific clinical features in addi-
tion to erosion [130].

In keeping with the idea that the modern approach
to OA should include adequate evaluation of affected pa-
tients, advancement in disease assessment has been ob-
tained by the use of reliable questionnaires, in particular
those evaluating quality of life, function pain and radio-
graphic progression [131–133]. Under the auspices of the
OARSI (Osteoarthritis Research Society International) and
the OMERACT (Outcome Measures in Rheumatology
Clinical Trials) initiative, an international working group
was recently set up to define the theoretical requirements
for total joint replacement in knee and hip OA for use by
clinical trials evaluating potential disease-modifying drugs
[134]. It was their decision that the domains of pain, phys-
ical function and joint structure on x-rays would be com-
bined as a surrogate measure of outcome [135, 136].

High scores on self-reported health-related quality of
life (HRQOL) questionnaires have been found to be asso-
ciated with higher odds of visiting a physician, using anal-
gesics or nonsteroidal anti-inflammatory drugs (NSAIDs),
and having had arthroplasty [137]. The relationship
between mental health and physical disability is a complex
problem particular to OA. It has been demonstrated that
the depression commonly found in older persons is asso-
ciated with functional disability [138], and that depression
and pain are more important predictors of disability than
radiographic evidence of degenerative joint alterations in
patients with hip or knee OA [139]. It has also been ob-
served that treatment for depression, e.g. antidepressants
and/or psychotherapy, may reduce pain and improve func-
tional status and quality of life in older patients with OA
[140].

It is to be hoped that the availability of these new tools
will help to differentiate OA subtypes and improve health
professionals’ attitude to their patients.

Future therapeutic strategies

One of the most frequent complaints by clinicians treating
OA patients is their frustration with the ineffectiveness of
the therapeutic tools that are available. As underlined by
recent recommendations, one of the reasons for this state
of affairs is probably the lack of a global OA management
strategy [141–145]. There is no doubt that, with respect to
other rheumatic diseases, pharmacological treatment of OA
is the least satisfactory. Advances in surgical treatment are
much more evident, with regard not only to joint replace-
ment but also to tissue engineering, so-called “biosurgery”

[146–147]. These have been linked to space-filling mater-
ials, also known as scaffolds, capable of regenerating or
repairing cartilage [148]. Cell transplantation has not yet
been attempted in the treatment of OA.

Just as in other types of arthritis, and bearing in mind
the importance of genetic predisposition, even gene therapy
could be a powerful tool for the future. However, it is un-
likely that in future strategies modification of relevant gene
mutations can be used to treat OA. A more realistic ap-
proach may be to try modifying the synovium or subchon-
dral bone to enhance synthesis of the cartilaginous matrix,
inhibit its breakdown, or a combination of the two
[149–151]. Unfortunately, all the results currently available
concern either animal models or in vitro studies, since no
human clinical gene therapy trials have been implemented.

A number of ongoing trials are exploring the use of an-
ticytokine therapy. Three strategies currently targeting the
activities of catabolic cytokines include: inhibiting the pro-
teinases that degrade cartilage matrix proteins [152], sup-
pressing cytokine-induced signalling pathways [153, 154]
and inhibiting chondrocyte apoptosis using inducible NO
synthase or caspase inhibitors [155]. As several proteinases
involved in OA share overlapping substrate specificities
and structural epitopes, some proteinase inhibitors appear
to be effective in both animal models and human clinical
trials [156]. Krezski et al. have, however, recently reported
that PG-116800, the MMP inhibitor, is not only ineffective
in modifying the matrix structure in OA patients but seems
to provoke numerous musculoskeletal adverse effects
[157]. Strategies to suppress cytokine-induced signalling
pathways include: cytokine neutralisation, receptor block-
ade, inhibition of cytokine processing, inhibition of cy-
tokine synthesis or action, and combined therapies [44,
158].

In ongoing trials drug administration is primarily
through oral and infusion therapy and is only rarely in-
traarticular. It is possible that some factors may limit the
efficacy of anti-cytokine drugs administered by this latter
pathway, including a shorter half-life. This is probably the
reason why anakinra, the IL-1 receptor antagonist, was
found to be effective in modifying disease progression in
animal models [159, 160] and in a 12-week open-label
study on symptomatic human knee OA [161], but caused
no statistical improvement over placebo after one month
in a follow-up controlled trial [162]. In a prospective ran-
domised controlled trial autologous interleukin-1 receptor
antagonists were however found to improve function and
symptoms in OA patients compared to placebo [163].

The intraarticular pathway has in any case proven to
be a satisfactory tool for patients and physicians alike, as
demonstrated by the fact that, together with hyaluronate
derivatives, it has won worldwide popularity [164–168].
Many pharmaceutical companies are in fact anxious to ac-
celerate research in this area, as demonstrated by the many
interesting products now being tested in animals and in
phase I human trials.
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