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Principles: The evaluation of the capacity of a
country’s public health system in case of an in-
fluenza pandemic is essential for preparedness
planning. Only a few studies have compared exist-
ing medical resources with those required during
a severe pandemic.

Methods: A sensitivity analysis was performed
with the freely available simulation tool InfluSim
to explore the expected number of outpatient vis-
its and the hospital bed occupancy in an influenza
pandemic in Switzerland. Plausible ranges were
defined for unknown parameter values and ran-
dom samples were taken from these ranges. A set
of four simulations were run for each parameter
constellation, considering no intervention, con-
tact reduction, antiviral treatment or a combina-
tion of both interventions.

Results: It was found that the peak number of
outpatient visits of influenza patients would still

be manageable with the current number of active
physicians with practices in Switzerland, and that
the demand of hospital beds would only be sus-
tainable in the case of mild pandemics and a good
compliance of the combined interventions. In a
severe pandemic, the demand on intensive care
unit beds would be unsustainably high.

Conclusions: The range of outcomes, resulting
from parameter uncertainty, reaches from out-
patient and hospitalization values which are half
as high as the median to values which double the
median. Pandemic preparedness plans would
profit from having into account the severity of the
outbreak and the efficacy of the interventions in
their protocols.
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Summary

The evaluation of the capacity of a country’s
public health system in case of an influenza pan-
demic is essential for preparedness planning. It
has frequently been stated that an influenza pan-
demic may over-tax the health system’s capacity
for ambulant and stationary care of patients [1–3].
Some studies have compared existing medical re-
sources with those required during a pandemic.
These studies use static models which do not ac-
count for uncertainty in the parameter values, but
consider a few fixed values for attack rates, hospi-
talization rates and mortality rates [4–10]. Only
van Genugten & Heijnen (2004), Menon et al.

(2005) and Nap et al. (2007) consider therapeutic
use of neuraminidase inhibitors. As pharmaceuti-
cal and non-pharmaceutical interventions influ-
ence the course of a pandemic wave, it must be
evaluated whether they can lower the burden of
the public health system to a supportable level.
Such an evaluation is paramount for appropriate
contingency planning. However, a major diffi-
culty in this evaluation arises from the uncertainty
of how contagious and pathogenic a yet unknown
influenza strain will be. To address this problem,
plausible ranges were defined for the yet un-
known parameter values and normally distributed
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random samples were taken from these ranges.
For each combination of sampled parameter val-
ues, the course of the pandemic wave was simu-
lated, using the freely available program InfluSim
[11, 12]. Therefore a whole range of plausible in-
fluenza pandemics were generated, for which the

number of persons seeking medical help or need-
ing hospitalization was evaluated. Simulations
were performed with and without interventions
and differences were calculated for each set of pa-
rameter values to evaluate the intervention ef-
fects.
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Material and methods

The freely available simulation tool InfluSim ver-
sion 2.1 (http://www.influsim.info) was used, a determin-
istic compartment model based on a system of over thou-
sand differential equations which extends the classic SEIR
model by clinical and demographic parameters relevant
for pandemic preparedness planning. Details of the simu-
lation and a discussion of the standard parameter values
have been described previously [11, 12]. The simulation
produces time courses and cumulative numbers of in-
fluenza cases, outpatient visits and hospitalizations. The
analyses presented here employ demographic parameters
from Switzerland (see Appendix). Using the standard set
of InfluSim parameters, about one third of all infected in-
dividuals are expected to become severely ill and to seek
medical care. Patients seeking medical care are referred to
as “outpatients” throughout this paper. An exponential

distribution is used to model the delay between the onset
of symptoms and seeking medical care; on average, pa-
tients visit a doctor after 24 hours. If a patient seeks med-
ical care within 48 hours after onset of symptoms, he or
she is given antiviral treatment. Antiviral treatment re-
duces the duration and degree of infectivity of the case
and the number of hospitalizations [13].

As many parameters of future viruses or the effects of
interventions and the population’s compliance to inter-
vention measures are uncertain in advance, an uncertainty
analysis was performed by randomly choosing values for
key parameters such as the basic reproduction number R0

and others listed in table 1 from realistic ranges. All ran-
dom parameter samples were taken independently by as-
suming normal distributions with a mean value in the
middle of the interval given in table 1.The standard devi-
ation was chosen such that 99% of the samples lie within
the interval (fig. 1b). A total of 100000 different combina-
tions of parameter values were sampled and a set of four
deterministic simulations were performed for each pa-
rameter constellation, considering the following scenar-
ios: no intervention, social distancing (contact reduction),
antiviral treatment and a combination of both. Social dis-
tancing comprises contact reductions in the general pop-
ulation and of cases according to disease severity (table 1).
Antiviral treatment is given on average 24 hours after
onset of symptoms (but not later than 48 hours). It re-
duces the infectivity of patients and alleviates their course
of disease, thus preventing a fraction of hospitalizations
(table 1). From each simulation, the peak number of out-
patients, the cumulative number of outpatients, the peak
hospital bed occupancy and the cumulative number of
hospitalizations were extracted. To evaluate the relative
intervention effects, each simulation outcome was divided
by the corresponding result of the no-intervention sce-
nario. Finally, the results were related to the available (na-
tional average) number of hospital beds [14] and the
number of physicians in practice (general medicine, inter-
nal medicine and pediatrics) [15]. The model also allows
for HCW to be affected by disease but in the current
study, the authors opted for a simplification and only con-
sidered national averages for the number of physicians
and hospital beds. A more detailed analysis per canton, on
the temporal evolution of the capacities could be done in
the future.

Randomly sampled parameter 99% sampling
interval

Infection and disease

Basic Reproduction Number R0 1.5–3.5a

Initial infectivity of infected individuals1 75–95%b

Fraction of infections remaining asymptomatic 25–50%c

Relative infectivity of asymptomatic2 0–100%d

Hospitalization factor3 0.5–1.5

Antiviral treatment

Reduces infectivity of treated cases by 60–98%e

Prevents hospitalizations of treated cases by 49–69%f

Social Distancing

Contact reduction in the general population 5–25%

Contact reduction of moderately sick cases 0–20%

Contact reduction of severely sick cases at home 10–30%

Contact reduction of hospitalized cases 20–40%
a Chowell et al. 2006 [18]
b Central value of 85%, equivalent to assumptions by Ferguson
et al. 2005 [22]
c 33% asymptomatic, cf. Longini et al. 2004 [13]
d Central value of 50%, see Longini et al. 2004 [13]
e Hayden et al. 1999, 2004, Kaiser et al. 2003, Longini et al. 2004
[13, 23, 24]
f Kaiser et al. 2003 [24]
1 “Initial infectivity” determines what fraction of potentially infec-
tious contacts occur in the first half of the symptomatic period
(50%: infections are equally likely on every day; 85% strong
concentration during the first half of the symptomatic period).
2 “Infectivity of asymptomatic” is used for the infectivity during
the pre-symptomatic period as well as for the average infectivity
of individuals with asymptomatic infection. A value of 100%
refers to the infectivity of symptomatic cases.
3 “Hospitalization factor” is used to modify the standard parame-
ter values which determine how many cases need hospitalization
or die, depending on their age and risk group (cf. table A1 in the
Appendix).

Table 1

Stochastically sam-
pled parameters and
sampling intervals.
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For the no-intervention scenario, some epi-
demic curves are depicted in figure 1a, and the
distribution of the total number of outpatient
visits is given in figure 1c. Outbreaks tend to
progress more slowly and lead to relatively small
numbers of cases if the basic reproduction num-
ber R0 is small. High epidemic peak values and
large cumulative numbers of cases are reached if
R0 is high and if the infection is highly contagious
at the beginning of symptoms (parameter x50).
Figure 1d shows the correlation of the total num-
ber of outpatients and the peak number of out-
patients.

In the no-intervention scenario, a median
number of 26500 outpatients per 100000 indi-
viduals would be expected, with a 99% region of
tolerance ranging from 17000 to 33000 (fig. 2a).
Antiviral treatment and social distancing can alle-
viate the public health situation as shown in
figures 2a–d. Social distancing alone can reduce
the cumulative number of outpatients by 17%
(median); similarly, antiviral treatment alone can
reduce it by about 14%. A combination of both
interventions can even lead to a median reduction

of nearly 40%. In the no-intervention scenario, a
median number of 630 hospitalizations per
100000 individuals would be expected with a
99% region of tolerance ranging from 270 to
1050 hospitalizations. This number is reduced by
a median fraction of 18% using social distancing,
and by 58% using antiviral treatment. Combining
both interventions reduces it by 70%. Note that
uncertainty in the parameter values can imply
considerable variation in the expected number of
outpatients and hospitalizations (fig. 2a and c), as
well as in the corresponding relative reductions.

Although cumulative numbers may be an im-
portant issue, the epidemic peak values determine
whether a public health system is capable of deal-
ing with a pandemic.

Therefore, the peak number of outpatient
visits and the peak hospital occupancy were calcu-
lated and related to the available resources in
Switzerland. Using the average Swiss values of
100 physicians and 390 hospital beds per 100000
inhabitants, the no-intervention scenario yields a
median peak number of 20 outpatient visits per
doctor (99% range from 5 to 35) and a median
peak demand for 60% of all available hospital
beds (99% range from 15 to 115%; fig. 3a–b). So-
cial distancing reduces these results to peak values
of 13 outpatient visits per physician and 35% of
the hospital bed capacity. Antiviral treatment
alone reduces the results to 13 outpatient visits
and 18% of the hospital bed capacity. Combining
both interventions further reduces the peak num-
bers to 5 outpatient visits per physician (with an
upper 99% reference limit of 17) and 6% of the
total hospital bed capacity (with an upper 99%
reference limit of 25%). Note that an effective in-
tervention does not only reduce the peak percent-
age of hospital beds, but also reduces the uncer-
tainty of the prediction, thus allowing for more
precise planning of intervention effects.

These results are encouraging, but the avail-
able capacity of intensive care units (ICU) may
become the most important pandemic bottle-
neck in hospital settings. Assuming that 15% of
hospitalized influenza patients need intensive care
[16] and using a total number of 6.4 ICU beds per
100000 people, the capacity of Switzerland falls
short of the median peak demand of 34 ICU beds
in the no-intervention scenario, being 532% of
what is currently available (fig. 3b, right axis);
even the lowest value of its 99% region of toler-
ance exceeds the total available capacity 100%.
Social distancing alone can reduce the median de-
mand to 293% of the available capacity and an-
tiviral treatment alone reduces the demand to
134%. Only a combination of both interventions
leads to a median demand of 52% of the available
resources, but the upper 99% reference limit is
still more than twice the total ICU capacity of
Switzerland.
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Results

Figure 1

Variability in the number of outpatients and their distribution originating from variabil-
ity in the parameters under the no-intervention scenario (population size 100 000
individuals). (a) Epidemic curves for nine out of 100 000 realizations, representing the
10%, 20%, ..., 90% percentiles of all realizations, whereby ranking is based on the cu-
mulative number of outpatients. (b) Parameter values for each realization are sampled
independently from normal distributions (means given in bold, 99% of the values lie
within the ranges specified by dotted lines, except bA which is truncated). R0: basic
reproduction number, x50: cumulative infectivity during the first half of the sympto-
matic period, cA: fraction of infections remaining asymptomatic, bA: relative infectivity
of asymptomatic compared to symptomatic cases, fk: factor by which the InfluSim
default percentage of hospitalizations was varied (see table A1 in the Appendix).
(c) Distribution of the cumulative number of outpatients. (d) Correlation between the
cumulative number of outpatients and the number of outpatients at the peak day.
Both values approach zero for very low values of R0.
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To further elucidate this, it is necessary to
take a closer look at the time course of the ICU
demand during a pandemic wave (fig. 4a–b). If so-
cial distancing is the only intervention, the de-
mand caused by flu patients exceeds the available
capacity for three or four weeks even for mild
pandemics (fig. 4a). If antiviral treatment is effec-
tive and combined with social distancing, the me-
dian curve has a peak demand of 61% of the total
capacity, exceeding the level of 50% for two
weeks (middle curve in fig. 4b). If it is generally

assumed that, at most, 50% of the total ICU ca-
pacity can be made available for flu patients, 5.5%
of all flu patients with ICU demand will not be
adequately treated in the median case of figure 4b,
and 39.5% in the case of the more pessimistic
90% percentile. Mild pandemics (10% percentile,
right) could be handled for with the available re-
sources. The corresponding percentages for so-
cial distancing only are 77.6%, 66.3% and 39.0%
for the 90%, 50% and 10% percentile, respec-
tively (fig. 4a).
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Figure 2

Effects of social dis-
tancing, antiviral
treatment and a com-
bination of both inter-
ventions compared
to the no-intervention
scenario. All results
derive from 100 000
random parameter
sets as explained in
the text (population
size 100 000 individu-
als). Box and
whiskers plots show
percentiles from bot-
tom to top: 0.5, 2.5,
25, 50, 75, 97.5 and
99.5%, representing
99% of the simulation
results between cir-
cles, 95% between
whiskers and 50%
within the box,
respectively. Relative
reductions (ex-
pressed as a percent-
age) are calculated
by comparing pairs
of simulations with
and without interven-
tion employing iden-
tical parameter val-
ues. (a)Total number
of outpatient visits,
(b) prevented outpa-
tient visits as a per-
centage of the no-in-
tervention scenario,
(c) total number of
hospitalizations, (d)
prevented hospital-
izations as a percent-
age of the no-inter-
vention scenario.

Figure 3

Simulation results of different intervention scenarios resulting from 100000 random parameter sets as explained in the text
(population size 100 000 individuals). Box and whiskers plots show percentiles from bottom to top: 0.5, 2.5, 25, 50, 75,
97.5 and 99.5%, representing 99% of the simulation results between circles, 95% between whiskers and 50% within the box,
respectively. (a) Peak number of outpatient visits per physician in practice, (b) left axis: peak percentage of available hospital
beds occupied by influenza patients, right axis: peak percentage of available ICU beds needed for influenza patients.

Discussion

Due to the uncertainties in parameter esti-
mates for Influenza, it is important to consider
ranges of parameter values. Sampling random val-
ues from reasonable intervals and using them in a

deterministic simulator allows translating input
uncertainty into expected output variability. The
wide regions of tolerance for the total number of
outpatients and hospitalizations (fig. 1a–d) show
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that pandemic preparedness plans must not rely
on expected or “mean” results only, but should
also consider “best case” and “worst case” scenar-
ios. The most important parameter which deter-
mines both the rapidity and the height of a pan-
demic wave, is summarized in the basic reproduc-
tion number R0. Even for previous pandemics and
for seasonal influenza, considerable uncertainty in
the estimation of this important parameter exists
as is witnessed by the wide range of proposed val-
ues, ranging from 1.5 to 4 (for U.S. cities: [17], for
Switzerland: [18, 19]). Longini [20] proposed
“containment” with different strategies for low
values of R0 from 1.1 to 2.4 and since then many
authors have only used these values in their stud-
ies. Ferguson [21] reviewed 1918 pandemic data
and proposed R0 = 1.7 as “moderate” and R0 = 2.0
as “high” transmission scenarios, but these values
should be regarded as effective reproduction
numbers which also reflect the effect of interven-
tions. In contrast with these studies, which fo-
cused on containment in terms of outpatient vis-
its, a wider range of pandemics were explored (R0

from 1.5 to 3.5) and also hospital bed occupancy
and ICU demand were considered in the current
study.

The population effects of antiviral treatment
highly depend on the timing of the patients’ treat-
ment and on whether they have been contagious
before treatment. The success of social distancing
measures depends on the compliance of the popu-
lation. At the most pessimistic end of the simula-
tions (high R0 and strong concentration of conta-
giousness in the early phase of the infection, com-
bined with low public health compliance and low
treatment effects), the number of hospitalizations

can be 1.9 times higher than the mean, whereas at
the most optimistic end, a major outbreak may be
prevented (cf. 99% interval for combined inter-
vention in fig. 2c).

This study confirms results of previous stud-
ies, which have used static models [5, 9] which
point out ICU capacity as a bottleneck in hospital
settings and which have stated that appropriate
contingency planning must consider a rapid ex-
pansion of ICU capacity for severe pandemics. It
has been shown that, in the most pessimistic case,
a non-negligible percentage of hospitalized pa-
tients (ranging from 5.5 to 39.5%) would be at
a higher risk of death during approximately 3–4
weeks, if 50% of the currently existing ICU beds
could be made available at the peak of the epi-
demic (by cancellation of elective surgery and
triaging of patients). As ICU capacity is difficult
to expand and costly to maintain, additional and
innovative measures are being considered and ex-
tensive preparation is needed. The current results
support the view that hospitals and public health
planners should take into account the severity of a
pandemic and the efficacy of the interventions
(such us antiviral treatment) in their protocols.
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Figure 4

Demand of intensive care, representing (from left to right) 90%, 50% and 10% percentiles, respectively, of 100 000 random
outcomes, ordered by the size of the peak of hospital bed occupancy.The curves show the percentage of the currently avail-
able ICU beds in Switzerland (6.4 per 100 000 inhabitants), assuming that 15% of hospitalized patients need intensive care.
Horizontal lines indicate 50% and 100% level of the available ICU capacity.The gray areas under the curves indicate what
percentage of cases with ICU demand cannot receive proper treatment if at most 50% of ICU beds can be made available
for influenza patients. (a) Social distancing alone. (b) Social distancing combined with antiviral treatment.
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Table A1

Age distribution of the Swiss population (per 100 000), contact matrix and risk of hospitalization and death from influenza
by age class and risk group.

Children Working adults Elderly

Age in years1 0–5 6–12 13–19 20–39 40–59 60 or more

Number per 100000 5895 7701 8315 27318 29121 21650

Total number in class 21911 56439 21650

Contacts per week2 0–5 6–12 13–19 20–39 40–59 60 or more

with 0–5-year-old 169.14 31.47 17.76 34.5 15.83 11.47

with 6–12-year-old 31.47 274.51 32.31 34.86 20.61 11.50

with 13–19-year-old 17.76 32.31 224.25 50.75 37.52 14.96

with 20–39-year-old 34.5 34.86 50.75 75.66 49.45 25.08

with 40–59-year-old 15.83 20.61 37.52 49.45 61.26 32.99

with ≥60-year-old 11.47 11.50 14.96 25.08 32.99 54.23

Risk category low risk high risk low risk high risk low risk high risk

Fraction of age class3 90% 10% 85% 15% 60% 40%

Fraction of infected who become severely sick4 33% 33% 33% 33% 33% 33%

Fraction of severely sick who need hospitalization3 0.187% 1.333% 2.339% 2.762% 3.56% 7.768%

Fraction of hospitalized patients who die5 5.541% 16.531% 39.505%
1 Swiss Federal Statistical Office 2005 [14]; 2 Wallinga et al. 2006 [25]; 3 Deutscher Nationaler Pandemieplan [26];
4 Longini et al. 2004 [13]; 5 Meltzer et al. 1999 [16]
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Appendix

The full details of the model can be found in Duerr et al. 2007 and Eichner et al. 2007 [11, 12]
(available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=17629919
and http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=17355639).
Apart from varying some of the parameters, as given in table 1, we use the age distribution from Switzerland and other basic
parameters listed in table A1.


