Coronaviruses: old and new
Dieter Stürchler
Conventional coronaviruses have circulated in humans since the mid-1960s. Infections range from inapparent to the common cold, flu-like illnesses and pneumonia. Worldwide, they may account for about 4% of all airway illness. Conventional coronaviruses must be differentiated from the new coronavirus COVID-19.
Coronavirus is a genus of enveloped RNA viruses (Nidovirales: Coronaviridae). Species in humans include 229E (1967), OC43 (1967), SARS (severe acute respiratory syndrome, 2002-03), NL63 (2004), HKU1 (2005), MERS (Middle East respiratory syndrome, 2012), and COVID (December 2019) [1–34].
Related species circulate in wildlife, livestock and pets. Coronaviruses fall into three groups: α infecting humans (229E, NL63), bats, camels and rats; β infecting humans (OC43, HKU1, SARS, MERS, COVID-19), bats, pigs, horses, cattle and dogs; and γ in birds and marine mammals.
Of conventional coronavirus infections (229E, OC43, NL63, HKU1), SARS or MERS, about 25−90% are inapparent. The main manifestations are the common cold (rhinitis, sore throat), acute upper (bronchitis) and lower (pneumonia) airway infections, and flu-like illnesses (fever, myalgia). Ongoing or past infection is detected from clinical materials (swabs, sputum, blood) by molecular methods (reverse transcription polymerase chain reaction [RT-PCR] sequencing) or serology (immunoglobulin [Ig] M and/or IgG). Tests need to differentiate conventional coronaviruses from COVID and other viruses such as human adenovirus, enterovirus-rhinovirus, influenzavirus, parainfluenza viruses and respiratory syncytial virus.
Here, I summarise the circulation of conventional coronaviruses in people and their significance in airway or febrile diseases. I searched the literature of the mid-1960s to early 2020s for coronavirus infections in people. Non-exhaustive crude prevalences in groups of ill or apparently healthy individuals were aggregated by continent.
Conventional coronaviruses were recorded in 69 countries on 5 continents (table 1).
Table 1: Conventional coronaviruses (229E, NL63, OC43, HKU1) in people, 1960s to early 2020s.
Parameter |
Africa |
America |
Asia |
Oceania |
Europe |
Countries, number (= n) |
16 (of 56) |
11 (of 45) |
33 (of 48) |
2 (of 23) |
28 (of 41) |
Prevalence: median (range), % |
7 (0−22) |
4 (0−48) |
4 (0−67) |
2 (0.3−3) |
3 (0−58) |
This compares with 62 countries for COVID (as of 1 March 2020), 27 countries for MERS (2012−19) and 27 for SARS (2002−03). Combining healthy and ill people and recent (viraemia, nucleic acid tests) and past (anti-coronavirus IgG) infections gave median prevalences (and ranges) by continent of: 7% (0−22%) in Africa (15 studies), 4% (0−48%) in America (17 studies), 4% (0−67%) in Asia (48 studies), 2% (0.3−3%) in Oceania (3 studies) and 3% (0−58% in Europe (31 studies) (tables 2 to 6). The surprisingly homogenous medians gave an overall global prevalence of 4%, which compares with the above respiratory viruses in humans.
Table 2: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Africa.
Country |
% |
n |
Group, test, place, time, reference |
Cameroon |
5 |
561 |
Flu-like (0−75 y), NAT, 14 centres 2009 [35] |
Côte d’Ivoire |
11 |
470 |
Flu-like (0−5 y), NAT, 2009−10 [32] |
Egypt |
0 |
179 |
Abattoir work, anti-CoV 2013 [3] |
Gabon |
6.5 |
1041 |
Flu-like (0−82 y), NAT, 4 sites 2010−11 [36] |
Kenya |
0.2 |
1222 |
Livestock work, anti-CoV 2013–14 [3] |
Kenya |
0 |
760 |
Camel contact, anti-CoV 2012–13 [3] |
Kenya |
7–7 |
96–759 |
Mild pneumonia (<12 y), NAT, coast 2007 [37] |
Madagascar |
10–10 |
60–80 |
Controls–pneumonia (≤5 y), NAT, 2010–14 [7] |
Mali |
9–9 |
93–118 |
Controls–pneumonia (≤5 y), NAT, 2011–12 [7] |
Niger |
13 |
160 |
Ill airway (<5 y), NAT, 5 regions 2010–12 [38] |
Nigeria |
0 |
261 |
Abattoir work (camels), anti-CoV (NT) 2016 [3] |
RSA |
4 |
627 |
Ill airway (<5 y), NAT, Pretoria 2006–07 [39] |
Tanzania |
14–8 |
166–207 |
Healthy–febrile (<5 y), NAT, Zanzibar 2011 [40] |
Tunisia |
22 |
372 |
Ill airway (0–5 y), NAT Sousse 2013–14 [41] |
Zambia |
0.5 |
199 |
Ill airway (≤5 y), NAT throat, 2011–12 [42] |
MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s) |
Table 3: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Americas.
Country |
% |
n |
Group, test, place, time, reference |
Argentina |
10.5 |
315 |
Ill (<6 y), NAT, Buenos Aires 2008–10 [40] |
Bolivia |
5 |
564 |
Flu-like (0–60+ y), NAT, 2010–12 [43] |
Brazil |
1 |
260 |
Ill (<3 y), NAT, Porto Alegre 2007 [44] |
Canada |
0.5(0.3–0.9) |
4903 |
Ill airway, country 2014–19 (www.canada.ca/en/public-health.html) |
Canada |
4.5 |
177 |
Common cold, travel to MERS-areas 2012–14 [45] |
Canada |
1.8 |
3847 |
Child airway specimens, NAT, Montreal 2009–10 [44] |
Chile |
4.5 |
268 |
Pneumonia (>18 y), NAT 2005–07 [46] |
Haiti |
8–5 |
101–122 |
Pneumonia–controls (≤5 y), NAT, 2010–14 [7] |
Mexico |
7 |
1’051 |
Flu-like (0–96 y), 2010–11 [14] |
Paraguay |
8–7 |
99–100 |
Pneumonia–controls (≤5 y), NAT 2010–14 [7] |
Trinidad |
1–1 |
70–80 |
Children acute wheeze–stable, NAT 2004–05 [23] |
USA |
2 |
2259 |
Pneumonia (18–80+ y), NAT, IL/TN 2010–12 [10] |
USA |
6–4 |
440–425 |
Ill airway (<3 y), NAT 2005–07 [22] |
USA |
3 |
515 |
Ill (<1 y), NAT, 4 inner cities, 2005–08 [17] |
USA |
2.7–45 |
1990 |
Ill (<45 y), rise–CF ≥1:4, Michigan 1966–67 [29] |
USA |
0–7 |
222–317 |
Ill infant–adult, paired sera 229E, 1965–67 [30] |
USA |
2–48 |
222–317 |
Ill infant–adult, low titre to 229E, 1965–67 [30] |
MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s) |
Table 4: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Asia.
Country |
% |
n |
Group, test, place, time, reference |
Cambodia |
10 |
1904 |
Ill (≥5 y), NAT 2007–09 [47] |
Cambodia |
3–7 |
176–95 |
Pneumonia–controls (≤5 y), NAT 2010–14 [7] |
China |
0.9 |
3978 |
Fever (0–96 y), NAT, Beijing 2011–14 [48] |
China |
3 |
3181 |
Ill (≤16 y), NAT, Chongqing 2009–13 [12] |
China |
5–8 |
39–138 |
Pneumonia–controls (≤5 y), NAT 2010–14 [7] |
China |
5 |
279 |
Ill (0–12 y), NAT, Gansu Province 2011 [49] |
China |
3.7 |
4755 |
Ill (0–91 y), NAT, Guangzhou 2009–11 [16] |
China |
11 |
490 |
Flu-like, NAT, Nanjing 2010–11 [18] |
Georgia |
5 |
1624 |
Ill, NAT 2015–17 [50] |
India |
8–14 |
96–96 |
Pneumonia–controls (≤5 y), NAT, 2010–14 [7] |
India |
1–3 |
71–70 |
Pneumonia–controls (≤5 y), NAT, 2010–14 [7] |
Indonesia |
5 |
148 |
Pneumonia (>13 y), NAT Semarang 2007–09 [51] |
Iran |
2.5 |
455 |
Ill (0–80 y), NAT, Isfahan 2009–10 [51] |
Israel |
10 |
1910 |
Flu-like, NAT, 2015–16 [4] |
Japan |
5 |
1380 |
Ill (0–15+ y), NAT, 2014–16 [6] |
Jordan |
7 |
124 |
MERS contacts, anti-CoV, 2012–13 [3] |
Korea, South |
4 |
36,915 |
Ill (<1–65+ y), NAT, country 2013–15 [5] |
Korea, South |
8 |
207 |
Ill soldiers, NAT, 2011–12 [13] |
Korea, South |
5 |
675 |
MERS contacts, NAT 2015 [3] |
Korea, South |
1 |
1169 |
Health care work, anti-MERS-CoV, 2015 [3] |
Kuwait |
0 |
1014 |
Ill (0–76 y), NAT <2010 [52] |
Laos |
2 |
292 |
Admitted ill airway (0–86 y), NAT 2009–10 [53] |
Malaysia |
3 |
2060 |
Ill adults, NAT, 2012–13 [8] |
Mongolia |
8–4 |
108–93 |
Pneumonia–controls (≤5 y), NAT 2010–14 [7] |
Nepal |
0.8 |
3693 |
Flu-like, pregnant, NAT, 2011–14 [53] |
Oman |
0.4 |
259 |
Ill (<5 y), NAT, 2007–08 [54] |
Pakistan |
13 |
91 |
Near camels (8–76 y), anti-MERS-CoV, 2017–18 [55] |
Pakistan |
0 |
840 |
Camel herders, anti-CoV, 2016 [3] |
Qatar |
3 |
294 |
Work (camels), anti-CoV 2013–14 [3] |
Saudi Arabia |
67 |
30 |
Work (camels), anti-CoV/T cell response 2018 [3] |
Saudi Arabia |
2–8 |
879–107 |
Health care work, NAT, 2 studies 2017 [3] |
Saudi Arabia |
1 |
57,363 |
MERS suspects, NAT, 2015–16 [3] |
Saudi Arabia |
2-20 |
1206–1162 |
Pilgrims (18–88 y) arrive–depart, NAT, 2013 [56] |
Saudi Arabia |
0–0 |
191–226 |
Abattoir work, anti-CoV, 2013/4–2012 [3] |
Saudi Arabia |
1 |
1695 |
Health care work, NAT, 2012–13 [3] |
Saudi Arabia |
14–10 |
79 |
MERS contacts, NAT–anti-CoV 2014 [3] |
Saudi Arabia |
4 |
280 |
MERS contacts, anti-CoV, 2013 [3] |
Saudi Arabia |
0.1 |
10,009 |
Residents, anti-CoV, 13 provinces 2012–13 [3] |
Saudi Arabia |
0.2–1 |
519–2699 |
Pilgrims, arrive-depart, NAT, 2009 [57] |
Singapore |
0.6 |
500 |
Ill (0–12 y), NAT, 2005–07 [58] |
Sri Lanka |
1.5 |
571 |
Flu-like (1–75 y), NAT 2013–15 [59] |
Taiwan |
5 |
113 |
Bronchiolitis (<2 y), 2009–11 [60] |
Thailand |
0 |
48 |
MERS contacts, NAT, 2015 [3] |
Thailand |
0.8 |
5833 |
Flu-like, NAT, 2012–13 [61] |
Turkey |
6 |
624 |
Sore throat (3–85 y), NAT, Kayseri 2013 [62] |
UAE |
54–0 |
124 |
Patients–contacts, anti-CoV, 2013–18 [3] |
UAE |
4 |
1586 |
MERS suspects, NAT, 2013–14 [3] |
Vietnam |
8 |
309 |
Ill (<15 y), NAT, Ho Chi Minh City 2004–08 [63] |
MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s) |
Table 5: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Oceania
Country |
% |
n |
Group, test, place, time, reference |
Australia |
3 |
543 |
Ill (<5 y), NAT, Melbourne 2003–04 [64] |
Australia |
0.3 |
23,177 |
Submitted stools, any test, 1991–2000 [65] |
New Zealand |
2 |
304 |
Pneumonia (>18 y), NAT, 1999–2000 [26] |
MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s) |
Table 6: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Europe.
Country |
% |
n |
Group, test, place, time, reference |
Multicenter |
0–2.5 |
2 501 |
Healthy, routine test–NAT, 51 studies 1965–2007 [66] |
Croatia |
2 |
182 |
Ill (>18 y), NAT, 2016–18 [67] |
Cyprus |
5 |
424 |
Ill (0–12 y), NAT, Nicosia 2010–13 [9] |
Finland |
3 |
194 |
Cold (<5 y), Turku (60°N) 1996–98 [24] |
France |
1 |
162 |
MERS contacts, NAT 2013 [3] |
France |
1 |
85 |
Pneumonia (<17 y), NAT St-Etienne 2012–13 [68] |
France |
9 |
1021 |
Children (<2 y), NAT, Caen 2009–10 [69] |
GBR |
0–6 |
59–33 |
Health care work, NAT, 2 studies 2013 [3] |
GBR |
0 |
4821 |
Submitted samples, NAT, 2009–10 [70] |
GBR |
1.6 |
12,830 |
Submitted samples, NAT, Edinburgh 2006–09 [19] |
Germany |
9 |
75 |
Colds, adults, NAT self/staff sampling, 2011 [71] |
Germany |
3 |
18,999 |
Ill (0–16 y), NAT 1996–2006 (CoV >2003) [69] |
Germany |
58–7 |
3016–331 |
Healthy, anti-CoV, past–new 1974–76 [70] |
Greece |
4 |
1272 |
Flu-like (0–18 y), NAT, Athens 2005–08 [21] |
Italy |
2 |
237 |
Ill children NAT, Siena 2006–07 [72] |
Italy |
9 |
322 |
Ill (<2 y), NAT, Milan 2004–06 [25] |
Netherlands |
2 |
339 |
Ill (≥18 y), NAT 2007–10 [73] |
Netherlands |
6 |
107 |
Ill adults, NAT, Utrecht 2002–04 [74] |
Netherlands |
2 |
1172 |
Ill, NAT, 1997–99 [75] |
Norway |
15 |
452 |
Ill (0–16 y), NAT, Trondheim 2006–07 [20] |
Poland |
15 |
399 |
Flu-like, military/families, NAT 2011–12 [76] |
Portugal |
0 |
249 |
Bronchiolitis (0–2 y), NAT, 2007–08 [73] |
Romania |
0.4 |
241 |
Ill (0–8 y), NAT, 2010–11 [77] |
Russia |
0.8 |
1560 |
Ill (0–15 y), NAT, Siberia 2013–17 [78] |
Slovenia |
5 |
278 |
Ill (<5 y), NAT, 2012–13 [79] |
Spain |
1.3 |
884 |
Pneumonia (<14 y), NAT, Madrid 2004–10 [80], |
Sweden |
16–5.5 |
1843–403 |
Adults (25–63 y), NAT self-clinical, 2011–12 [11] |
Sweden |
3 |
502 |
Flu-like (0–17 y), NAT, Stockholm 2009 [81] |
Sweden |
10 |
79 |
Flu-like, travel to MEX/USA, NAT, Gotaland 2009 [82] |
Sweden |
1 |
232 |
Healthy (10–15 y), NAT Malmö (56°N) 2005 [83] |
Switzerland |
3 |
117 |
Ill (1–83 y), Geneva 2001–02 [27] |
MERS = Middle East respiratory syndrome; NAT =nucleic acid tests; y =year(s) |
In conclusion, as SARS (eliminated by a concerted global effort by 2003) and MERS (virtually not sustained by human-to-human spread) have demonstrated, coronaviruses can be contained or even eliminated. However, information about conventional coronaviruses suggests that COVID could become part of the airway illnesses that, according to host, season and infective dose, may range from inapparent to mild, severe or critical illness. In this latter scenario, COVID must be distinguished from conventional coronaviruses and other respiratory viruses, preferentially by multiple genomic assays.
Dieter Stürchler, Emeritus professor of Basel University, Switzerland
References
- Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis. 2020;26(2):191–8. doi:https://doi.org/10.3201/eid2602.190697. PubMed
- Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. doi:https://doi.org/10.1001/jama.2020.2648. PubMed
- Grant R, Malik MR, Elkholy A, Van Kerkhove MD. A Review of Asymptomatic and Subclinical Middle East Respiratory Syndrome Coronavirus Infections. Epidemiol Rev. 2019;41(1):69–81. doi:https://doi.org/10.1093/epirev/mxz009. PubMed
- Friedman N, Alter H, Hindiyeh M, Mendelson E, Shemer Avni Y, Mandelboim M. Human Coronavirus Infections in Israel: Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1. Viruses. 2018;10(10):E515. doi:https://doi.org/10.3390/v10100515. PubMed
- Kim JM, Jung HD, Cheong HM, Lee A, Lee NJ, Chu H, et al. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea. J Med Virol. 2018;90(7):1177–83. doi:https://doi.org/10.1002/jmv.25069. PubMed
- Matoba Y, Aoki Y, Tanaka S, Unno M, Komabayashi K, Ikeda T, et al. Trends of Human Coronaviruses in Yamagata, Japan in 2015-2016 Focusing on the OC43 Outbreak of June 2016. Jpn J Infect Dis. 2018;71(2):167–9. doi:https://doi.org/10.7883/yoken.JJID.2017.263. PubMed
- Bénet T, Sánchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, et al.; Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries (GABRIEL) Network; Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries (GABRIEL) Network. Microorganisms Associated With Pneumonia in Children <5 Years of Age in Developing and Emerging Countries: The GABRIEL Pneumonia Multicenter, Prospective, Case-Control Study. Clin Infect Dis. 2017;65(4):604–12. doi:https://doi.org/10.1093/cid/cix378. PubMed
- Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, et al. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia. Am J Trop Med Hyg. 2016;94(5):1058–64. doi:https://doi.org/10.4269/ajtmh.15-0810. PubMed
- Richter J, Panayiotou C, Tryfonos C, Koptides D, Koliou M, Kalogirou N, et al. Aetiology of Acute Respiratory Tract Infections in Hospitalised Children in Cyprus. PLoS One. 2016;11(1):e0147041. doi:https://doi.org/10.1371/journal.pone.0147041. PubMed
- Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, et al.; CDC EPIC Study Team. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415–27. doi:https://doi.org/10.1056/NEJMoa1500245. PubMed
- Plymoth A, Rotzen-Ostlund M, Zweygberg-Wirgart B, Sundin CG, Ploner A, Nyren O, et al. Self-sampling for analysis of respiratory viruses in a large-scale epidemiological study in Sweden. Euro Surveill. 2015;20(11):21063. doi:https://doi.org/10.2807/1560-7917.ES2015.20.11.21063. PubMed
- Wei L, Liu W, Zhang XA, Liu EM, Wo Y, Cowling BJ, et al. Detection of viral and bacterial pathogens in hospitalized children with acute respiratory illnesses, Chongqing, 2009-2013. Medicine (Baltimore). 2015;94(16):e742. doi:https://doi.org/10.1097/MD.0000000000000742. PubMed
- Heo JY, Lee JE, Kim HK, Choe KW. Acute lower respiratory tract infections in soldiers, South Korea, April 2011-March 2012. Emerg Infect Dis. 2014;20(5):875–7. doi:https://doi.org/10.3201/eid2005.131692. PubMed
- Galindo-Fraga A, Ortiz-Hernández AA, Ramírez-Venegas A, Vázquez RV, Moreno-Espinosa S, Llamosas-Gallardo B, et al.; La Red ILI 002 Study Group. Clinical characteristics and outcomes of influenza and other influenza-like illnesses in Mexico City. Int J Infect Dis. 2013;17(7):e510–7. doi:https://doi.org/10.1016/j.ijid.2013.01.006. PubMed
- Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Health J. 2013;19(Suppl 1):S12–8. doi:https://doi.org/10.26719/2013.19.supp1.S12. PubMed
- Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Huang WB, et al. Epidemiology and clinical presentation of the four human parainfluenza virus types. BMC Infect Dis. 2013;13(1):28. doi:https://doi.org/10.1186/1471-2334-13-28. PubMed
- Gern JE, Pappas T, Visness CM, Jaffee KF, Lemanske RF, Togias A, et al. Comparison of the etiology of viral respiratory illnesses in inner-city and suburban infants. J Infect Dis. 2012;206(9):1342–9. doi:https://doi.org/10.1093/infdis/jis504. PubMed
- Huo X, Qin Y, Qi X, Zu R, Tang F, Li L, et al. Surveillance of 16 respiratory viruses in patients with influenza-like illness in Nanjing, China. J Med Virol. 2012;84(12):1980–4. doi:https://doi.org/10.1002/jmv.23401. PubMed
- Gaunt ER, Harvala H, McIntyre C, Templeton KE, Simmonds P. Disease burden of the most commonly detected respiratory viruses in hospitalized patients calculated using the disability adjusted life year (DALY) model. J Clin Virol. 2011;52(3):215–21. doi:https://doi.org/10.1016/j.jcv.2011.07.017. PubMed
- Kristoffersen AW, Nordbø SA, Rognlien AG, Christensen A, Døllner H. Coronavirus causes lower respiratory tract infections less frequently than RSV in hospitalized Norwegian children. Pediatr Infect Dis J. 2011;30(4):279–83. doi:https://doi.org/10.1097/INF.0b013e3181fcb159. PubMed
- Pogka V, Kossivakis A, Kalliaropoulos A, Moutousi A, Sgouras D, Panagiotopoulos T, et al. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008. J Med Virol. 2011;83(10):1841–8. doi:https://doi.org/10.1002/jmv.22173. PubMed
- Singleton RJ, Bulkow LR, Miernyk K, DeByle C, Pruitt L, Hummel KB, et al. Viral respiratory infections in hospitalized and community control children in Alaska. J Med Virol. 2010;82(7):1282–90. doi:https://doi.org/10.1002/jmv.21790. PubMed
- Matthew J, Pinto Pereira LM, Pappas TE, Swenson CA, Grindle KA, Roberg KA, et al. Distribution and seasonality of rhinovirus and other respiratory viruses in a cross-section of asthmatic children in Trinidad, West Indies. Ital J Pediatr. 2009;35(1):16. doi:https://doi.org/10.1186/1824-7288-35-16. PubMed
- Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O. Viral etiology of common cold in children, Finland. Emerg Infect Dis. 2009;15(2):344–6. doi:https://doi.org/10.3201/eid1502.081468. PubMed
- Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berrè S, Terulla C, et al. Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol. 2008;80(4):716–23. doi:https://doi.org/10.1002/jmv.21108. PubMed
- Jennings LC, Anderson TP, Beynon KA, Chua A, Laing RT, Werno AM, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax. 2008;63(1):42–8. doi:https://doi.org/10.1136/thx.2006.075077. PubMed
- Garbino J, Gerbase MW, Wunderli W, Deffernez C, Thomas Y, Rochat T, et al. Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact. Am J Respir Crit Care Med. 2004;170(11):1197–203. doi:https://doi.org/10.1164/rccm.200406-781OC. PubMed
- Hui DS, Chan MC, Wu AK, Ng PC. Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Postgrad Med J. 2004;80(945):373–81. doi:https://doi.org/10.1136/pgmj.2004.020263. PubMed
- Cavallaro JJ, Monto AS. Community-wide outbreak of infection with a 229E-like coronavirus in Tecumseh, Michigan. J Infect Dis. 1970;122(4):272–9. doi:https://doi.org/10.1093/infdis/122.4.272. PubMed
- Kapikian AZ, James HD, Jr, Kelly SJ, Dees JH, Turner HC, McIntosh K, et al. Isolation from man of “avian infectious bronchitis virus-like” viruses (coronaviruses) similar to 229E virus, with some epidemiological observations. J Infect Dis. 1969;119(3):282–90. doi:https://doi.org/10.1093/infdis/119.3.282. PubMed
- www.who.int/docs/default-source/coronaviruse/situation-reports/20200223-sitrep-34-covid-19.pdf?sfvrsn=44ff8fd3_2
- https://apps.who.int/iris/bitstream/handle/10665/326126/WHO-MERS-RA-19.1-eng.pdf?ua=1
- WHO Wkly Epid Rec 2019;94(48):568-574
- www.who.int/docs/default-source/coronaviruse/situation-reports/20200214-sitrep-25-covid-19.pdf?sfvrsn=61dda7d_2
- Njouom R, Yekwa EL, Cappy P, Vabret A, Boisier P, Rousset D. Viral etiology of influenza-like illnesses in Cameroon, January-December 2009. J Infect Dis. 2012;206(Suppl 1):S29–35. doi:https://doi.org/10.1093/infdis/jis573. PubMed
- Lekana-Douki SE, Nkoghe D, Drosten C, Ngoungou EB, Drexler JF, Leroy EM. Viral etiology and seasonality of influenza-like illness in Gabon, March 2010 to June 2011. BMC Infect Dis. 2014;14(1):373. doi:https://doi.org/10.1186/1471-2334-14-373. PubMed
- Berkley JA, Munywoki P, Ngama M, Kazungu S, Abwao J, Bett A, et al. Viral etiology of severe pneumonia among Kenyan infants and children. JAMA. 2010;303(20):2051–7. doi:https://doi.org/10.1001/jama.2010.675. PubMed
- Lagare A, Maïnassara HB, Issaka B, Sidiki A, Tempia S. Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger. BMC Infect Dis. 2015;15(1):515. doi:https://doi.org/10.1186/s12879-015-1251-y. PubMed
- Venter M, Lassaunière R, Kresfelder TL, Westerberg Y, Visser A. Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa. J Med Virol. 2011;83(8):1458–68. doi:https://doi.org/10.1002/jmv.22120. PubMed
- Elfving K, Shakely D, Andersson M, Baltzell K, Msellem MI, Björkman A, et al. Pathogen Clearance and New Respiratory Tract Infections Among Febrile Children in Zanzibar Investigated With Multitargeting Real-Time Polymerase Chain Reaction on Paired Nasopharyngeal Swab Samples. Pediatr Infect Dis J. 2018;37(7):643–8. doi:https://doi.org/10.1097/INF.0000000000001876. PubMed
- Brini I, Guerrero A, Hannachi N, Bouguila J, Orth-Höller D, Bouhlel A, et al. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia. PLoS One. 2017;12(11):e0188325. doi:https://doi.org/10.1371/journal.pone.0188325. PubMed
- Simusika P, Bateman AC, Theo A, Kwenda G, Mfula C, Chentulo E, et al. Identification of viral and bacterial pathogens from hospitalized children with severe acute respiratory illness in Lusaka, Zambia, 2011-2012: a cross-sectional study. BMC Infect Dis. 2015;15(1):52. doi:https://doi.org/10.1186/s12879-015-0779-1. PubMed
- Delangue J, Roca Sanchez Y, Piorkowski G, Bessaud M, Baronti C, Thirion-Perrier L, et al. Viral aetiology influenza like illnesses in Santa Cruz, Bolivia (2010-2012). Virol J. 2014;11(1):35. doi:https://doi.org/10.1186/1743-422X-11-35. PubMed
- da Silva ER, Pitrez MC, Arruda E, Mattiello R, Sarria EE, de Paula FE, et al. Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infect Dis. 2013;13(1):41. doi:https://doi.org/10.1186/1471-2334-13-41. PubMed
- German M, Olsha R, Kristjanson E, Marchand-Austin A, Peci A, Winter AL, et al. Acute Respiratory Infections in Travelers Returning from MERS-CoV-Affected Areas. Emerg Infect Dis. 2015;21(9):1654–6. doi:https://doi.org/10.3201/eid2109.150472. PubMed
- Luchsinger V, Ruiz M, Zunino E, Martínez MA, Machado C, Piedra PA, et al. Community-acquired pneumonia in Chile: the clinical relevance in the detection of viruses and atypical bacteria. Thorax. 2013;68(11):1000–6. doi:https://doi.org/10.1136/thoraxjnl-2013-203551. PubMed
- Vong S, Guillard B, Borand L, Rammaert B, Goyet S, Te V, et al. Acute lower respiratory infections in ≥ 5 year -old hospitalized patients in Cambodia, a low-income tropical country: clinical characteristics and pathogenic etiology. BMC Infect Dis. 2013;13(1):97. doi:https://doi.org/10.1186/1471-2334-13-97. PubMed
- Shi W, Cui S, Gong C, Zhang T, Yu X, Li A, et al. Prevalence of human parainfluenza virus in patients with acute respiratory tract infections in Beijing, 2011-2014. Influenza Other Respir Viruses. 2015;9(6):305–7. doi:https://doi.org/10.1111/irv.12336. PubMed
- Huang G, Yu D, Mao N, Zhu Z, Zhang H, Jiang Z, et al. Viral etiology of acute respiratory infection in Gansu Province, China, 2011. PLoS One. 2013;8(5):e64254. doi:https://doi.org/10.1371/journal.pone.0064254. PubMed
- Chakhunashvili G, Wagner AL, Power LE, Janusz CB, Machablishvili A, Karseladze I, et al. Severe Acute Respiratory Infection (SARI) sentinel surveillance in the country of Georgia, 2015-2017. PLoS One. 2018;13(7):e0201497. doi:https://doi.org/10.1371/journal.pone.0201497. PubMed
- Farida H, Gasem MH, Suryanto A, Keuter M, Zulkarnain N, Satoto B, et al. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study. Int J Infect Dis. 2015;38:101–7. doi:https://doi.org/10.1016/j.ijid.2015.07.023. PubMed
- Khadadah M, Essa S, Higazi Z, Behbehani N, Al-Nakib W. Respiratory syncytial virus and human rhinoviruses are the major causes of severe lower respiratory tract infections in Kuwait. J Med Virol. 2010;82(8):1462–7. doi:https://doi.org/10.1002/jmv.21823. PubMed
- Lenahan JL, Englund JA, Katz J, Kuypers J, Wald A, Magaret A, et al. Human Metapneumovirus and Other Respiratory Viral Infections during Pregnancy and Birth, Nepal. Emerg Infect Dis. 2017;23(8). doi:https://doi.org/10.3201/eid2308.161358. PubMed
- Khamis FA, Al-Kobaisi MF, Al-Areimi WS, Al-Kindi H, Al-Zakwani I. Epidemiology of respiratory virus infections among infants and young children admitted to hospital in Oman. J Med Virol. 2012;84(8):1323–9. doi:https://doi.org/10.1002/jmv.23330. PubMed
- Zheng J, Hassan S, Alagaili AN, Alshukairi AN, Amor NMS, Mukhtar N, et al. Middle East Respiratory Syndrome Coronavirus Seropositivity in Camel Handlers and Their Families, Pakistan. Emerg Infect Dis. 2019;25(12). doi:https://doi.org/10.3201/eid2512.191169. PubMed
- Memish ZA, Assiri A, Turkestani A, Yezli S, Al Masri M, Charrel R, et al. Mass gathering and globalization of respiratory pathogens during the 2013 Hajj. Clin Microbiol Infect. 2015;21(6):571.e1–8. doi:https://doi.org/10.1016/j.cmi.2015.02.008. PubMed
- Memish ZA, Assiri AM, Hussain R, Alomar I, Stephens G. Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic. J Travel Med. 2012;19(1):15–21. doi:https://doi.org/10.1111/j.1708-8305.2011.00575.x. PubMed
- Tan BH, Lim EA, Seah SG, Loo LH, Tee NW, Lin RT, et al. The incidence of human bocavirus infection among children admitted to hospital in Singapore. J Med Virol. 2009;81(1):82–9. doi:https://doi.org/10.1002/jmv.21361. PubMed
- Shapiro D, Bodinayake CK, Nagahawatte A, Devasiri V, Kurukulasooriya R, Hsiang J, et al. Burden and Seasonality of Viral Acute Respiratory Tract Infections among Outpatients in Southern Sri Lanka. Am J Trop Med Hyg. 2017;97(1):88–96. doi:https://doi.org/10.4269/ajtmh.17-0032. PubMed
- Chen YW, Huang YC, Ho TH, Huang CG, Tsao KC, Lin TY. Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses. J Microbiol Immunol Infect. 2014;47(2):116–21. PubMed
- Soonnarong R, Thongpan I, Payungporn S, Vuthitanachot C, Vuthitanachot V, Vichiwattana P, et al. Molecular epidemiology and characterization of human coronavirus in Thailand, 2012-2013. Springerplus. 2016;5(1):1420. doi:https://doi.org/10.1186/s40064-016-3101-9. PubMed
- Mistik S, Gokahmetoglu S, Balci E, Onuk FA. Sore throat in primary care project: a clinical score to diagnose viral sore throat. Fam Pract. 2015;32(3):263–8. doi:https://doi.org/10.1093/fampra/cmv015. PubMed
- Do AH, van Doorn HR, Nghiem MN, Bryant JE, Hoang TH, Do QH, et al. Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008. PLoS One. 2011;6(3):e18176. doi:https://doi.org/10.1371/journal.pone.0018176. PubMed
- Lambert SB, Allen KM, Druce JD, Birch CJ, Mackay IM, Carlin JB, et al. Community epidemiology of human metapneumovirus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged children using parent-collected specimens. Pediatrics. 2007;120(4):e929–37. doi:https://doi.org/10.1542/peds.2006-3703. PubMed
- Roche P, Halliday L, O’Brien E, Spencer J. The Laboratory Virology and Serology Reporting Scheme, 1991 to 2000. Commun Dis Intell Q Rep. 2002;26(3):323–74. PubMed
- Jartti T, Jartti L, Peltola V, Waris M, Ruuskanen O. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr Infect Dis J. 2008;27(12):1103–7. doi:https://doi.org/10.1097/INF.0b013e31817e695d. PubMed
- Civljak R, Tot T, Falsey AR, Huljev E, Vranes J, Ljubin-Sternak S. Viral pathogens associated with acute respiratory illness in hospitalized adults and elderly from Zagreb, Croatia, 2016 to 2018. J Med Virol. 2019;91(7):1202–9. doi:https://doi.org/10.1002/jmv.25437. PubMed
- Cantais A, Mory O, Pillet S, Verhoeven PO, Bonneau J, Patural H, et al. Epidemiology and microbiological investigations of community-acquired pneumonia in children admitted at the emergency department of a university hospital. J Clin Virol. 2014;60(4):402–7. doi:https://doi.org/10.1016/j.jcv.2014.05.006. PubMed
- Weigl JA, Puppe W, Meyer CU, Berner R, Forster J, Schmitt HJ, et al. Ten years’ experience with year-round active surveillance of up to 19 respiratory pathogens in children. Eur J Pediatr. 2007;166(9):957–66. doi:https://doi.org/10.1007/s00431-007-0496-x. PubMed
- Sarateanu DE, Ehrengut W. A two year serological surveillance of coronavirus infections in Hamburg. Infection. 1980;8(2):70–2. doi:https://doi.org/10.1007/BF01639150. PubMed
- Akmatov MK, Gatzemeier A, Schughart K, Pessler F. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens. PLoS One. 2012;7(11):e48508. <a href="https://journals.plos.org/pl