Skip to main navigation menu Skip to main content Skip to site footer

Coronaviruses: old and new

27.04.2020

Dieter Stürchler

 

Conventional coronaviruses have circulated in humans since the mid-1960s. Infections range from inapparent to the common cold, flu-like illnesses and pneumonia. Worldwide, they may account for about 4% of all airway illness. Conventional coronaviruses must be differentiated from the new coronavirus COVID-19.

Coronavirus is a genus of enveloped RNA viruses (Nidovirales: Coronaviridae). Species in humans include 229E (1967), OC43 (1967), SARS (severe acute respiratory syndrome, 2002-03), NL63 (2004), HKU1 (2005), MERS (Middle East respiratory syndrome, 2012), and COVID (December 2019) [1–34].

Related species circulate in wildlife, livestock and pets. Coronaviruses fall into three groups: α infecting humans (229E, NL63), bats, camels and rats; β infecting humans (OC43, HKU1, SARS, MERS, COVID-19), bats, pigs, horses, cattle and dogs; and γ in birds and marine mammals.

Of conventional coronavirus infections (229E, OC43, NL63, HKU1), SARS or MERS, about 25−90% are inapparent. The main manifestations are the common cold (rhinitis, sore throat), acute upper (bronchitis) and lower (pneumonia) airway infections, and flu-like illnesses (fever, myalgia). Ongoing or past infection is detected from clinical materials (swabs, sputum, blood) by molecular methods (reverse transcription polymerase chain reaction [RT-PCR] sequencing) or serology (immunoglobulin [Ig] M and/or IgG). Tests need to differentiate conventional coronaviruses from COVID and other viruses such as human adenovirus, enterovirus-rhinovirus, influenzavirus, parainfluenza viruses and respiratory syncytial virus.

Here, I summarise the circulation of conventional coronaviruses in people and their significance in airway or febrile diseases. I searched the literature of the mid-1960s to early 2020s for coronavirus infections in people. Non-exhaustive crude prevalences in groups of ill or apparently healthy individuals were aggregated by continent.

Conventional coronaviruses were recorded in 69 countries on 5 continents (table 1).

 

Table 1: Conventional coronaviruses (229E, NL63, OC43, HKU1) in people, 1960s to early 2020s.

Parameter

Africa

America

Asia

Oceania

Europe

Countries, number (= n)

16 (of 56)

11 (of 45)

33 (of 48)

2 (of 23)

28 (of 41)

Prevalence: median (range), %

7 (0−22)

4 (0−48)

4 (0−67)

2 (0.3−3)

3 (0−58)

 

 

 

 

This compares with 62 countries for COVID (as of 1 March 2020), 27 countries for MERS (2012−19) and 27 for SARS (2002−03). Combining healthy and ill people and recent (viraemia, nucleic acid tests) and past (anti-coronavirus  IgG) infections gave median prevalences (and ranges) by continent of: 7% (0−22%) in Africa (15 studies), 4% (0−48%) in America (17 studies), 4% (0−67%) in Asia (48 studies), 2% (0.3−3%) in Oceania (3 studies) and 3% (0−58% in Europe (31 studies) (tables 2 to 6). The surprisingly homogenous medians gave an overall global prevalence of 4%, which compares with the above respiratory viruses in humans.

 

Table 2: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Africa.

Country

%

n

Group, test, place, time, reference

Cameroon

5

561

Flu-like (0−75 y), NAT, 14 centres 2009 [35]

Côte d’Ivoire

11

470

Flu-like (0−5 y), NAT, 2009−10 [32]

Egypt

0

179

Abattoir work, anti-CoV 2013 [3]

Gabon

6.5

1041

Flu-like (0−82 y), NAT, 4 sites 2010−11 [36]

Kenya

0.2

1222

Livestock work, anti-CoV 2013–14 [3]

Kenya

0

760

Camel contact, anti-CoV 2012–13 [3]

Kenya

7–7

96–759

Mild pneumonia (<12 y), NAT, coast 2007 [37]

Madagascar

10–10

60–80

Controls–pneumonia (≤5 y), NAT, 2010–14 [7]

Mali

9–9

93–118

Controls–pneumonia (≤5 y), NAT, 2011–12 [7]

Niger

13

160

Ill airway (<5 y), NAT, 5 regions 2010–12 [38]

Nigeria

0

261

Abattoir work (camels), anti-CoV (NT) 2016 [3]

RSA

4

627

Ill airway (<5 y), NAT, Pretoria 2006–07 [39]

Tanzania

14–8

166–207

Healthy–febrile (<5 y), NAT, Zanzibar 2011 [40]

Tunisia

22

372

Ill airway (0–5 y), NAT Sousse 2013–14 [41]

Zambia

0.5

199

Ill airway (≤5 y), NAT throat, 2011–12 [42]

MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s)

 

Table 3: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Americas.

Country

%

n

Group, test, place, time, reference

Argentina

10.5

315

Ill (<6 y), NAT, Buenos Aires 2008–10 [40]

Bolivia

5

564

Flu-like (0–60+ y), NAT, 2010–12 [43]

Brazil

1

260

Ill (<3 y), NAT, Porto Alegre 2007 [44]

Canada

0.5(0.3–0.9)

4903

Ill airway, country 2014–19 (www.canada.ca/en/public-health.html)

Canada

4.5

177

Common cold, travel to MERS-areas 2012–14 [45]

Canada

1.8

3847

Child airway specimens, NAT, Montreal 2009–10 [44]

Chile

4.5

268

Pneumonia (>18 y), NAT 2005–07 [46]

Haiti

8–5

101–122

Pneumonia–controls (≤5 y), NAT, 2010–14 [7]

Mexico

7

1’051

Flu-like (0–96 y), 2010–11 [14]

Paraguay

8–7

99–100

Pneumonia–controls (≤5 y), NAT 2010–14 [7]

Trinidad

1–1

70–80

Children acute wheeze–stable, NAT 2004–05 [23]

USA

2

2259

Pneumonia (18–80+ y), NAT, IL/TN 2010–12 [10]

USA

6–4

440–425

Ill airway (<3 y), NAT 2005–07 [22]

USA

3

515

Ill (<1 y), NAT, 4 inner cities, 2005–08 [17]

USA

2.7–45

1990

Ill (<45 y), rise–CF ≥1:4, Michigan 1966–67 [29]

USA

0–7

222–317

Ill infant–adult, paired sera 229E, 1965–67 [30]

USA

2–48

222–317

Ill infant–adult, low titre to 229E, 1965–67 [30]

MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s)

 

Table 4: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Asia.

Country

%

n

Group, test, place, time, reference

Cambodia

10

1904

Ill (≥5 y), NAT 2007–09 [47]

Cambodia

3–7

176–95

Pneumonia–controls (≤5 y), NAT 2010–14 [7]

China

0.9

3978

Fever (0–96 y), NAT, Beijing 2011–14 [48]

China

3

3181

Ill (≤16 y), NAT, Chongqing 2009–13 [12]

China

5–8

39–138

Pneumonia–controls (≤5 y), NAT 2010–14 [7]

China

5

279

Ill (0–12 y), NAT, Gansu Province 2011 [49]

China

3.7

4755

Ill (0–91 y), NAT, Guangzhou 2009–11 [16]

China

11

490

Flu-like, NAT, Nanjing 2010–11 [18]

Georgia

5

1624

Ill, NAT 2015–17 [50]

India

8–14

96–96

Pneumonia–controls (≤5 y), NAT, 2010–14 [7]

India

1–3

71–70

Pneumonia–controls (≤5 y), NAT, 2010–14 [7]

Indonesia

5

148

Pneumonia (>13 y), NAT Semarang 2007–09 [51]

Iran

2.5

455

Ill (0–80 y), NAT, Isfahan 2009–10 [51]

Israel

10

1910

Flu-like, NAT, 2015–16 [4]

Japan

5

1380

Ill (0–15+ y), NAT, 2014–16 [6]

Jordan

7

124

MERS contacts, anti-CoV, 2012–13 [3]

Korea, South

4

36,915

Ill (<1–65+ y), NAT, country 2013–15 [5]

Korea, South

8

207

Ill soldiers, NAT, 2011–12 [13]

Korea, South

5

675

MERS contacts, NAT 2015 [3]

Korea, South

1

1169

Health care work, anti-MERS-CoV, 2015 [3]

Kuwait

0

1014

Ill (0–76 y), NAT <2010 [52]

Laos

2

292

Admitted ill airway (0–86 y), NAT 2009–10 [53]

Malaysia

3

2060

Ill adults, NAT, 2012–13 [8]

Mongolia

8–4

108–93

Pneumonia–controls (≤5 y), NAT 2010–14 [7]

Nepal

0.8

3693

Flu-like, pregnant, NAT, 2011–14 [53]

Oman

0.4

259

Ill (<5 y), NAT, 2007–08 [54]

Pakistan

13

91

Near camels (8–76 y), anti-MERS-CoV, 2017–18 [55]

Pakistan

0

840

Camel herders, anti-CoV, 2016 [3]

Qatar

3

294

Work (camels), anti-CoV 2013–14 [3]

Saudi Arabia

67

30

Work (camels), anti-CoV/T cell response 2018 [3]

Saudi Arabia

2–8

879–107

Health care work, NAT, 2 studies 2017 [3]

Saudi Arabia

1

57,363

MERS suspects, NAT, 2015–16 [3]

Saudi Arabia

2-20

1206–1162

Pilgrims (18–88 y) arrive–depart, NAT, 2013 [56]

Saudi Arabia

0–0

191–226

Abattoir work, anti-CoV, 2013/4–2012 [3]

Saudi Arabia

1

1695

Health care work, NAT, 2012–13 [3]

Saudi Arabia

14–10

79

MERS contacts, NAT–anti-CoV 2014 [3]

Saudi Arabia

4

280

MERS contacts, anti-CoV, 2013 [3]

Saudi Arabia

0.1

10,009

Residents, anti-CoV, 13 provinces 2012–13 [3]

Saudi Arabia

0.2–1

519–2699

Pilgrims, arrive-depart, NAT, 2009 [57]

Singapore

0.6

500

Ill (0–12 y), NAT, 2005–07 [58]

Sri Lanka

1.5

571

Flu-like (1–75 y), NAT 2013–15 [59]

Taiwan

5

113

Bronchiolitis (<2 y), 2009–11 [60]

Thailand

0

48

MERS contacts, NAT, 2015 [3]

Thailand

0.8

5833

Flu-like, NAT, 2012–13 [61]

Turkey

6

624

Sore throat (3–85 y), NAT, Kayseri 2013 [62]

UAE

54–0

124

Patients–contacts, anti-CoV, 2013–18 [3]

UAE

4

1586

MERS suspects, NAT, 2013–14 [3]

Vietnam

8

309

Ill (<15 y), NAT, Ho Chi Minh City 2004–08 [63]

MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s)

 

Table 5: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Oceania

Country

%

n

Group, test, place, time, reference

Australia

3

543

Ill (<5 y), NAT, Melbourne 2003–04 [64]

Australia

0.3

23,177

Submitted stools, any test, 1991–2000 [65]

New Zealand

2

304

Pneumonia (>18 y), NAT, 1999–2000 [26]

MERS = Middle East respiratory syndrome; NAT = nucleic acid tests; y = year(s)

 

Table 6: Conventional coronaviruses (CoV) in people: prevalence (%, rounded) – Europe.

Country

%

n

Group, test, place, time, reference

Multicenter

0–2.5

2 501

Healthy, routine test–NAT, 51 studies 1965–2007 [66]

Croatia

2

182

Ill (>18 y), NAT, 2016–18 [67]

Cyprus

5

424

Ill (0–12 y), NAT, Nicosia 2010–13 [9]

Finland

3

194

Cold (<5 y), Turku (60°N) 1996–98 [24]

France

1

162

MERS contacts, NAT 2013 [3]

France

1

85

Pneumonia (<17 y), NAT St-Etienne 2012–13 [68]

France

9

1021

Children (<2 y), NAT, Caen 2009–10 [69]

GBR

0–6

59–33

Health care work, NAT, 2 studies 2013 [3]

GBR

0

4821

Submitted samples, NAT, 2009–10 [70]

GBR

1.6

12,830

Submitted samples, NAT, Edinburgh 2006–09 [19]

Germany

9

75

Colds, adults, NAT self/staff sampling, 2011 [71]

Germany

3

18,999

Ill (0–16 y), NAT 1996–2006 (CoV >2003) [69]

Germany

58–7

3016–331

Healthy, anti-CoV, past–new 1974–76 [70]

Greece

4

1272

Flu-like (0–18 y), NAT, Athens 2005–08 [21]

Italy

2

237

Ill children NAT, Siena 2006–07 [72]

Italy

9

322

Ill (<2 y), NAT, Milan 2004–06 [25]

Netherlands

2

339

Ill (≥18 y), NAT 2007–10 [73]

Netherlands

6

107

Ill adults, NAT, Utrecht 2002–04 [74]

Netherlands

2

1172

Ill, NAT, 1997–99 [75]

Norway

15

452

Ill (0–16 y), NAT, Trondheim 2006–07 [20]

Poland

15

399

Flu-like, military/families, NAT 2011–12 [76]

Portugal

0

249

Bronchiolitis (0–2 y), NAT, 2007–08 [73]

Romania

0.4

241

Ill (0–8 y), NAT, 2010–11 [77]

Russia

0.8

1560

Ill (0–15 y), NAT, Siberia 2013–17 [78]

Slovenia

5

278

Ill (<5 y), NAT, 2012–13 [79]

Spain

1.3

884

Pneumonia (<14 y), NAT, Madrid 2004–10 [80],

Sweden

16–5.5

1843–403

Adults (25–63 y), NAT self-clinical, 2011–12 [11]

Sweden

3

502

Flu-like (0–17 y), NAT, Stockholm 2009 [81]

Sweden

10

79

Flu-like, travel to MEX/USA, NAT, Gotaland 2009 [82]

Sweden

1

232

Healthy (10–15 y), NAT Malmö (56°N) 2005 [83]

Switzerland

3

117

Ill (1–83 y), Geneva 2001–02 [27]

MERS = Middle East respiratory syndrome; NAT =nucleic acid tests; y =year(s)


In conclusion, as SARS (eliminated by a concerted global effort by 2003) and MERS (virtually not sustained by human-to-human spread) have demonstrated, coronaviruses can be contained or even eliminated. However, information about conventional coronaviruses suggests that COVID could become part of the airway illnesses that, according to host, season and infective dose, may range from inapparent to mild, severe or critical illness. In this latter scenario, COVID must be distinguished from conventional coronaviruses and other respiratory viruses, preferentially by multiple genomic assays.

 

Dieter Stürchler, Emeritus professor of Basel University, Switzerland


References

  1. Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Transmission. Emerg Infect Dis. 2020;26(2):191–8. doi:https://doi.org/10.3201/eid2602.190697PubMed
  2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. doi:https://doi.org/10.1001/jama.2020.2648PubMed
  3. Grant R, Malik MR, Elkholy A, Van Kerkhove MD. A Review of Asymptomatic and Subclinical Middle East Respiratory Syndrome Coronavirus Infections. Epidemiol Rev. 2019;41(1):69–81. doi:https://doi.org/10.1093/epirev/mxz009PubMed
  4. Friedman N, Alter H, Hindiyeh M, Mendelson E, Shemer Avni Y, Mandelboim M. Human Coronavirus Infections in Israel: Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1. Viruses. 2018;10(10):E515. doi:https://doi.org/10.3390/v10100515PubMed
  5. Kim JM, Jung HD, Cheong HM, Lee A, Lee NJ, Chu H, et al. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea. J Med Virol. 2018;90(7):1177–83. doi:https://doi.org/10.1002/jmv.25069PubMed
  6. Matoba Y, Aoki Y, Tanaka S, Unno M, Komabayashi K, Ikeda T, et al. Trends of Human Coronaviruses in Yamagata, Japan in 2015-2016 Focusing on the OC43 Outbreak of June 2016. Jpn J Infect Dis. 2018;71(2):167–9. doi:https://doi.org/10.7883/yoken.JJID.2017.263PubMed
  7. Bénet T, Sánchez Picot V, Messaoudi M, Chou M, Eap T, Wang J, et al.; Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries (GABRIEL) Network; Global Approach to Biological Research, Infectious diseases and Epidemics in Low-income countries (GABRIEL) Network. Microorganisms Associated With Pneumonia in Children <5 Years of Age in Developing and Emerging Countries: The GABRIEL Pneumonia Multicenter, Prospective, Case-Control Study. Clin Infect Dis. 2017;65(4):604–12. doi:https://doi.org/10.1093/cid/cix378PubMed
  8. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, et al. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia. Am J Trop Med Hyg. 2016;94(5):1058–64. doi:https://doi.org/10.4269/ajtmh.15-0810PubMed
  9. Richter J, Panayiotou C, Tryfonos C, Koptides D, Koliou M, Kalogirou N, et al. Aetiology of Acute Respiratory Tract Infections in Hospitalised Children in Cyprus. PLoS One. 2016;11(1):e0147041. doi:https://doi.org/10.1371/journal.pone.0147041PubMed
  10. Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, et al.; CDC EPIC Study Team. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415–27. doi:https://doi.org/10.1056/NEJMoa1500245PubMed
  11. Plymoth A, Rotzen-Ostlund M, Zweygberg-Wirgart B, Sundin CG, Ploner A, Nyren O, et al. Self-sampling for analysis of respiratory viruses in a large-scale epidemiological study in Sweden. Euro Surveill. 2015;20(11):21063. doi:https://doi.org/10.2807/1560-7917.ES2015.20.11.21063PubMed
  12. Wei L, Liu W, Zhang XA, Liu EM, Wo Y, Cowling BJ, et al. Detection of viral and bacterial pathogens in hospitalized children with acute respiratory illnesses, Chongqing, 2009-2013. Medicine (Baltimore). 2015;94(16):e742. doi:https://doi.org/10.1097/MD.0000000000000742PubMed
  13. Heo JY, Lee JE, Kim HK, Choe KW. Acute lower respiratory tract infections in soldiers, South Korea, April 2011-March 2012. Emerg Infect Dis. 2014;20(5):875–7. doi:https://doi.org/10.3201/eid2005.131692PubMed
  14. Galindo-Fraga A, Ortiz-Hernández AA, Ramírez-Venegas A, Vázquez RV, Moreno-Espinosa S, Llamosas-Gallardo B, et al.; La Red ILI 002 Study Group. Clinical characteristics and outcomes of influenza and other influenza-like illnesses in Mexico City. Int J Infect Dis. 2013;17(7):e510–7. doi:https://doi.org/10.1016/j.ijid.2013.01.006PubMed
  15. Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, et al. Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Health J. 2013;19(Suppl 1):S12–8. doi:https://doi.org/10.26719/2013.19.supp1.S12PubMed
  16. Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Huang WB, et al. Epidemiology and clinical presentation of the four human parainfluenza virus types. BMC Infect Dis. 2013;13(1):28. doi:https://doi.org/10.1186/1471-2334-13-28PubMed
  17. Gern JE, Pappas T, Visness CM, Jaffee KF, Lemanske RF, Togias A, et al. Comparison of the etiology of viral respiratory illnesses in inner-city and suburban infants. J Infect Dis. 2012;206(9):1342–9. doi:https://doi.org/10.1093/infdis/jis504PubMed
  18. Huo X, Qin Y, Qi X, Zu R, Tang F, Li L, et al. Surveillance of 16 respiratory viruses in patients with influenza-like illness in Nanjing, China. J Med Virol. 2012;84(12):1980–4. doi:https://doi.org/10.1002/jmv.23401PubMed
  19. Gaunt ER, Harvala H, McIntyre C, Templeton KE, Simmonds P. Disease burden of the most commonly detected respiratory viruses in hospitalized patients calculated using the disability adjusted life year (DALY) model. J Clin Virol. 2011;52(3):215–21. doi:https://doi.org/10.1016/j.jcv.2011.07.017PubMed
  20. Kristoffersen AW, Nordbø SA, Rognlien AG, Christensen A, Døllner H. Coronavirus causes lower respiratory tract infections less frequently than RSV in hospitalized Norwegian children. Pediatr Infect Dis J. 2011;30(4):279–83. doi:https://doi.org/10.1097/INF.0b013e3181fcb159PubMed
  21. Pogka V, Kossivakis A, Kalliaropoulos A, Moutousi A, Sgouras D, Panagiotopoulos T, et al. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008. J Med Virol. 2011;83(10):1841–8. doi:https://doi.org/10.1002/jmv.22173PubMed
  22. Singleton RJ, Bulkow LR, Miernyk K, DeByle C, Pruitt L, Hummel KB, et al. Viral respiratory infections in hospitalized and community control children in Alaska. J Med Virol. 2010;82(7):1282–90. doi:https://doi.org/10.1002/jmv.21790PubMed
  23. Matthew J, Pinto Pereira LM, Pappas TE, Swenson CA, Grindle KA, Roberg KA, et al. Distribution and seasonality of rhinovirus and other respiratory viruses in a cross-section of asthmatic children in Trinidad, West Indies. Ital J Pediatr. 2009;35(1):16. doi:https://doi.org/10.1186/1824-7288-35-16PubMed
  24. Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O. Viral etiology of common cold in children, Finland. Emerg Infect Dis. 2009;15(2):344–6. doi:https://doi.org/10.3201/eid1502.081468PubMed
  25. Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berrè S, Terulla C, et al. Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol. 2008;80(4):716–23. doi:https://doi.org/10.1002/jmv.21108PubMed
  26. Jennings LC, Anderson TP, Beynon KA, Chua A, Laing RT, Werno AM, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax. 2008;63(1):42–8. doi:https://doi.org/10.1136/thx.2006.075077PubMed
  27. Garbino J, Gerbase MW, Wunderli W, Deffernez C, Thomas Y, Rochat T, et al. Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact. Am J Respir Crit Care Med. 2004;170(11):1197–203. doi:https://doi.org/10.1164/rccm.200406-781OCPubMed
  28. Hui DS, Chan MC, Wu AK, Ng PC. Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Postgrad Med J. 2004;80(945):373–81. doi:https://doi.org/10.1136/pgmj.2004.020263PubMed
  29. Cavallaro JJ, Monto AS. Community-wide outbreak of infection with a 229E-like coronavirus in Tecumseh, Michigan. J Infect Dis. 1970;122(4):272–9. doi:https://doi.org/10.1093/infdis/122.4.272PubMed
  30. Kapikian AZ, James HD, Jr, Kelly SJ, Dees JH, Turner HC, McIntosh K, et al. Isolation from man of “avian infectious bronchitis virus-like” viruses (coronaviruses) similar to 229E virus, with some epidemiological observations. J Infect Dis. 1969;119(3):282–90. doi:https://doi.org/10.1093/infdis/119.3.282PubMed
  31. www.who.int/docs/default-source/coronaviruse/situation-reports/20200223-sitrep-34-covid-19.pdf?sfvrsn=44ff8fd3_2
  32. https://apps.who.int/iris/bitstream/handle/10665/326126/WHO-MERS-RA-19.1-eng.pdf?ua=1
  33. WHO Wkly Epid Rec 2019;94(48):568-574
  34. www.who.int/docs/default-source/coronaviruse/situation-reports/20200214-sitrep-25-covid-19.pdf?sfvrsn=61dda7d_2
  35. Njouom R, Yekwa EL, Cappy P, Vabret A, Boisier P, Rousset D. Viral etiology of influenza-like illnesses in Cameroon, January-December 2009. J Infect Dis. 2012;206(Suppl 1):S29–35. doi:https://doi.org/10.1093/infdis/jis573PubMed
  36. Lekana-Douki SE, Nkoghe D, Drosten C, Ngoungou EB, Drexler JF, Leroy EM. Viral etiology and seasonality of influenza-like illness in Gabon, March 2010 to June 2011. BMC Infect Dis. 2014;14(1):373. doi:https://doi.org/10.1186/1471-2334-14-373PubMed
  37. Berkley JA, Munywoki P, Ngama M, Kazungu S, Abwao J, Bett A, et al. Viral etiology of severe pneumonia among Kenyan infants and children. JAMA. 2010;303(20):2051–7. doi:https://doi.org/10.1001/jama.2010.675PubMed
  38. Lagare A, Maïnassara HB, Issaka B, Sidiki A, Tempia S. Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger. BMC Infect Dis. 2015;15(1):515. doi:https://doi.org/10.1186/s12879-015-1251-yPubMed
  39. Venter M, Lassaunière R, Kresfelder TL, Westerberg Y, Visser A. Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa. J Med Virol. 2011;83(8):1458–68. doi:https://doi.org/10.1002/jmv.22120PubMed
  40. Elfving K, Shakely D, Andersson M, Baltzell K, Msellem MI, Björkman A, et al. Pathogen Clearance and New Respiratory Tract Infections Among Febrile Children in Zanzibar Investigated With Multitargeting Real-Time Polymerase Chain Reaction on Paired Nasopharyngeal Swab Samples. Pediatr Infect Dis J. 2018;37(7):643–8. doi:https://doi.org/10.1097/INF.0000000000001876PubMed
  41. Brini I, Guerrero A, Hannachi N, Bouguila J, Orth-Höller D, Bouhlel A, et al. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia. PLoS One. 2017;12(11):e0188325. doi:https://doi.org/10.1371/journal.pone.0188325PubMed
  42. Simusika P, Bateman AC, Theo A, Kwenda G, Mfula C, Chentulo E, et al. Identification of viral and bacterial pathogens from hospitalized children with severe acute respiratory illness in Lusaka, Zambia, 2011-2012: a cross-sectional study. BMC Infect Dis. 2015;15(1):52. doi:https://doi.org/10.1186/s12879-015-0779-1PubMed
  43. Delangue J, Roca Sanchez Y, Piorkowski G, Bessaud M, Baronti C, Thirion-Perrier L, et al. Viral aetiology influenza like illnesses in Santa Cruz, Bolivia (2010-2012). Virol J. 2014;11(1):35. doi:https://doi.org/10.1186/1743-422X-11-35PubMed
  44. da Silva ER, Pitrez MC, Arruda E, Mattiello R, Sarria EE, de Paula FE, et al. Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors. BMC Infect Dis. 2013;13(1):41. doi:https://doi.org/10.1186/1471-2334-13-41PubMed
  45. German M, Olsha R, Kristjanson E, Marchand-Austin A, Peci A, Winter AL, et al. Acute Respiratory Infections in Travelers Returning from MERS-CoV-Affected Areas. Emerg Infect Dis. 2015;21(9):1654–6. doi:https://doi.org/10.3201/eid2109.150472PubMed
  46. Luchsinger V, Ruiz M, Zunino E, Martínez MA, Machado C, Piedra PA, et al. Community-acquired pneumonia in Chile: the clinical relevance in the detection of viruses and atypical bacteria. Thorax. 2013;68(11):1000–6. doi:https://doi.org/10.1136/thoraxjnl-2013-203551PubMed
  47. Vong S, Guillard B, Borand L, Rammaert B, Goyet S, Te V, et al. Acute lower respiratory infections in ≥ 5 year -old hospitalized patients in Cambodia, a low-income tropical country: clinical characteristics and pathogenic etiology. BMC Infect Dis. 2013;13(1):97. doi:https://doi.org/10.1186/1471-2334-13-97PubMed
  48. Shi W, Cui S, Gong C, Zhang T, Yu X, Li A, et al. Prevalence of human parainfluenza virus in patients with acute respiratory tract infections in Beijing, 2011-2014. Influenza Other Respir Viruses. 2015;9(6):305–7. doi:https://doi.org/10.1111/irv.12336PubMed
  49. Huang G, Yu D, Mao N, Zhu Z, Zhang H, Jiang Z, et al. Viral etiology of acute respiratory infection in Gansu Province, China, 2011. PLoS One. 2013;8(5):e64254. doi:https://doi.org/10.1371/journal.pone.0064254PubMed
  50. Chakhunashvili G, Wagner AL, Power LE, Janusz CB, Machablishvili A, Karseladze I, et al. Severe Acute Respiratory Infection (SARI) sentinel surveillance in the country of Georgia, 2015-2017. PLoS One. 2018;13(7):e0201497. doi:https://doi.org/10.1371/journal.pone.0201497PubMed
  51. Farida H, Gasem MH, Suryanto A, Keuter M, Zulkarnain N, Satoto B, et al. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study. Int J Infect Dis. 2015;38:101–7. doi:https://doi.org/10.1016/j.ijid.2015.07.023PubMed
  52. Khadadah M, Essa S, Higazi Z, Behbehani N, Al-Nakib W. Respiratory syncytial virus and human rhinoviruses are the major causes of severe lower respiratory tract infections in Kuwait. J Med Virol. 2010;82(8):1462–7. doi:https://doi.org/10.1002/jmv.21823PubMed
  53. Lenahan JL, Englund JA, Katz J, Kuypers J, Wald A, Magaret A, et al. Human Metapneumovirus and Other Respiratory Viral Infections during Pregnancy and Birth, Nepal. Emerg Infect Dis. 2017;23(8). doi:https://doi.org/10.3201/eid2308.161358PubMed
  54. Khamis FA, Al-Kobaisi MF, Al-Areimi WS, Al-Kindi H, Al-Zakwani I. Epidemiology of respiratory virus infections among infants and young children admitted to hospital in Oman. J Med Virol. 2012;84(8):1323–9. doi:https://doi.org/10.1002/jmv.23330PubMed
  55. Zheng J, Hassan S, Alagaili AN, Alshukairi AN, Amor NMS, Mukhtar N, et al. Middle East Respiratory Syndrome Coronavirus Seropositivity in Camel Handlers and Their Families, Pakistan. Emerg Infect Dis. 2019;25(12). doi:https://doi.org/10.3201/eid2512.191169PubMed
  56. Memish ZA, Assiri A, Turkestani A, Yezli S, Al Masri M, Charrel R, et al. Mass gathering and globalization of respiratory pathogens during the 2013 Hajj. Clin Microbiol Infect. 2015;21(6):571.e1–8. doi:https://doi.org/10.1016/j.cmi.2015.02.008PubMed
  57. Memish ZA, Assiri AM, Hussain R, Alomar I, Stephens G. Detection of respiratory viruses among pilgrims in Saudi Arabia during the time of a declared influenza A(H1N1) pandemic. J Travel Med. 2012;19(1):15–21. doi:https://doi.org/10.1111/j.1708-8305.2011.00575.xPubMed
  58. Tan BH, Lim EA, Seah SG, Loo LH, Tee NW, Lin RT, et al. The incidence of human bocavirus infection among children admitted to hospital in Singapore. J Med Virol. 2009;81(1):82–9. doi:https://doi.org/10.1002/jmv.21361PubMed
  59. Shapiro D, Bodinayake CK, Nagahawatte A, Devasiri V, Kurukulasooriya R, Hsiang J, et al. Burden and Seasonality of Viral Acute Respiratory Tract Infections among Outpatients in Southern Sri Lanka. Am J Trop Med Hyg. 2017;97(1):88–96. doi:https://doi.org/10.4269/ajtmh.17-0032PubMed
  60. Chen YW, Huang YC, Ho TH, Huang CG, Tsao KC, Lin TY. Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses. J Microbiol Immunol Infect. 2014;47(2):116–21. PubMed
  61. Soonnarong R, Thongpan I, Payungporn S, Vuthitanachot C, Vuthitanachot V, Vichiwattana P, et al. Molecular epidemiology and characterization of human coronavirus in Thailand, 2012-2013. Springerplus. 2016;5(1):1420. doi:https://doi.org/10.1186/s40064-016-3101-9PubMed
  62. Mistik S, Gokahmetoglu S, Balci E, Onuk FA. Sore throat in primary care project: a clinical score to diagnose viral sore throat. Fam Pract. 2015;32(3):263–8. doi:https://doi.org/10.1093/fampra/cmv015PubMed
  63. Do AH, van Doorn HR, Nghiem MN, Bryant JE, Hoang TH, Do QH, et al. Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004-2008. PLoS One. 2011;6(3):e18176. doi:https://doi.org/10.1371/journal.pone.0018176PubMed
  64. Lambert SB, Allen KM, Druce JD, Birch CJ, Mackay IM, Carlin JB, et al. Community epidemiology of human metapneumovirus, human coronavirus NL63, and other respiratory viruses in healthy preschool-aged children using parent-collected specimens. Pediatrics. 2007;120(4):e929–37. doi:https://doi.org/10.1542/peds.2006-3703PubMed
  65. Roche P, Halliday L, O’Brien E, Spencer J. The Laboratory Virology and Serology Reporting Scheme, 1991 to 2000. Commun Dis Intell Q Rep. 2002;26(3):323–74. PubMed
  66. Jartti T, Jartti L, Peltola V, Waris M, Ruuskanen O. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr Infect Dis J. 2008;27(12):1103–7. doi:https://doi.org/10.1097/INF.0b013e31817e695dPubMed
  67. Civljak R, Tot T, Falsey AR, Huljev E, Vranes J, Ljubin-Sternak S. Viral pathogens associated with acute respiratory illness in hospitalized adults and elderly from Zagreb, Croatia, 2016 to 2018. J Med Virol. 2019;91(7):1202–9. doi:https://doi.org/10.1002/jmv.25437PubMed
  68. Cantais A, Mory O, Pillet S, Verhoeven PO, Bonneau J, Patural H, et al. Epidemiology and microbiological investigations of community-acquired pneumonia in children admitted at the emergency department of a university hospital. J Clin Virol. 2014;60(4):402–7. doi:https://doi.org/10.1016/j.jcv.2014.05.006PubMed
  69. Weigl JA, Puppe W, Meyer CU, Berner R, Forster J, Schmitt HJ, et al. Ten years’ experience with year-round active surveillance of up to 19 respiratory pathogens in children. Eur J Pediatr. 2007;166(9):957–66. doi:https://doi.org/10.1007/s00431-007-0496-xPubMed
  70. Sarateanu DE, Ehrengut W. A two year serological surveillance of coronavirus infections in Hamburg. Infection. 1980;8(2):70–2. doi:https://doi.org/10.1007/BF01639150PubMed
  71. Akmatov MK, Gatzemeier A, Schughart K, Pessler F. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens. PLoS One. 2012;7(11):e48508. <a href="https://journals.plos.org/pl