Insulin sensitivity in type 2 diabetes is closely associated with LDL particle size

Pierre A. Krayenbuehla, Peter Wieslib, Christoph Schmidb, Roger Lehmannb, Giatgen A. Spinab, Kaspar Berneisb

a Department of Internal Medicine and Medical Policlinic and
b Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich

Summary

Principles: Small dense LDLs have been found to be associated with type 2 diabetes (T2DM). This association has been observed in the context of decreased HDL cholesterol and increased triglycerides.

Methods: In the present study the relationship between LDL particle size and insulin sensitivity was assessed in 46 patients with T2DM (mean age 60 (11) years, HbA1c 7.6 (0.8) %). 75 g oral glucose tolerance testing was performed and composite insulin sensitivity index was calculated by the method of Matsuda and de Fronzo (ISI(comp)). Additional parameters included BMI, waist circumference, blood pressure, HDL cholesterol, triglycerides and LDL cholesterol. LDL particle size was measured by gradient gel electrophoresis.

Results: Log ISI(comp) correlated most strongly with LDL particle size (R = 0.61), less closely with HDL cholesterol (R = 0.48) and plasma triglycerides (R = -0.45) and not at all with LDL cholesterol (R = 0.001), as supported by multiple regression analyses where log ISI(comp) was associated with LDL particle size (p = 0.004) and HDL cholesterol (p = 0.027) but not with triglycerides and LDL cholesterol.

Conclusion: Log ISI(comp) estimated by a formula using endogenous insulin levels is very closely associated with LDL particle size in patients with T2DM. Our data suggest that smaller LDL particle size reflects the impact of insulin resistance on lipoprotein metabolism more strictly than do the traditional lipid parameters.

Key words: type 2 diabetes; insulin sensitivity; LDL particle size; plasma triglycerides; HDL cholesterol

Introduction

The worldwide incidence of type 2 diabetes mellitus is increasing and accounts for 6–12% of total health care expenditure in industrialised countries [1]. Hypertriglyceridaemia, low HDL cholesterol and an increased fraction of small dense LDL particles are frequent lipid abnormalities in insulin resistance and type 2 diabetes mellitus [2–4], and are associated with increased cardiovascular mortality [5, 6]. An association of LDL particle size with the cluster of risk factors that characterise the insulin resistance syndrome has also been demonstrated [7] and there is strong evidence that small dense LDL particles can be added to the group of changes described as syndrome X, also termed the metabolic syndrome [3, 8, 9].

The aim of the present study was to investigate the association of LDL particle size and of traditional lipid parameters, particularly HDL cholesterol and triglycerides with insulin sensitivity, in a cohort of patients with type 2 diabetes mellitus.

Methods

Patients were recruited from April 2001 to June 2002. Patients with type 2 diabetes treated by diet alone, metformin or repaglinide at the Division of Endocrinology, Diabetes and Clinical Nutrition and Medical Polyclinic of Zurich University Hospital were asked in the routine medical consultation to participate in the study. Exclusion criteria were symptomatic CHD, autonomic neuropathy and treatment with insulin or insulin sensitising agents. 46 patients who agreed to participate in the study were enrolled and all of them were included in the
Insulin sensitivity in type 2 diabetes is closely associated with LDL particle size.

Results

Subject characteristics

46 patients (33 men and 13 women) with type 2 diabetes were included in the study and underwent oral glucose challenge. Baseline characteristics of the patients are shown in Table 1. Average duration of diabetes was 7.2 (SD 6.6) years and HbA1c 7.6 (0.8) % at recruitment. Glucose lowering therapy consisted of diet only in 13 (28%) patients; 18 patients (39%) were treated with either repaglinide or metformin and 15 patients (33%) with both agents. 42 patients (91%) had a BMI over 25 kg/m² with a mean of 30 (4) kg/m² in the study population. Waist circumference was \(\geq 94 \) cm in 29 of the 33 men and \(\geq 80 \) cm in 12 of the 13 women, with a mean of 104 (10) cm. 34 (74%) had blood pressure \(\geq 130/80 \) mm Hg or were treated with antihypertensive drugs. 6 (13%) patients were on statin therapy and 8 (17%) patients were smokers. Fasting, 2 h-postload plasma glucose, indices determined during the OGTT, LDL particle size, lipid parameters and other laboratory data are shown in Table 1.

Correlation of LDL particle size, HDL cholesterol, triglycerides and LDL cholesterol with indices of insulin sensitivity

Figure 1 shows the correlation of LDL particle size and the traditional lipid parameters with both indices of insulin sensitivity. Of the four lipid parameters, LDL particle size showed the strongest correlation with log ISI(comp) (R = 0.61, p <0.001) and log HOMA-IR (R = –0.53, p = 0.001). A weaker but still significant correlation was found for HDL cholesterol and triglycerides with both indices of insulin sensitivity. Of the four lipid parameters, LDL particle size showed the strongest correlation with log ISI(comp) (R = 0.61, p <0.001) and log HOMA-IR (R = –0.53, p = 0.001). A weaker but still significant correlation was found for HDL cholesterol and triglycerides with both indices of insulin sensitivity. Of the four lipid parameters, LDL particle size showed the strongest correlation with log ISI(comp) (R = 0.61, p <0.001) and log HOMA-IR (R = –0.53, p = 0.001). A weaker but still significant correlation was found for HDL cholesterol and triglycerides.
with both indices. On the other hand, there was no correlation between LDL cholesterol and log ISI(comp) and log HOMA.

The relations of log ISI(comp) with LDL particle size and the three traditional lipid parameters of figure 1 were tested for significance by multiple regression analysis, including patient characteristics and baseline parameters (table 2). Log ISI(comp) remained significantly associated with LDL particle size (p = 0.004) and HDL cholesterol (p = 0.027), but not with triglycerides and LDL cholesterol.

Discussion

In the present study correlation analysis suggested, and multiple regression analysis afforded evidence, that LDL particle size in type 2 diabetes was by far the strongest marker of insulin sensitivity and stronger than traditional lipid parameters. To the best of our knowledge this is the first time this association has been clearly shown, (1) within a group of patients with type 2 diabetes, (2) using indices derived from endogenous insulin values (thus more closely addressing the importance of insulin sensitivity at ambient insulin levels than does the hyperinsulinaemic clamp method and preferentially addressing insulin sensitivity in skeletal muscle), and (3) using the sensitive lipid gel methodology.

It is well known that hypertriglyceridaemia, low HDL cholesterol and decreased LDL particle size are frequent lipid abnormalities in insulin resistance and type 2 diabetes mellitus [2–4, 20–24] and are associated with an increased risk of cardiovascular disease [5, 16–18]. In addition, an association of LDL particle size with the cluster of risk factors that characterise insulin resistance and the metabolic syndrome has also been demonstrated [7, 9], while there is strong evidence that the smaller denser LDL particles can be added to the group of changes described as syndrome X or metabolic syndrome [3, 8]. The present study suggests that determination of two standard key markers of diabetic dyslipidaemia – plasma triglycerides and HDL cholesterol – does not necessarily replace the analysis of apo-B-containing atherogenic particles such as small dense LDL. One reason for this finding may be that LDL size remains relatively stable over time, in contrast to plasma triglycerides which exhibit more marked alterations depending on the prandial state.

To avoid confounding by hyperglycaemia, the relationship between insulin resistance and lipoproteins has often been studied in normal subjects. However, the issue may be more complex but equally relevant in patients with type 2 diabetes; in the latter condition there may be not only impaired clearance of LDLs but also increased, hyperglycaemia-driven hepatic output of triglyceride-rich VLDL, as suggested in a study using stable isotopes [19].

In morbibly obese women with normoglycaemia, impaired glucose tolerance (IGT) and non-insulin-dependent diabetes mellitus (NIDDM) Barakat et al. found a decrease in plasma insulin and triglyceride levels and an increase in LDL size following gastric bypass surgery, while cholesterol and LDL cholesterol levels remained unchanged [20]. Haffner et al. have shown that LDL particle size is correlated with impaired glucose tolerance in non-diabetic subjects [21]. Importantly, Reaven and colleagues

Table 1

<table>
<thead>
<tr>
<th>Patients with type 2 diabetes (n = 46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Male gender, %</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
</tr>
<tr>
<td>Arterial hypertension, %</td>
</tr>
<tr>
<td>Smoking, %</td>
</tr>
<tr>
<td>Diabetes duration, y</td>
</tr>
<tr>
<td>Repaglinide therapy, %</td>
</tr>
<tr>
<td>Metformin therapy, %</td>
</tr>
<tr>
<td>Statin treatment, %</td>
</tr>
</tbody>
</table>

Laboratory data

- Haemoglobin A1c, %: 7.6 (0.8)
- Fasting plasma glucose, mmol/L: 8.7 (2.2)
- 2-h-postload plasma glucose, mmol/L: 16.2 (2.2)
- Insulin sensitivity index*: 1.7 (1.3–2.7)
- HOMA-IR**: 7.9 (5.2–6.8)
- Insulinogenic index*: 6.9 (3.5–14)
- ALT, U/L: 24 (16–34)
- Uric acid, mmol/L: 344 (287–391)
- Hs-CRP, mg/L: 10 000 / square root of Gluc0(mg/dl)xIns0(mU/L) x GlucMean(mg/dl)xInsMean(mU/L).
- Log ISI(comp) remained significantly associated with LDL particle size (p = 0.004) and HDL cholesterol (p = 0.027), but not with triglycerides and LDL cholesterol.
have demonstrated that among 100 normal adults, those with pattern B (predominance of small dense LDL particles) were more insulin resistant than those with pattern A, as judged by an oral glucose challenge, and that this relationship persisted even when differences in gender, age and the degree of obesity were taken into consideration [22]. On the basis of these data it has been suggested that the pattern B phenotype may reflect insulin resistance. Using nuclear magnetic resonance and hyperinsulinaemic clamps to compare insulin sensitive, insulin resistant individuals and untreated patients with type 2 diabetes it has been shown that insulin resistance was associated with an increase in VLDL size and a decrease in LDL particle size. However, no multivariate analysis to test whether the associations between altered lipoprotein sizes and insulin resistance are independent of the traditional lipid parameters within the group of patients with type 2 diabetes, such as HDL cholesterol and triglycerides, was reported in this paper [23] and, to the best of our knowledge, has not been so far. A strong inverse relationship between LDL particle size and triglycerides has been demonstrated in the literature, as summarised in [17]. Festa and colleagues demonstrated an inverse relation of LDL particle size and proinsulin concentrations, but in a heterogeneous population [24]. The studies summarised above and our present data are in contrast to a study by Lahdenpera et al., who, using euglycaemic clamping, found no difference in lipid, lipoprotein concentrations and LDL particle size distribution between the more insulin res-
In their study, LDL particle size was not associated with insulin-stimulated glucose uptake and serum insulin. The reason for these contrasting findings is unclear. Our data suggest that smaller LDL particle size reflects the impact of insulin resistance on lipoprotein metabolism more strictly than do the traditional lipid parameters. However, these associations cannot be interpreted as causal relationships.

There are a number of potentially confounding factors in the present study. Six subjects were under treatment with statins. Hypolipidaemic treatment with statins may result in a shift to larger LDL particles [26, 27]. Thus, these patients may have had even smaller LDL particles before initiation of hypolipidaemic treatment. Thirty-three patients were male and thirteen female. It is known that LDL particle size in women is larger than in men. However, antidiabetic therapy and gender were included in the multivariate regression analysis and did not remain in the final model for LDL particle size. Taken together, our data show that determination of LDL particle size provides information on the dyslipidaemic pattern characteristic of type 2 diabetes beyond that provided by measuring triglycerides and HDL cholesterol. Insulin resistance was most closely reflected by lower LDL particle size, which may not only represent an excellent marker but possibly also a mediator of the cardiovascular harm associated with insulin resistance in patients with type 2 diabetes.

We thank Susanne Vosmeer, Kaethy Dembinski, Heidi Seiler and Cornelia Zwimpfer for their excellent technical support. We thank Dr. G. Hinz, MEDIDATA Zurich, for assistance in statistical analysis.

Correspondence:
Kaspar Berneis, M.D.
University Hospital Zurich
Raemistrasse 100
CH-8091 Zurich
Switzerland
E-Mail: kaspar.berneis@usz.ch

Table 2

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent var. (final model)</th>
<th>Regression coeff. B</th>
<th>95% CI of B</th>
<th>Regression coeff. Beta (p-value)</th>
<th>Signif.</th>
<th>Partial R²</th>
<th>R² (adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL particle size</td>
<td>ISI comp (log)</td>
<td>7.3</td>
<td>2.4–12.1</td>
<td>0.347</td>
<td>0.004</td>
<td>0.42</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>Triglycerides (log)</td>
<td>-9.4</td>
<td>-13.5–5.3</td>
<td>-0.526</td>
<td><0.001</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>HDL cholesterol (log)</td>
<td>Statin treatment</td>
<td>0.22</td>
<td>0.05–0.38</td>
<td>0.269</td>
<td>0.010</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISI comp (log)</td>
<td>0.16</td>
<td>0.02–0.29</td>
<td>0.251</td>
<td>0.027</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triglycerides (log)</td>
<td>-0.22</td>
<td>-0.35–0.09</td>
<td>-0.423</td>
<td>0.003</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDL-cholesterol</td>
<td>0.11</td>
<td>0.04–0.17</td>
<td>0.151</td>
<td>0.003</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hs-CRP (log)</td>
<td>-0.07</td>
<td>-0.13–0.02</td>
<td>-0.105</td>
<td>0.008</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (log)</td>
<td>HDL-cholesterol (log)</td>
<td>-0.73</td>
<td>-1.15–0.11</td>
<td>-0.386</td>
<td>0.001</td>
<td>-0.48</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>LDL-cholesterol</td>
<td>0.20</td>
<td>0.09–0.31</td>
<td>0.130</td>
<td>0.001</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDL particle size</td>
<td>-0.03</td>
<td>-0.04–0.02</td>
<td>-0.486</td>
<td><0.001</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>Statin treatment</td>
<td>-0.83</td>
<td>-1.49–0.17</td>
<td>-0.105</td>
<td>0.015</td>
<td>-0.36</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>HDL-cholesterol (log)</td>
<td>1.95</td>
<td>1.02–2.88</td>
<td>0.582</td>
<td><0.001</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triglycerides (log)</td>
<td>1.18</td>
<td>0.68–1.68</td>
<td>0.667</td>
<td><0.001</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval; Beta: standardised regression coefficient. R²: coefficient of determination

References

Insulin sensitivity in type 2 diabetes is closely associated with LDL particle size.

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising. The 2006 impact factor is 1.346.
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of professional statisticians for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch

[Editorial Board details provided]