Ebstein’s anomaly – review of a multifaceted congenital cardiac condition

*From the Cardio Vascular Center Zurich, Zurich, Switzerland
b Cardiovascular Division, Division of Anatomical Pathology, the Mayo Clinic, Rochester MN, USA
c Division of Cardiovascular Surgery, the Mayo Clinic, Rochester MN, USA

Summary

Ebstein’s anomaly (EA) is a rare but fascinating congenital heart disorder accounting for <1% of all congenital heart defects. Since its description in 1866, dramatic advances in diagnosis and therapy have been made. In this review, we describe current diagnostic criteria and classification, natural history, clinical features, and prognosis, typical echocardiographic features and pathologic findings, and the spectrum of associated cardiac malformations including left heart anomalies associated with EA. Differences between Ebstein-like changes associated with congenitally corrected transposition and EA are described. The spectrum of typical ECG and conduction system changes, arrhythmias including accessory pathways and ectopic atrial tachycardias related to EA are also reviewed. Differential diagnosis of EA is discussed including tricuspid valve dysplasia and prolapse as well as arrhythmogenic right ventricular cardiomyopathy. The review describes management options in EA including catheter interventions, indication for operation and surgical options including tricuspid valve repair and replacement.

Overall, EA is a complex congenital anomaly with a broad pathologic-anatomical and clinical spectrum and no two patients are alike. Therefore, precise knowledge of the different anatomic and hemodynamic variables, associated malformations and management options are essential. Management of EA patients is complex. Thus it is important that these patients are regularly seen by a cardiologist with expertise in congenital heart disease.

Key words: Ebstein's anomaly; tricuspid valve repair; diagnosis; echocardiography; arrhythmias; surgery

Introduction

Ebstein’s anomaly (EA) is a rare but fascinating congenital heart disorder which occurs in about 1–5 per 200,000 live births, accounting for <1% of all congenital heart disease [1–3]. This anomaly is currently most easily diagnosed by echocardiography. In the past, diagnosis was established most commonly at autopsy. By 1950 only three cases of EA had been published in the first volume of Circulation [4]. Since then EA has been increasingly recognised but its ideal management still poses problems for attending cardiologists. In this review we summarise the current data on EA.

Historical background

Wilhelm Ebstein (see figure 1) was born in Prussia in 1836 and graduated with a medical degree from Berlin in 1859 [5, 6]. He published on obesity, metabolic disease and the gastrointestinal system, but his fame stems from an article on congenital heart disease. In 1866 Ebstein described the first case of a malformation of the tricuspid valve, entitled “Concerning a very rare case of insufficiency of the tricuspid valve caused by a congenital malformation”. The patient was a 19-year-old man with a long history of dyspnoea and palpitations [5, 6]. Prior to his death he was extremely cyanotic, with marked jugular venous pulsations synchronous with the heart beat, cardiomegaly and a systolic murmur extending into diastole. At autopsy Ebstein described an enlarged and fenestrated anterior tricuspid leaflet; the posterior and septal leaflets were hypoplastic, thickened and adherent to the right ventricle, there was a thinned and dilated atrialised portion of the right ventricle, an enlarged right atrium and a patent foramen ovale [7]. A figure from the original article is shown.
The embryonic events leading to EA are not clearly defined. The leaflets of the tricuspid valve develop equally from the endocardial cushion tissues and the myocardium [10]. Some of the spectrum of EA is reminiscent of the developing tricuspid valve during week 8 of development. The leaflets and tensile apparatus of the atrioventricular valves seem to be formed by a process of delamination of the inner layers of the inlet zone of the ventricles. In EA, delamination of these leaflets may have failed to occur due to an incompletely understood mechanism [11].

There are heterogeneous genetic factors in EA. Most cases are sporadic; familial EA is rare. Sometimes EA has been observed in familial clustering of congenital heart disease. In Labrador retriever kindreds a tricuspid valve malformation resembling EA has been mapped to chromosome 9 [12]. A genetic study of 26 families with EA has been performed [13] in which 93 of 120 first degree relatives were investigated. No case of EA was found, but 2 first degree relatives had ventricular septal defects and another, who died at 7 months, was said to have congenital heart disease. In distant relatives there were 2 with ventricular septal defects and 2 with Fallot’s tetralogy.

Maternal lithium therapy may in rare cases lead to Ebstein’s anomaly of the offspring [14]. Other environmental factors such as viral infections are in rare cases a cause of Ebstein’s anomaly.

Embryology and genetics

The embryonic events leading to EA are not clearly defined. The leaflets of the tricuspid valve develop equally from the endocardial cushion tissues and the myocardium [10]. Some of the spectrum of EA is reminiscent of the developing tricuspid valve during week 8 of development. The leaflets and tensile apparatus of the atrioventricular valves seem to be formed by a process of delamination of the inner layers of the inlet zone of the ventricles. In EA, delamination of these leaflets may have failed to occur due to an incompletely understood mechanism [11].

There are heterogeneous genetic factors in EA. Most cases are sporadic; familial EA is rare. Sometimes EA has been observed in familial clustering of congenital heart disease. In Labrador retriever kindreds a tricuspid valve malformation resembling EA has been mapped to chromosome 9 [12]. A genetic study of 26 families with EA has been performed [13] in which 93 of 120 first degree relatives were investigated. No case of EA was found, but 2 first degree relatives had ventricular septal defects and another, who died at 7 months, was said to have congenital heart disease. In distant relatives there were 2 with ventricular septal defects and 2 with Fallot’s tetralogy.

Maternal lithium therapy may in rare cases lead to Ebstein’s anomaly of the offspring [14]. Other environmental factors such as viral infections are in rare cases a cause of Ebstein’s anomaly.
Pathological features

EA occurs in about 2.5% of autopsy series in patients with congenital heart disease, males and females being affected equally [15, 16].

EA is a malformation of the tricuspid valve and right ventricle marked by a spectrum of several features which include: 1) adherence of the tricuspid valve leaflets to the underlying myocardium (failure of delamination); 2) downward (apical) displacement of the functional annulus (septal>posterior>anterior); 3) dilation of the “atrialised” portion of the right ventricle with variable degrees of hypertrophy and thinning of the wall; 4) redundancy, fenestrations, and tethering of the anterior leaflet; and 5) dilation of the right atrioventricular junction (true tricuspid annulus) [16–18]. In the normal heart there are three tricuspid valve leaflets which are called “anterior, posterior and septal” or “anterosuperior, inferior and medial (septal)” [3, 10]. Typical of EA is apical displacement of the hinge point of the valve from the atrioventricular ring (septal>posterior>anterior leaflet, see figure 3) [3, 11, 19, 20]. In the echocardiographic image this distance is measured from the point of insertion of the anterior mitral valve leaflet to the point of insertion of the septal tricuspid valve leaflet. The anterior leaflet is not usually displaced. The point of maximum displacement is the commissure between the posterior and septal leaflets [11]. Even in normal human hearts there is some downward displacement of the septal and posterior tricuspid leaflets relative to the anterior mitral leaflet but always < than 0.8 cm/m² body surface area [16]. In EA the spectrum of the malformation may range from only minimal displacement of the septal and posterior leaflets up to an imperforate membrane or muscular shelf between the inlet and trabecular zones of the right ventricle. The anterior tricuspid leaflet is the most likely to have some degree of delamination; it may be severely deformed, so that the only mobile leaflet tissue is displaced into the right ventricular outflow tract or, in less severe cases, it forms a large sail-like intracavitary curtain.

The anterior leaflet may contain not only a true orifice but also several accessory orifices [16]. The chordae tendineae to the anterior leaflet are generally short and poorly formed (see figure 4).

In EA, the right ventricle is divided into 2 parts: the inlet portion is functionally integrated with the right atrium (atrialised right ventricle), and the other, trabecular and outlet portions, constitute the functional right ventricle.

This anomaly results in variable but often marked dilatation of the true tricuspid annulus and the presence of a large chamber separating the true tricuspid annulus from the functional right ventricle (atrialised portion of the right ventricle) as shown in figure 4 [3]. The true anatomical tricuspid annulus is not displaced; however, it is less well defined than in a normal heart [16]. Other features include tricuspid valve dysplasia with adherence of the tricuspid leaflets to the underlying myocardium (failure of delamination), redundancy, fenestrations (accessory orifices), tethering of the anterior leaflet, right ventricular dysplasia and abnormalities of the distal attachments of the tricuspid valve [4]. The dysplastic tricuspid valve may be incompetent and/or stenotic.

Two thirds of hearts with EA exhibit dilated right ventricles. Dilatation often involves not only the atrialised right ventricle but also the functional right ventricle and infundibulum. In some cases, right ventricular dilatation is so marked that the ventricular septum bulges leftward, compressing the left ventricular chamber [16]. In severe cases the inferior wall of the right ventricle may consist solely of thin fibrous tissue resembling a post infarction aneurysm [16]. A study by Celermajer [21] comparing the hearts of six neonates with severe EA showed that there was significant thinning of the right ventricular free wall distal to the tricuspid valve.

A study by Zuberbuhler et al. analysed 14 EA hearts at autopsy [20]. There was wide variability in the communication between inlet and trabecular portions of the right ventricle, which could be between the papillary muscles, through a pinhole or foramen. In two cases the anterior tricuspid valve leaflet was imperforate, with no communication [20]. The septal tricuspid valve leaflet may be slightly dysplastic, rudimentary, or have the appearance of cauliflower excrescences. The anterior leaflet may be normally formed or display a sail-like structure with variable adhesions.
In 1988, Carpentier proposed the following classification for EA [22]: type A: the volume of the true right ventricle is adequate; type B, there is a large atrialised component of the right ventricle but the anterior leaflet moves freely; type C, the anterior leaflet is severely restricted in its movement and may cause significant obstruction of the right ventricular outflow tract; and type D, almost complete atrialisation of the ventricle with the exception of a small infundibular component. This classification is not currently used at our institution, because in actual cases there may be little correlation between the degrees of severity of the various components of the anomaly listed in this classification (degree of leaflet tethering, degree of apical displacement, degree of dilatation of the atrialised right ventricle etc) [3].

Later, Celermajer et al. described an echocardiographic grading score for neonates with EA, GOSE (= Glasgow Outcome Score Extended) Score Grade 1–4 [23]. For this score the ratio of the combined area of the right atrium and atrialised right ventricle to that of the functional right ventricle and left heart in a four-chamber view at end-diastole was calculated (ratio <0.5, grade 1; ratio 0.5–0.99, grade 2; ratio 1.0–1.49, grade 3; and if ratio ≥1.5, grade 4).

We have employed two approaches in describing the severity of the anatomical deformity of hearts with EA. The first is based on the echocardiographic image, in which the pathology is described as anatomically mild, moderate, or severe, as derived from an impression formed by summation of the amount of displacement of the leaflets, the degree of tethering of the anterior leaflet, and the degree of right ventricular dilatation. This classification, which resembles others, is imprecise and subjective but has the advantage of simplicity. Our second approach is to describe the exact anatomy of each of the Ebstein heart structures involved, as visualised at operation and recorded in the operative note. A detailed nomenclature is then employed which emphasises the features that surgeons have found to be important when considering valve repair versus valve replacement [3].

Associated cardiac malformations

In addition to right-sided abnormalities of the heart, abnormalities of left ventricular function and morphology as well as other left heart lesions have been documented, as shown in table 1 [17–19, 24–27].

Angiographic analysis of the left ventricle in 26 patients with EA showed that in 12 of them left ventricular end-diastolic volume was increased >80 ml/m² body surface area, while the left ventricular ejection fraction was decreased in 8 but
never in patients with reduced left ventricular cavities [24]. Sixteen patients had an abnormal pattern of left ventricular contraction.

We recently reported on 3 patients with EA who had left ventricular echocardiographic features resembling noncompaction [28]. We subsequently analysed 106 consecutive patients with EA and found left heart abnormalities including abnormal valves, myocardial dysplasia, or a ventricular septal defect in 39%. 18% of the patients had left ventricular dysplasia resembling noncompaction. Left ventricular systolic dysfunction occurred in 7 patients [29].

Overall, an interatrial communication is present in 80–94% of patients with EA [2, 30]. In an autopsy study of 15 EA cases, 3 had a perimembranous or muscular VSD, 13 had an atrial septal defect, 2 had a patent ductus arteriosus, and one case each had pulmonary atresia, patent foramen, coarctation or persistent left superior vena cava [20].

Complex EA includes patients with pulmonary stenosis or pulmonary atresia, ventricular septal defect, mitral stenosis and in rare cases tetralogy of Fallot [27].

Bilateral Ebstein’s has been described [31, 32]. In one patient with bilateral EA, the mural leaflet of the mitral valve was diffusely adherent to the left ventricular wall, with the anterior mitral leaflet plastered against the septal wall, producing an atrialised area and restricting the subaortic outflow tract. Hypoplasia of the ascending aorta was also present [32].

Table 1

<table>
<thead>
<tr>
<th>Heart Lesion</th>
<th>Reported Abnormality</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic valve</td>
<td>Bicuspid</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td>Atresia</td>
<td>Rare</td>
</tr>
<tr>
<td>Aorta</td>
<td>Coarctation</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hypoplasia</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Subaortic stenosis</td>
<td>Rare</td>
</tr>
<tr>
<td>Mitral valve</td>
<td>Prolapse</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td>Cleft</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Parachute</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Additional chordae</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td>Accessory tissue</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td>Double orifice mitral valve</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Dysplasia</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Supravalvular ring</td>
<td>Extremely rare</td>
</tr>
<tr>
<td>Pulmonary veins</td>
<td>Stenosis of individual veins</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Cor triatriatum</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Partial or total anomalous pulmonary venous connection</td>
<td>Extremely rare</td>
</tr>
<tr>
<td>Left ventricular myocardium</td>
<td>Noncompaction</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td>Endomyocardial fibroelastosis</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hypertrophic cardiomyopathy</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Abnormal papillary muscle</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Abnormal muscle bands</td>
<td>Occasional</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>Muscular</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td>Perimembranous</td>
<td>Occasional</td>
</tr>
<tr>
<td>Pulmonary valve/artery</td>
<td>Hypoplastic pulmonary artery</td>
<td>Occasionally</td>
</tr>
<tr>
<td></td>
<td>Pulmonary atresia</td>
<td>Extremely rare</td>
</tr>
<tr>
<td></td>
<td>Pulmonary stenosis</td>
<td>Occasional</td>
</tr>
<tr>
<td>Atrioventricular septal defect</td>
<td>Complete, partial</td>
<td>Extremely rare</td>
</tr>
</tbody>
</table>

Ebstein’s anomaly in congenitally corrected transposition of the great arteries

Corrected transposition of the great arteries is rare, occurring in 0.6–1.4% of patients with congenital heart disease. Most patients with congenitally corrected transposition of the great arteries have an abnormal systemic tricuspid valve, thus fulfilling the EA criteria in 15–50% of patients [11, 33–35]. It is unclear whether the fundamental nature of EA is identical in concordant and discordant atrioventricular connections [36, 37]. Pathoanatomically, left-sided EA differs from
right-sided EA in the following criteria: the atrioventricular sulcus circumference is not increased; the anterior leaflet of the valve is anatomically different and smaller, with a cleft in 30% of cases; and the anterior leaflet may interfere with the ventricular outflow and the ventricular cavity [37]. In addition, the morphologically right ventricle is rarely dilated in young patients [17, 18]. In an autopsy study of 14 patients with corrected transposition of the great arteries, the atrialised portion of the morphologically right ventricle was, contrary to hearts with EA and concordant atrioventricular connections, thinned and dilated in only 1 case [36].

Echocardiographic features of Ebstein’s anomaly

![Figure 5](image1.png)
Figure 5 Echocardiographic example in a patient with severe Ebstein’s anomaly with apical displacement of the dysplastic tricuspid valve’s functional orifice. RV = right ventricle; ARV = atrialised right ventricle; RA = right atrium. This is the apical four chamber view (apex down) in a patient with severe Ebstein’s anomaly (displacement index 22 mm/m² body surface area). The arrow points to the functional orifice of the dysplastic tricuspid valve with the grossly displaced septal leaflet. The anterior leaflet is severely tethered and nearly immobile.

![Figure 6](image2.png)
Figure 6 Echocardiographic example of mild Ebstein’s anomaly. RV = right ventricle; RA = right atrium; LA = left atrium; LV = left ventricle. This is the apical 4-chamber view (apex down) of a patient with mild Ebstein’s anomaly. There is only mild displacement of the septal leaflet (arrow) by 11 mm/m² body surface area. The anterior leaflet is mobile, the right ventricle only mildly enlarged.

Echocardiography is currently the diagnostic test of choice for EA and has largely obviated the need for cardiac catheterisation as a diagnostic tool in EA [38]. Echocardiographic examples of severe and mild EA are shown in figures 5–7.

Echocardiography allows accurate evaluation of the tricuspid valve leaflets, the size of the right atrium and size and function of both ventricles. The principal feature of EA is apical displacement of the septal tricuspid valve leaflet from the insertion of the anterior leaflet of the mitral valve by at least 8 mm/m² body surface area [16]. Tethering of the tricuspid valve is present if there are at least 3 accessory attachments of the leaflet to the ventricular wall, causing restriction of valve leaflet motion [39]. Valvular dysplasia may also occur in EA and is defined as the presence of valvular thickening, nodularity and irregularity. Right ventricular dysplasia is defined as decreased wall thickness <2 standard deviations (SD), dilatation (chamber dimensions >2 SD) and dyskinesis (paradoxical septal motion, paradoxical systolic expansion of the atrialised right ventricle or markedly decreased wall motion) of the atrialised or functional right ventricle or both. Marked enlargement of the right atrium and atrialised right ventricle is considered to be present if the combined area of the right atrium and atrialised right ventricle is larger than the combined area of the functional right ventricle, left atrium and left ventricle measured in the apical four chamber view at end-diastole [23].

The site and degree of tricuspid valve regurgitation and the feasibility of valve repair are also assessed by echocardiography [17, 18]. Cine MRI may also be helpful in providing a better assessment of both right and left ventricular size and function when echocardiographic images are limited [40, 41].
Clinical features

Presentation

The cardinal symptoms in EA are cyanosis, right-sided heart failure and arrhythmias. The clinical presentation is dependent on age at presentation and the degree of haemodynamic disturbance, which in turn is dependent on the extent of displacement of the tricuspid valve leaflets, the size and function of the right ventricle, right atrial pressure and degree of right-to-left interatrial shunting [38].

On examination, the jugular venous pulse rarely shows a large v-wave despite the presence of severe tricuspid valve regurgitation, since the large right atrium engulfs the increased volume. A multiplicity of sounds and murmurs from the right heart with a widely and persistently split second heart sound are typical [38]. Digital clubbing depends on the degree of cyanosis [38].

In utero, severe EA may lead to cardiomegaly, hydrops and tachyarrhythmias. EA is a common lesion referred for foetal echocardiography by the obstetrician [39]. The intrauterine mortality rate is high in the severe forms of EA [42].

Neonates with EA may present with congestive heart failure due to tricuspid valve regurgitation, cyanosis, and marked cardiomegaly caused by right heart dilation [39]. 20–40% of all neonates diagnosed with EA will not survive 1 month, and fewer than 50% will survive to 5 years of age. If neonates are symptomatic their prognosis is almost always very poor [21, 43, 44]. In subjects <2 years old at presentation, a haemodynamic problem is more common than in older patients (72% versus 29%, p <0.01). In subjects >10 years old at presentation, an electrophysiological problem is more common than in younger patients (43% versus 10%, p <0.01); these data are shown in table 2 [23].

Symptomatic children with EA may have progressive right heart failure, but most will reach adolescence and adulthood. In adulthood, patients usually present with arrhythmias, progressive cyanosis, decreasing exercise tolerance or right heart failure. In the presence of an interatrial communication, the risk of paradoxical embolisation, brain abscess and sudden death is increased [23]. Exercise tolerance is dependent on heart size (by echocardiography or chest radiograph) reflecting right ventricular dilatation and oxygen saturation at rest [45]. In patients with EA undergoing surgical repair, exercise tolerance is significantly greater postoperatively [46]. Surgery brings about an especial improvement in exercise intolerance in patients with an atrial septal defect, although tricuspid valve repair or replacement favourably affects cardiac output response to exercise [46].

Table 2
Presenting features in the different age groups.

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>foetus</th>
<th>neonates</th>
<th>children</th>
<th>adolescent</th>
<th>adult</th>
<th>total %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21 pt</td>
<td>88 pt</td>
<td>73 pt</td>
<td>15 pt</td>
<td>23 pt</td>
<td>220 pt</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>0</td>
<td>65</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>83 (38%)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>0</td>
<td>9</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>31 (14%)</td>
</tr>
<tr>
<td>Incidental murmur</td>
<td>0</td>
<td>8</td>
<td>36</td>
<td>5</td>
<td>3</td>
<td>52 (24%)</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>29 (13%)</td>
</tr>
<tr>
<td>Abnormal foetal scan</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18 (8%)</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>7 (3%)</td>
</tr>
</tbody>
</table>

Neonates = 0–1 month; children = 10 years; adolescent = 18 years; adult >18 years at time of presentation.

ECG changes, conduction system, arrhythmias and pacing

In most patients with EA the ECG is abnormal. An example is shown in figure 8. The ECG may show tall and broad P waves due to right atrial enlargement, as well as complete or incomplete right bundle branch block [38]. The R waves in leads V1 and V2 are small. First degree atrioventricular block occurs in 42% of EA patients, partly due to right atrial enlargement and partly due to structural abnormalities of the atrioventricular conduction system [38, 47]. The conduction system is situated normally [19, 48], but the A-V node may be compressed with abnormal formation of the central fibrous body and the right bundle branch may be abnormal and/or show marked fibrosis [11]. Complete heart block is rare in EA. Bizarre morphologies of the terminal QRS pattern result from infra-Hissian conduction disturbance and abnormal activation of the atrialised right ventricle [49]. Patients with EA have a high potential for developing tachyarrhythmias which are a common cause of morbidity and death.

The downward displacement of the septal tricuspid valve leaflet is associated with discontinuity of the central fibrous body and septal atrioventricular ring with direct muscular connections, thus creating a potential substrate for accessory atrioventricular connections and ventricular preexcitation [15, 16].

In 6–30% of patients with EA such connections are multiple and there are one or more accessory path-
Ebstein’s anomaly – review of a multifaceted congenital cardiac condition

ways [2, 38, 49, 50]. Most of the accessory pathways are located around the orifice of the malformed tricuspid valve [47]. It is almost always Wolff-Parkinson-White pattern type B. Overall, approximately 14–20% of EA patients will have one or more accessory conduction pathways with Wolff-Parkinson-White syndrome [30]. Daliento found Wolff-Parkinson-White syndrome in 4 of 26 patients [24]. The occasional occurrence of sudden cardiac death in patients with EA is believed to be due to atrial fibrillation in the presence of Wolff-Parkinson-White syndrome [49].

In addition to the tachycardias from accessory pathways, ectopic atrial tachycardia, atrial flutter, atrial reentry tachycardia, atrial fibrillation, and ventricular tachyarrhythmias may also occur [49]. Acquired incisional atrial tachycardia is also common in EA.

An early study of 52 patients undergoing surgical repair of EA at the Mayo Clinic at a mean age of 18 years showed that preoperatively 65% had arrhythmias including paroxysmal supraventricular tachycardias (35%), paroxysmal atrial fibrillation or flutter (19%), ventricular arrhythmias (15%) or high degree atrioventricular block (6%) [51]. There were 5 perioperative deaths; 4 occurred in patients with perioperative ventricular tachycardia or ventricular fibrillation. During a 31-month follow-up, patients who did not have preoperative arrhythmias did not develop new arrhythmias postoperatively.

Overall, supraventricular arrhythmias occur in 10–20% of older patients with EA and in 5–10% of neonates. Atrioventricular nodal reentry tachycardia is found in 1–2% of EA patients.

Permanent pacing is required in 3.7% of patients with EA. Problems of permanent pacing in EA were reviewed in 15 patients, 11 of whom needed pacing for A-V block and 4 needed pacing for sinus node dysfunction [52]. All eight patients with a VVI pacemaker were paced epicardially; 2 patients with DDD pacemakers had transvenous atrial and ventricular leads, 4 DDD patients had transvenous atrial leads and epicardial ventricular leads, and 1 patient had both epicardial and transvenous systems. Complications requiring surgical intervention occurred in four patients (lead displacement, lead failure, a lead causing tricuspid regurgitation, and exit block with secondary diaphragmatic stimulation) [52]. In the presence of tricuspid valve prosthesis, the ventricular lead for permanent DDD-pacing is most commonly achieved by an epicardial approach or an approach through the coronary sinus or a cardiac vein. Alternatively, for preoperative bradyarrhythmias, a previously-placed transvenous ventricular lead may be located outside the prosthesis sewing ring at the time of implantation of the prosthesis. Placement of a transvenous ventricular lead through a bioprosthesis is effective but less desirable because of the possibility of propping one of the valve cusps open, thus creating tricuspid regurgitation; this complication can be prevented by transoesophageal echocardiographic monitoring to insure the lead lies safely in a commissure between the cusps.

Differential diagnosis

Cardiac disorders causing tricuspid valve regurgitation and primary right-sided heart chamber enlargement may be misdiagnosed as EA. The analysis of 22 patients misdiagnosed as EA prior to referral to the Mayo Clinic showed that EA could be ruled out by the absence of apical displacement of the septal tricuspid leaflet of ≥8 mm/m² and lack of a redundant, elongated anterior tricuspid leaflet [53]. The most common diagnosis was tricuspid valve dysplasia, while other diagnoses included tricuspid valve prolapse, traumatic changes of the tricuspid valve, arrhythmogenic right ventricular cardiomyopathy, and tricuspid valve endocarditis.

Natural history and prognosis

The largest study reporting the natural history of 505 patients with EA was published 30 years ago [50]. This study consisted primarily of patients aged 1–25 years, 67 patients were >25 years and only 35 were <1 year old. Of the infants below 1 year old, 72% were in heart failure, but in 81% of the others growth and development during infancy were average or good. 71% of children and
adolescents and 60% of adults had little or no disability and were classified as NYHA I or II [50]. After initially high mortality from congestive heart failure during the first few months of life, mortality settled at an average of 12.4% spread uniformly throughout childhood and adolescence. 13.3% died of natural causes and 31 of the 57 patients (54%) who underwent surgical treatment did not survive the operation. This study was published prior to the echocardiographic era and thus does not reflect the EA population we currently encounter.

Echocardiographic features correlating with early death at 3 months of age were tethered distal attachments of the anterosuperior tricuspid leaflet, severity of right ventricular dysplasia, left ventricular compression by right heart dilatation and area of the combined right atrium and atrialised right ventricle larger than the combined area of the functional right ventricle, left atrium and left ventricle measured in the 4-chamber view [39]. The degree of apical displacement of the septal leaflet does not seem to be a prognostic feature [39]. Shinia et al. reported that absence of the septal leaflet predicted poor functional capacity [54].

Obstruction of pulmonary blood flow is another cardiovascular lesion associated with early mortality in EA [39]. Another study found that any associated cardiovascular anomalies were associated with increased mortality [55].

Celermajer et al. reviewed 220 cases with 1–34 years’ follow-up. Actuarial survival for all live-born patients was 67% at 1 year and 59% at 10 years [23]. Predictors of death were echocardiographic grade of severity at presentation (relative risk increased by 2.7 for each increase in grade, CI 1.6–4.6), foetal presentation (6.9, CI 1.6–16.5), and right ventricular outflow tract obstruction (2.1, CI 1.1–4.4).

Bialostozky et al. analysed the data of 65 patients (all <48 years), 20 patients were >20 years old at last follow-up and only 5 were >30 years [56]. In this rather young population asymptomatic or mildly symptomatic acyanotic patients without arrhythmias had a good prognosis; the only death (sudden cardiac death) occurred in a 30-year-old asymptomatic male with a history of paroxysmal tachycardia. Some moderately or severely symptomatic patients died suddenly, in a number of cases due to ventricular arrhythmias or surgical therapy. The only survivor of the severely symptomatic group (age 46) had had heart failure for at least 10 years.

In rare cases patients with EA live to over 70 years of age, and one reported patient died at the age of 85 [38].

In an early study of 67 EA patients with a mean follow-up of 12 years, 39% of patients remained in functional class I or II and 61% progressed into class III or IV. Death occurred in 14 (21%) patients and this was predicted by the following factors: functional class III or IV, moderate to severe cardiomegaly with a cardiothoracic ratio of >0.65, cyanosis or O2 saturation of <90%, or being infants at the time of diagnosis [38]. In the 31 patients undergoing surgery modified tricuspid annuloplasty seemed to be the procedure of choice; 12 of 16 patients so treated improved [38].

Management

Medical

Patients with mild forms of EA may be followed medically for many years. Regular evaluation by a cardiologist with expertise in congenital heart disease is recommended.

Endocarditis prophylaxis is recommended in EA, though the risk of endocarditis is low.

Physical activity recommendations are summarized in Task Force 1 on Congenital Heart Disease (26th Bethesda Conference: Recommendations for Determining Eligibility for Competition in Patients with Cardiovascular Abnormalities) [57]. Athletes with mild EA, nearly normal heart size and no arrhythmias can participate in all sports. Athletes with severe EA are precluded from sports unless the patient has been optimally repaired, has a nearly normal heart size and there is no history of arrhythmias.

In patients with EA and cardiac failure who are not candidates for surgery, we recommend standard heart failure treatment including diuretics and digoxin; the efficacy of ACE inhibitors in right heart failure in this situation is unproven. Heart transplantation is an alternative treatment option in select patients who are not candidates for standard surgical treatment.

Catheter interventions

At present most patients with symptomatic WPW syndrome, with or without EA, should undergo electrophysiological evaluation and probably radiofrequency ablation of the accessory pathway(s). Catheter ablation has a lower success rate in EA than in cases with structurally normal hearts, and the risk of recurrence is higher [58, 59]. In one study, 26 of 30 patients underwent successful radiofrequency ablation of the arrhythmogenic substrate [49]. All types of supraventricular tachyarrhythmia associated with EA should also be successfully ablated at the time of repair of EA after electrophysiological identification for best late results [60, 61]. This can be accomplished without an increase in operative mortality [60].

Surgical options

In an early report published in 1959, two patients who had undergone tricuspid valve repair died [62]. Successful surgery for tricuspid regurgi-
tation in EA was first described in 1962, the tricuspid valve being replaced by a prosthesis [63]. The initial review of EA patients undergoing tricuspid valve replacement found surgical mortality of 54% [50]. Disappointing results at that time were also similar high early mortality and unsatisfactory late results for tricuspid valve repair by the methods available at that time [62, 64].

In 1972 we introduced a modified annuloplasty and repair and reported the results in 16 patients [65]. The mortality was lower (13% early, 13% late) than previously reported, but higher than currently obtained. Subsequently, 25 years’ experience with 314 patients was reviewed in 1997; overall early mortality was 6.4% and late mortality 7.3% [66]. Since the initial report we have also used other modifications of valve repair and replacement, depending on the anatomy encountered [18, 67]. One technique for tricuspid valve repair is shown in figure 9. This allows the anterior leaflet to function as a monocuspid valve. Valve repairs are feasible if the anterior
leaflet is mobile and not too deficient (at least 50\% of normal size). Most fenestrations can be repaired. The main prerequisite for successful repair is a free leading edge of the anterior leaflet. Repairs may be done with or without internal plication of the atrialised right ventricle.

In 1988 Carpentier proposed his repair involving mobilisation of the anterior tricuspid leaflet [22]. For his types B and C, temporary detachment of the anterior leaflet and adjacent part of the posterior leaflet was followed by longitudinal plication of the atrialised ventricle and adjacent right atrium, repositioning of the anterior and posterior leaflets to cover the orifice area at normal level, and remodelling and reinforcement of the tricuspid annulus with a prosthetic ring. His group described their experience with this repair in 191 patients with a mean age of 24 ± 15 years [68]. They reported that conservative surgery was possible in 98\% of patients selected with the intention of performing reconstructive surgery. Early mortality was 9\% and late survival 82 ± 5\% at 20 years. The most common causes of death were right heart failure and arrhythmias.

As noted previously, 20–40\% of severely symptomatic neonates with EA will not survive the first month. In the neonate, a cardiothoracic ratio greater than 0.85, GOSE echocardiographic severity score grade 4 or grade 3 associated with cyanosis, and severe tricuspid regurgitation all predict neonatal death without surgery [23, 69]. Historically, operative mortality in neonates with EA has been prohibitive, but recent improvements in neonatal management and surgery have yielded encouraging results [69]. Biventricular repair combined with correction of all associated cardiac defects is feasible, and the medium-term results are good [69].

There is controversy as to the merit of usually or routinely adding a bidirectional cavopulmonary shunt after tricuspid valve repair or replacement to reduce right ventricular volume load. The disadvantages include a longer operating time, loss of catheter access to the right heart from the upper extremities for procedures such as rhythm assessment and ablation or placement of transvenous pacemaker leads, and late sequelae in some patients troubled by pulsations in the neck veins. We occasionally use a bidirectional cavopulmonary shunt when the right ventricle is functioning poorly and it is difficult to wean the patient from cardiopulmonary bypass. Because concomitant left ventricular dysfunction may be present when the right ventricle fails, direct pressure measurements are important to document that left atrial and pulmonary artery pressures are low, otherwise the shunt will not be feasible. With regard to the use of the univentricular approach instead of a biventricular approach we have performed a modified Fontan procedure in only 2 patients in our overall series of over 500 operations for EA.

It has not yet been shown whether tricuspid valve repair or replacement has the better long-term outcome; neither is it known whether bioprostheses are preferable to mechanical prostheses for tricuspid valve replacement. One study suggests that valve repair is less durable in adults than in children [70]. It is known that tricuspid bioprostheses in EA have greater durability than in other cardiac positions, especially in paediatric patients; freedom from bioprosthesis replacement was 80.6 ± 7.6\% in one study with up to 17.8 years' follow-up (mean: 4.5 years) [71]. In one series of 294 EA patients there was no statistically significant difference between valve repair and valve replacement with regard to freedom from reoperation at 12 years [71]. Similarly, there was no difference between bioprosthetic and mechanical valve prostheses with regard to freedom from reoperation [71]. However, we currently prefer valve repair, when feasible, over valve replacement because repair has the potential to be more durable over a lifetime. Some of our early patients are doing well and free of reoperation more than 20 years after valve repair. We prefer bioprostheses over mechanical prostheses, and reserve the latter for selected adults who are already taking coumadin for another indication [18]. Bioprostheses are preferred, especially in paediatric patients, because they avoid the expense, inconvenience, and risks of long-term coumadin anticoagulation and because there is no evidence at present that mechanical valves have greater freedom from reoperation than have bioprostheses in the tricuspid position in EA patients.

Although we and others [72] have noted a reduction in atrial tachyarrhythmias after standard EA repair, which includes right atrial reduction, we currently prefer to combine repair with directed anti-arrhythmia procedures [18, 60, 61]. This can be done without increasing operative mortality and yields much improved late results [60].

Indications for operation

Observation alone is advised for asymptomatic patients and symptomatic patients with no right- to-left shunting and only mild cardiomegaly. Children who have survived infancy generally do well for a number of years; surgery can be postponed until symptoms appear or progress, cyanosis becomes evident or paradoxical emboli occur. Surgery should be considered if there is objective evidence of deterioration such as progressive increase in heart size on chest radiography, progressive right ventricular dilatation or reduction of systolic function in echocardiography, or appearance of premature ventricular contractions or atrial tachyarrhythmias. The appearance of premature ventricular contractions is considered to reflect stress on the myopathic right ventricle and to signal that correction of tricuspid regurgitation should be considered, since surgical mortality has been much greater in patients who exhibited frequent premature contractions or more serious ventricular tachyarrhythmias prior to operation. Once symptoms progress to NYHA class III or IV, medical management has little to offer, surgical
risks increase sharply and surgery is clearly indicated. Biventricular reconstruction is usually possible, but if advanced cardiomyopathic changes have occurred, especially involving the left ventricle, cardiac transplantation is the only option.

In rare cases patients with cyanosis on exercise who have an atrial septal defect or patent foramen ovale but only mild or moderate tricuspid regurgitation may benefit from device closure to alleviate cyanosis and prevent paradoxical emboli. The degree of tricuspid regurgitation must be carefully assessed, however, since with low velocity flow on echocardiography it is often underestimated, and closure of an atrial septal defect alone may worsen right ventricular dysfunction.

Follow-up care

EA is a complex congenital anomaly with a broad pathologico-anatomical and clinical spectrum. Management is complex. It is therefore important that these patients are regularly seen by a cardiologist with expertise in congenital heart disease. These patients must be followed at a tertiary care centre or at least in collaboration with a congenital heart disease cardiologist in a tertiary care centre. This recommendations follows previous published recommendations [73–75].

Conclusions

EA is a complex form of congenital heart disease. No two hearts with EA are the same. Precise knowledge of the different anatomical and haemodynamic variables, associated malformations and management options, is essential. With alternative management strategies it is hoped that survival in EA patients of all ages will continue to improve.

References

26 Saxena A, Fong LV, Tristam M, Ackery DM, Keeton BR. Late noninvasive evaluation of cardiac performance in mildly symp-

58 Abel J, 1 Am J Cardiol 1988;61:826–33.

72 Abel J, 1 Am J Cardiol 1988;61:826–33.

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich
(Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

The many reasons why you should choose SMW to publish your research

All manuscripts should be sent in electronic form, to:
EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz
Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch