Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 151 No. 2122 (2021)

Two-dimensional transthoracic echocardiography at rest for the diagnosis, screening and management of pulmonary hypertension

DOI
https://doi.org/10.4414/smw.2021.20486
Cite this as:
Swiss Med Wkly. 2021;151:w20486
Published
07.06.2021

Summary

Doppler echocardiography is widely used in everyday clinical practice for the detection of pulmonary hypertension (PH) in symptomatic patients and in populations particularly at risk of pulmonary arterial hypertension (PAH). It allows accurate estimation of systolic pulmonary arterial pressure but may lack precision in particular situations. In addition, echocardiography can help to distinguish between pre- and post-capillary PH and is a very good tool to evaluate right ventricular systolic function, which is of great prognostic interest in PAH. This article reviews the current knowledge about methodologic aspects of assessing pulmonary pressure and PH origin by echo, including a discussion about abnormal thresholds. It also details advanced techniques like right ventricular strain imaging and new concepts like right ventricle – pulmonary artery coupling evaluation that have become “matured” enough to be definitely brought to routine evaluation.

References

  1. Galiè N Humbert M Vachiery JL Gibbs S Lang I Torbicki A ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. doi:.https://doi.org/10.1093/eurheartj/ehv317
  2. Fisher MR Forfia PR Chamera E Housten-Harris T Champion HC Girgis RE Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(7):615–21. doi:.https://doi.org/10.1164/rccm.200811-1691OC
  3. Rich JD Shah SJ Swamy RS Kamp A Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139(5):988–93. doi:.https://doi.org/10.1378/chest.10-1269
  4. D’Alto M Romeo E Argiento P D’Andrea A Vanderpool R Correra A Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol. 2013;168(4):4058–62. doi:.https://doi.org/10.1016/j.ijcard.2013.07.005
  5. Boucly A Weatherald J Savale L Jaïs X Cottin V Prevot G Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017;50(2):1700889. doi:.https://doi.org/10.1183/13993003.00889-2017
  6. Hoeper MM Kramer T Pan Z Eichstaedt CA Spiesshoefer J Benjamin N Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017;50(2):1700740. doi:.https://doi.org/10.1183/13993003.00740-2017
  7. Greiner S Jud A Aurich M Hess A Hilbel T Hardt S Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J Am Heart Assoc. 2014;3(4):e001103. doi:.https://doi.org/10.1161/JAHA.114.001103
  8. Lang RM Badano LP Mor-Avi V Afilalo J Armstrong A Ernande L Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–71. doi:.https://doi.org/10.1093/ehjci/jev014
  9. Schneider M Pistritto AM Gerges C Gerges M Binder C Lang I Multi-view approach for the diagnosis of pulmonary hypertension using transthoracic echocardiography. Int J Cardiovasc Imaging. 2018;34(5):695–700.
  10. D’Alto M Bossone E Opotowsky AR Ghio S Rudski LG Naeije R. Strengths and weaknesses of echocardiography for the diagnosis of pulmonary hypertension. Int J Cardiol. 2018;263:177–83. doi:.https://doi.org/10.1016/j.ijcard.2018.04.024
  11. Simonneau G Montani D Celermajer DS Denton CP Gatzoulis MA Krowka M Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. doi:.https://doi.org/10.1183/13993003.01913-2018
  12. Marra AM Naeije R Ferrara F Vriz O Stanziola AA D’Alto M Reference Ranges and Determinants of Tricuspid Regurgitation Velocity in Healthy Adults Assessed by Two-Dimensional Doppler-Echocardiography. Respiration. 2018;96(5):425–33. doi:.https://doi.org/10.1159/000490191
  13. Kovacs G Berghold A Scheidl S Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34(4):888–94. doi:.https://doi.org/10.1183/09031936.00145608
  14. Amsallem M Sternbach JM Adigopula S Kobayashi Y Vu TA Zamanian R Addressing the Controversy of Estimating Pulmonary Arterial Pressure by Echocardiography. J Am Soc Echocardiogr. 2016;29(2):93–102. doi:.https://doi.org/10.1016/j.echo.2015.11.001
  15. Frost A Badesch D Gibbs JSR Gopalan D Khanna D Manes A Diagnosis of pulmonary hypertension. Eur Respir J. 2019;53(1):1801904. doi:.https://doi.org/10.1183/13993003.01904-2018
  16. Maeder MT Schoch OD Kleiner R Joerg L Weilenmann D Swiss Society For Pulmonary Hypertension. Pulmonary hypertension associated with left-sided heart disease. Swiss Med Wkly. 2017;147:w14395.
  17. Opotowsky AR Ojeda J Rogers F Prasanna V Clair M Moko L A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5(6):765–75. doi:.https://doi.org/10.1161/CIRCIMAGING.112.976654
  18. D’Alto M Romeo E Argiento P Pavelescu A Mélot C D’Andrea A Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr. 2015;28(1):108–15. doi:.https://doi.org/10.1016/j.echo.2014.09.004
  19. Berthelot E Montani D Algalarrondo V Dreyfuss C Rifai R Benmalek A A Clinical and Echocardiographic Score to Identify Pulmonary Hypertension Due to HFpEF. J Card Fail. 2017;23(1):29–35. doi:.https://doi.org/10.1016/j.cardfail.2016.10.002
  20. Naeije R Gerges M Vachiery JL Caravita S Gerges C Lang IM. Hemodynamic Phenotyping of Pulmonary Hypertension in Left Heart Failure. Circ Heart Fail. 2017;10(9):10. doi:.https://doi.org/10.1161/CIRCHEARTFAILURE.117.004082
  21. Rosenkranz S Gibbs JS Wachter R De Marco T Vonk-Noordegraaf A Vachiéry JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54. doi:.https://doi.org/10.1093/eurheartj/ehv512
  22. Nauta JF Hummel YM van der Meer P Lam CSP Voors AA van Melle JP. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1303–11. doi:.https://doi.org/10.1002/ejhf.1220
  23. Vonk Noordegraaf A Westerhof BE Westerhof N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J Am Coll Cardiol. 2017;69(2):236–43. doi:.https://doi.org/10.1016/j.jacc.2016.10.047
  24. Vonk-Noordegraaf A Haddad F Chin KM Forfia PR Kawut SM Lumens J Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25, Suppl):D22–33. doi:.https://doi.org/10.1016/j.jacc.2013.10.027
  25. Vonk Noordegraaf A Chin KM Haddad F Hassoun PM Hemnes AR Hopkins SR Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53(1):1801900. doi:.https://doi.org/10.1183/13993003.01900-2018
  26. Bossone E Duong-Wagner TH Paciocco G Oral H Ricciardi M Bach DS Echocardiographic features of primary pulmonary hypertension. J Am Soc Echocardiogr. 1999;12(8):655–62. doi:.https://doi.org/10.1053/je.1999.v12.a99069
  27. van Wolferen SA Marcus JT Boonstra A Marques KM Bronzwaer JG Spreeuwenberg MD Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7. doi:.https://doi.org/10.1093/eurheartj/ehl477
  28. Grünig E Biskupek J D’Andrea A Ehlken N Egenlauf B Weidenhammer J Reference ranges for and determinants of right ventricular area in healthy adults by two-dimensional echocardiography. Respiration. 2015;89(4):284–93. doi:.https://doi.org/10.1159/000371472
  29. Fischer L Benjamin N Blank N Egenlauf B Fischer C Harutyunova S Right heart size and function significantly correlate in patients with pulmonary arterial hypertension - a cross-sectional study. Respir Res. 2018;19(1):216. doi:.https://doi.org/10.1186/s12931-018-0913-x
  30. Marra AM Halank M Benjamin N Bossone E Cittadini A Eichstaedt CA Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study). Respir Res. 2018;19(1):258. doi:.https://doi.org/10.1186/s12931-018-0957-y
  31. Ghio S Recusani F Klersy C Sebastiani R Laudisa ML Campana C Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol. 2000;85(7):837–42. doi:.https://doi.org/10.1016/S0002-9149(99)00877-2
  32. Forfia PR Fisher MR Mathai SC Housten-Harris T Hemnes AR Borlaug BA Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41. doi:.https://doi.org/10.1164/rccm.200604-547OC
  33. Goda A Ryo K Delgado-Montero A Tayal B Handa R Simon MA The Prognostic Utility of a Simplified Biventricular Echocardiographic Index of Cardiac Remodeling in Patients with Pulmonary Hypertension. J Am Soc Echocardiogr. 2016;29(6):554–60. doi:.https://doi.org/10.1016/j.echo.2016.02.013
  34. Amsallem M Sweatt AJ Aymami MC Kuznetsova T Selej M Lu H Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension: Comparison With Validated Models. Circ Cardiovasc Imaging. 2017;10(6):e005771. doi:.https://doi.org/10.1161/CIRCIMAGING.116.005771
  35. Benza RL Miller DP Gomberg-Maitland M Frantz RP Foreman AJ Coffey CS Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122(2):164–72. doi:.https://doi.org/10.1161/CIRCULATIONAHA.109.898122
  36. Forfia PR Vachiéry JL. Echocardiography in pulmonary arterial hypertension. Am J Cardiol. 2012;110(6, Suppl):S16–S24. doi:.https://doi.org/10.1016/j.amjcard.2012.06.012
  37. van de Veerdonk MC Kind T Marcus JT Mauritz GJ Heymans MW Bogaard HJ Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9. doi:.https://doi.org/10.1016/j.jacc.2011.06.068
  38. Hoette S Creuzé N Günther S Montani D Savale L Jaïs X RV Fractional Area Change and TAPSE as Predictors of Severe Right Ventricular Dysfunction in Pulmonary Hypertension: A CMR Study. Lung. 2018;196(2):157–64. doi:.https://doi.org/10.1007/s00408-018-0089-7
  39. Kind T Mauritz GJ Marcus JT van de Veerdonk M Westerhof N Vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson. 2010;12(1):35. doi:.https://doi.org/10.1186/1532-429X-12-35
  40. Mauritz GJ Kind T Marcus JT Bogaard HJ van de Veerdonk M Postmus PE Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest. 2012;141(4):935–43. doi:.https://doi.org/10.1378/chest.10-3277
  41. Anavekar NS Gerson D Skali H Kwong RY Yucel EK Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 2007;24(5):452–6. doi:.https://doi.org/10.1111/j.1540-8175.2007.00424.x
  42. Leong DP Grover S Molaee P Chakrabarty A Shirazi M Cheng YH Nonvolumetric echocardiographic indices of right ventricular systolic function: validation with cardiovascular magnetic resonance and relationship with functional capacity. Echocardiography. 2012;29(4):455–63. doi:.https://doi.org/10.1111/j.1540-8175.2011.01594.x
  43. Focardi M Cameli M Carbone SF Massoni A De Vito R Lisi M Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015;16(1):47–52. doi:.https://doi.org/10.1093/ehjci/jeu156
  44. Galiè N Hinderliter AL Torbicki A Fourme T Simonneau G Pulido T Effects of the oral endothelin-receptor antagonist bosentan on echocardiographic and doppler measures in patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41(8):1380–6. doi:.https://doi.org/10.1016/S0735-1097(03)00121-9
  45. Ghio S Klersy C Magrini G D’Armini AM Scelsi L Raineri C Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140(3):272–8. doi:.https://doi.org/10.1016/j.ijcard.2008.11.051
  46. Grapsa J Pereira Nunes MC Tan TC Cabrita IZ Coulter T Smith BC Echocardiographic and Hemodynamic Predictors of Survival in Precapillary Pulmonary Hypertension: Seven-Year Follow-Up. Circ Cardiovasc Imaging. 2015;8(6):e002107. doi:.https://doi.org/10.1161/CIRCIMAGING.114.002107
  47. Brown SB Raina A Katz D Szerlip M Wiegers SE Forfia PR. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest. 2011;140(1):27–33. doi:.https://doi.org/10.1378/chest.10-1136
  48. Kaul S Tei C Hopkins JM Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107(3):526–31. doi:.https://doi.org/10.1016/0002-8703(84)90095-4
  49. Giusca S Dambrauskaite V Scheurwegs C D’hooge J Claus P Herbots L Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart. 2010;96(4):281–8. doi:.https://doi.org/10.1136/hrt.2009.171728
  50. van Kessel M Seaton D Chan J Yamada A Kermeen F Hamilton-Craig C Prognostic value of right ventricular free wall strain in pulmonary hypertension patients with pseudo-normalized tricuspid annular plane systolic excursion values. Int J Cardiovasc Imaging. 2016;32(6):905–12. doi:.https://doi.org/10.1007/s10554-016-0862-8
  51. Tei C Dujardin KS Hodge DO Bailey KR McGoon MD Tajik AJ Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9(6):838–47. doi:.https://doi.org/10.1016/S0894-7317(96)90476-9
  52. Yoshifuku S Otsuji Y Takasaki K Yuge K Kisanuki A Toyonaga K Pseudonormalized Doppler total ejection isovolume (Tei) index in patients with right ventricular acute myocardial infarction. Am J Cardiol. 2003;91(5):527–31. doi:.https://doi.org/10.1016/S0002-9149(02)03299-X
  53. Cheung MM Smallhorn JF Redington AN Vogel M. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements. Eur Heart J. 2004;25(24):2238–42. doi:.https://doi.org/10.1016/j.ehj.2004.07.034
  54. Yeo TC Dujardin KS Tei C Mahoney DW McGoon MD Seward JB. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;81(9):1157–61. doi:.https://doi.org/10.1016/S0002-9149(98)00140-4
  55. Voigt JU Cvijic M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc Imaging. 2019;12(9):1849–63. doi:.https://doi.org/10.1016/j.jcmg.2019.01.044
  56. Fine NM Chen L Bastiansen PM Frantz RP Pellikka PA Oh JK Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(5):711–21. doi:.https://doi.org/10.1161/CIRCIMAGING.113.000640
  57. Park JH Park MM Farha S Sharp J Lundgrin E Comhair S Impaired Global Right Ventricular Longitudinal Strain Predicts Long-Term Adverse Outcomes in Patients with Pulmonary Arterial Hypertension. J Cardiovasc Ultrasound. 2015;23(2):91–9. doi:.https://doi.org/10.4250/jcu.2015.23.2.91
  58. Vizzardi E Bonadei I Sciatti E Pezzali N Farina D D’Aloia A Quantitative analysis of right ventricular (RV) function with echocardiography in chronic heart failure with no or mild RV dysfunction: comparison with cardiac magnetic resonance imaging. J Ultrasound Med. 2015;34(2):247–55. doi:.https://doi.org/10.7863/ultra.34.2.247
  59. Park JH Negishi K Kwon DH Popovic ZB Grimm RA Marwick TH. Validation of global longitudinal strain and strain rate as reliable markers of right ventricular dysfunction: comparison with cardiac magnetic resonance and outcome. J Cardiovasc Ultrasound. 2014;22(3):113–20. doi:.https://doi.org/10.4250/jcu.2014.22.3.113
  60. Fine NM Chen L Bastiansen PM Frantz RP Pellikka PA Oh JK Reference values for right ventricular strain in patients without cardiopulmonary disease: a prospective evaluation and meta-analysis. Echocardiography. 2015;32(5):787–96. doi:.https://doi.org/10.1111/echo.12806
  61. Longobardo L Suma V Jain R Carerj S Zito C Zwicke DL Role of Two-Dimensional Speckle-Tracking Echocardiography Strain in the Assessment of Right Ventricular Systolic Function and Comparison with Conventional Parameters. J Am Soc Echocardiogr. 2017;30(10):937–946.e6. doi:.https://doi.org/10.1016/j.echo.2017.06.016
  62. Shukla M Park JH Thomas JD Delgado V Bax JJ Kane GC Prognostic Value of Right Ventricular Strain Using Speckle-Tracking Echocardiography in Pulmonary Hypertension: A Systematic Review and Meta-analysis. Can J Cardiol. 2018;34(8):1069–78. doi:.https://doi.org/10.1016/j.cjca.2018.04.016
  63. Hulshof HG Eijsvogels TMH Kleinnibbelink G van Dijk AP George KP Oxborough DL Prognostic value of right ventricular longitudinal strain in patients with pulmonary hypertension: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2019;20(4):475–84. doi:.https://doi.org/10.1093/ehjci/jey120
  64. Hardziyenka M Campian ME Bouma BJ Linnenbank AC de Bruin-Bon HA Kloek JJ Right-to-left ventricular diastolic delay in chronic thromboembolic pulmonary hypertension is associated with activation delay and action potential prolongation in right ventricle. Circ Arrhythm Electrophysiol. 2009;2(5):555–61. doi:.https://doi.org/10.1161/CIRCEP.109.856021
  65. Badagliacca R Poscia R Pezzuto B Nocioni M Mezzapesa M Francone M Right ventricular remodeling in idiopathic pulmonary arterial hypertension: adaptive versus maladaptive morphology. J Heart Lung Transplant. 2015;34(3):395–403. doi:.https://doi.org/10.1016/j.healun.2014.11.002
  66. Badagliacca R Papa S Valli G Pezzuto B Poscia R Reali M Right ventricular dyssynchrony and exercise capacity in idiopathic pulmonary arterial hypertension. Eur Respir J. 2017;49(6):1601419. doi:.https://doi.org/10.1183/13993003.01419-2016
  67. Badagliacca R Reali M Poscia R Pezzuto B Papa S Mezzapesa M Right Intraventricular Dyssynchrony in Idiopathic, Heritable, and Anorexigen-Induced Pulmonary Arterial Hypertension: Clinical Impact and Reversibility. JACC Cardiovasc Imaging. 2015;8(6):642–52. doi:.https://doi.org/10.1016/j.jcmg.2015.02.009
  68. Grünig E Henn P D’Andrea A Claussen M Ehlken N Maier F Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging. 2013;6(1):117–24. doi:.https://doi.org/10.1161/CIRCIMAGING.112.978031
  69. Raymond RJ Hinderliter AL Willis PW IV Ralph D Caldwell EJ Williams W Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214–9. doi:.https://doi.org/10.1016/S0735-1097(02)01744-8
  70. Bustamante-Labarta M Perrone S De La Fuente RL Stutzbach P De La Hoz RP Torino A Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr. 2002;15(10):1160–4. doi:.https://doi.org/10.1067/mje.2002.123962
  71. Austin C Alassas K Burger C Safford R Pagan R Duello K Echocardiographic assessment of estimated right atrial pressure and size predicts mortality in pulmonary arterial hypertension. Chest. 2015;147(1):198–208. doi:.https://doi.org/10.1378/chest.13-3035
  72. Stepnowska E Lewicka E Dąbrowska-Kugacka A Daniłowicz-Szymanowicz L Zagożdżon P Kamiński R Predictors of poor outcome in patients with pulmonary arterial hypertension: A single center study. PLoS One. 2018;13(4):e0193245. doi:.https://doi.org/10.1371/journal.pone.0193245
  73. Chen L Larsen CM Le RJ Connolly HM Pislaru SV Murphy JG The prognostic significance of tricuspid valve regurgitation in pulmonary arterial hypertension. Clin Respir J. 2018;12(4):1572–80. doi:.https://doi.org/10.1111/crj.12713
  74. Fenstad ER Le RJ Sinak LJ Maradit-Kremers H Ammash NM Ayalew AM Pericardial effusions in pulmonary arterial hypertension: characteristics, prognosis, and role of drainage. Chest. 2013;144(5):1530–8. doi:.https://doi.org/10.1378/chest.12-3033
  75. Batal O Dardari Z Costabile C Gorcsan J Arena VC Mathier MA. Prognostic Value of Pericardial Effusion on Serial Echocardiograms in Pulmonary Arterial Hypertension. Echocardiography. 2015;32(10):1471–6. doi:.https://doi.org/10.1111/echo.12909
  76. Stewart RH Rohn DA Allen SJ Laine GA. Basic determinants of epicardial transudation. Am J Physiol. 1997;273(3 Pt 2):H1408–14.
  77. Eysmann SB Palevsky HI Reichek N Hackney K Douglas PS. Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation. 1989;80(2):353–60. doi:.https://doi.org/10.1161/01.CIR.80.2.353
  78. Naeije R Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113(12):1474–85. doi:.https://doi.org/10.1093/cvr/cvx160
  79. Friedberg MK. Imaging right-left ventricular interactions. JACC Cardiovasc Imaging. 2018;11(5):755–71. doi:.https://doi.org/10.1016/j.jcmg.2018.01.028
  80. Lima JA Guzman PA Yin FC Brawley RK Humphrey L Traill TA Septal geometry in the unloaded living human heart. Circulation. 1986;74(3):463–8. doi:.https://doi.org/10.1161/01.CIR.74.3.463
  81. Dellegrottaglie S Sanz J Poon M Viles-Gonzalez JF Sulica R Goyenechea M Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology. 2007;243(1):63–9. doi:.https://doi.org/10.1148/radiol.2431060067
  82. Roeleveld RJ Marcus JT Faes TJ Gan TJ Boonstra A Postmus PE Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–7. doi:.https://doi.org/10.1148/radiol.2343040151
  83. Marcus JT Gan CT Zwanenburg JJ Boonstra A Allaart CP Götte MJ Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7):750–7. doi:.https://doi.org/10.1016/j.jacc.2007.10.041
  84. Palau-Caballero G Walmsley J Van Empel V Lumens J Delhaas T. Why septal motion is a marker of right ventricular failure in pulmonary arterial hypertension: mechanistic analysis using a computer model. Am J Physiol Heart Circ Physiol. 2017;312(4):H691–700. doi:.https://doi.org/10.1152/ajpheart.00596.2016
  85. Gan CT Lankhaar JW Marcus JT Westerhof N Marques KM Bronzwaer JG Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290(4):H1528–33. doi:.https://doi.org/10.1152/ajpheart.01031.2005
  86. Tello K Seeger W Naeije R Vanderpool R Ghofrani H Richter M Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment. Br J Pharmacol. 2021;178(1):90–107. doi:.https://doi.org/10.1111/bph.14866
  87. Tello K Dalmer A Axmann J Vanderpool R Ghofrani HA Naeije R Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail. 2019;12(1):e005512. doi:.https://doi.org/10.1161/CIRCHEARTFAILURE.118.005512
  88. Vanderpool RR Pinsky MR Naeije R Deible C Kosaraju V Bunner C RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart. 2015;101(1):37–43. doi:.https://doi.org/10.1136/heartjnl-2014-306142
  89. Tello K Wan J Dalmer A Vanderpool R Ghofrani HA Naeije R Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ Cardiovasc Imaging. 2019;12(9):e009047. doi:.https://doi.org/10.1161/CIRCIMAGING.119.009047
  90. Guazzi M Naeije R Arena R Corrà U Ghio S Forfia P Echocardiography of right ventriculoarterial coupling combined with cardiopulmonary exercise testing to predict outcome in heart failure. Chest. 2015;148(1):226–34. doi:.https://doi.org/10.1378/chest.14-2065
  91. Tello K Axmann J Ghofrani HA Naeije R Narcin N Rieth A Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol. 2018;266:229–35. doi:.https://doi.org/10.1016/j.ijcard.2018.01.053
  92. Iacoviello M Monitillo F Citarelli G Leone M Grande D Antoncecchi V Right ventriculo-arterial coupling assessed by two-dimensional strain: A new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients. Int J Cardiol. 2017;241:318–21. doi:.https://doi.org/10.1016/j.ijcard.2017.04.051
  93. Guazzi M. Use of TAPSE/PASP ratio in pulmonary arterial hypertension: An easy shortcut in a congested road. Int J Cardiol. 2018;266:242–4. doi:.https://doi.org/10.1016/j.ijcard.2018.04.053
  94. Galiè N Channick RN Frantz RP Grünig E Jing ZC Moiseeva O Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019;53(1):1801889. doi:.https://doi.org/10.1183/13993003.01889-2018
  95. Kylhammar D Kjellström B Hjalmarsson C Jansson K Nisell M Söderberg S A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018;39(47):4175–81. doi:.https://doi.org/10.1093/eurheartj/ehx257
  96. Badagliacca R Poscia R Pezzuto B Papa S Reali M Pesce F Prognostic relevance of right heart reverse remodeling in idiopathic pulmonary arterial hypertension. J Heart Lung Transplant. 2018;37(2):195–205. doi:.https://doi.org/10.1016/j.healun.2017.09.026
  97. Sano H Tanaka H Motoji Y Fukuda Y Sawa T Mochizuki Y Right ventricular function and right-heart echocardiographic response to therapy predict long-term outcome in patients with pulmonary hypertension. Can J Cardiol. 2015;31(4):529–36. doi:.https://doi.org/10.1016/j.cjca.2015.01.027
  98. Mazurek JA Vaidya A Mathai SC Roberts JD Forfia PR. Follow-up tricuspid annular plane systolic excursion predicts survival in pulmonary arterial hypertension. Pulm Circ. 2017;7(2):361–71. doi:.https://doi.org/10.1177/2045893217694175
  99. Hardegree EL Sachdev A Villarraga HR Frantz RP McGoon MD Kushwaha SS Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol. 2013;111(1):143–8. doi:.https://doi.org/10.1016/j.amjcard.2012.08.061
  100. Shimony A Fox BD Langleben D Rudski LG. Incidence and significance of pericardial effusion in patients with pulmonary arterial hypertension. Can J Cardiol. 2013;29(6):678–82. doi:.https://doi.org/10.1016/j.cjca.2012.04.009
  101. Batal O Dardari Z Costabile C Gorcsan J Arena VC Mathier MA. Prognostic Value of Pericardial Effusion on Serial Echocardiograms in Pulmonary Arterial Hypertension. Echocardiography. 2015;32(10):1471–6. doi:.https://doi.org/10.1111/echo.12909
  102. Young A Nagaraja V Basilious M Habib M Townsend W Gladue H Update of screening and diagnostic modalities for connective tissue disease-associated pulmonary arterial hypertension. Semin Arthritis Rheum. 2019;48(6):1059–67. doi:.https://doi.org/10.1016/j.semarthrit.2018.10.010
  103. Humbert M Yaici A de Groote P Montani D Sitbon O Launay D Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 2011;63(11):3522–30. doi:.https://doi.org/10.1002/art.30541
  104. Coghlan JG Denton CP Grünig E Bonderman D Distler O Khanna D DETECT study group. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014;73(7):1340–9. doi:.https://doi.org/10.1136/annrheumdis-2013-203301
  105. Girerd B Montani D Jaïs X Eyries M Yaici A Sztrymf B Genetic counselling in a national referral centre for pulmonary hypertension. Eur Respir J. 2016;47(2):541–52. doi:.https://doi.org/10.1183/13993003.00717-2015
  106. Larkin EK Newman JH Austin ED Hemnes AR Wheeler L Robbins IM Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):892–6. doi:.https://doi.org/10.1164/rccm.201205-0886OC
  107. Revuz S Decullier E Ginon I Lamblin N Hatron PY Kaminsky P Pulmonary hypertension subtypes associated with hereditary haemorrhagic telangiectasia: Haemodynamic profiles and survival probability. PLoS One. 2017;12(10):e0184227. doi:.https://doi.org/10.1371/journal.pone.0184227
  108. Grapsa J Gibbs JS Dawson D Watson G Patni R Athanasiou T Morphologic and functional remodeling of the right ventricle in pulmonary hypertension by real time three dimensional echocardiography. Am J Cardiol. 2012;109(6):906–13. doi:.https://doi.org/10.1016/j.amjcard.2011.10.054

Most read articles by the same author(s)