Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 151 No. 1314 (2021)

Links between biodiversity and human infectious and non-communicable diseases: a review

DOI
https://doi.org/10.4414/smw.2021.20485
Cite this as:
Swiss Med Wkly. 2021;151:w20485
Published
29.03.2021

Summary

INTRODUCTION

Biodiversity has intrinsic value and a fundamental role in human health. The relationship between them is complex, and the specific sustaining processes are still not well understood. In view of the rapidly evolving landscape, this literature review investigated scientific evidence for specific links between biodiversity and human infectious and non-communicable diseases to characterise identifiable relationships.

METHODS

A search of the PubMed and Web of Science databases using keyword algorithms identified relevant manuscripts published between 1 January 2000 and 18 April 2019. Qualitative data were extracted from 155 studies investigating links between or mechanisms linking biodiversity and infectious disease, non-communicable disease, allergic/inflammatory disease and microbiomes.

RESULTS

None of the reviewed studies documented causal evidence for a mechanism linking biodiversity and human health. The main mechanisms proposed to link biodiversity and transmission of infectious disease were dilution and amplification. The dilution hypothesis argues that an increase in species diversity leads to a decrease in pathogen prevalence. The amplification effect is the converse, that there is a positive correlation between species diversity and disease risk/infection prevalence. Several driving factors are postulated, including encounter reduction, interspecies competition and predation. In addition, it appears that scale, both spatial and temporal, highly impacts diversity-disease relationships. There is strong evidence that the early environment of a child, including maternally transferred prenatal signals, affects immune maturation, modifying later disease risk. Bi-directional axes communicate between the gut microbiome and the brain, as well as between the skin microbiome and the lung, leading to direct and indirect immune, humoral and neural mechanisms. The main challenges in assessing links between biodiversity and human health are the wide variation in definitions of health and biodiversity, and the heterogeneity in types of studies encountered, as well as the complexity of interactions in dynamic systems.

CONCLUSIONS

Contextually adapted integrative approaches, which maintain dialogue across disciplines and amongst all stakeholders, are most likely to generate robust evidence. Because of the relevance of local scale, research engagement must occur across levels to generate legitimate practices and translate into sustainable, equitable policies. Recommendations for future action include: improve the knowledge base on contribution of biodiversity to health, increase awareness of health effects of natural and near-natural environments and biodiversity, and promote synergies by increasing policy coherence.

References

  1. Aerts R Honnay O Van Nieuwenhuyse A. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br Med Bull. 2018;127(1):5–22. doi:.https://doi.org/10.1093/bmb/ldy021
  2. Hough RL. Biodiversity and Human Health: Evidence for Causality? Biodivers Conserv. 2014;23(2):267–88. doi:.https://doi.org/10.1007/s10531-013-0614-1
  3. Huynen MM Martens P De Groot RS. Linkages between biodiversity loss and human health: a global indicator analysis. Int J Environ Health Res. 2004;14(1):13–30. doi:.https://doi.org/10.1080/09603120310001633895
  4. Chivian E Bernstein AS. Embedded in nature: human health and biodiversity. Environ Health Perspect. 2004;112(1):A12–3. doi:.https://doi.org/10.1289/ehp.112-a12
  5. Ostfeld RS Keesing F. Biodiversity and Disease Risk: The Case of Lyme Disease. Conserv Biol. 2000;14(3):722–8. doi:.https://doi.org/10.1046/j.1523-1739.2000.99014.x
  6. Assessment ME. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press; 2005.
  7. Norgaard RB. Ecosystem Services: From Eye-Opening Metaphor to Complexity Blinder. Ecol Econ. 2010;69(6):1219–27. doi:.https://doi.org/10.1016/j.ecolecon.2009.11.009
  8. Díaz S Demissew S Carabias J Joly C Lonsdale M Ash N The IPBES Conceptual Framework — Connecting Nature and People. Curr Opin Environ Sustain. 2015;14:1–16. doi:.https://doi.org/10.1016/j.cosust.2014.11.002
  9. United Nations. Convention on Biodiversity. Rio de Janeiro: United Nations; 1992. p. 214.
  10. WHO. Constitution of the World Health Organization. Geneva, Switzerland: World Health Organization; 1948.
  11. Díaz S Pascual U Stenseke M Martín-López B Watson RT Molnár Z Assessing nature’s contributions to people. Science. 2018;359(6373):270–2. doi:.https://doi.org/10.1126/science.aap8826
  12. Johnson PT Thieltges DW. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J Exp Biol. 2010;213(6):961–70. doi:.https://doi.org/10.1242/jeb.037721
  13. Huang ZY de Boer WF van Langevelde F Xu C Ben Jebara K Berlingieri F Dilution Effect in Bovine Tuberculosis: Risk Factors for Regional Disease Occurrence in Africa. Proc Biol Sci. 2013;280(1765):624. doi:. https://doi.org/10.1098/rspb.2013.0624
  14. Sintayehu DW Heitkönig IMA Prins HHT Tessema ZK DE Boer WF. Effect of host diversity and species assemblage composition on bovine tuberculosis (bTB) risk in Ethiopian cattle. Parasitology. 2017;144(6):783–92. doi:.https://doi.org/10.1017/S0031182016002511
  15. Giraudoux P Raoul F Pleydell D Li T Han X Qiu J Drivers of Echinococcus multilocularis transmission in China: small mammal diversity, landscape or climate? PLoS Negl Trop Dis. 2013;7(3):e2045. doi:.https://doi.org/10.1371/journal.pntd.0002045
  16. Dizney LJ Ruedas LA. Increased host species diversity and decreased prevalence of Sin Nombre virus. Emerg Infect Dis. 2009;15(7):1012–8. doi:.https://doi.org/10.3201/eid1507.081083
  17. Luis AD Kuenzi AJ Mills JN. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host-pathogen system through competing mechanisms. Proc Natl Acad Sci USA. 2018;115(31):7979–84. doi:.https://doi.org/10.1073/pnas.1807106115
  18. Pongsiri MJ Roman J Ezenwa VO Goldberg TL Koren HS Newbold SC Biodiversity Loss Affects Global Disease Ecology. Bioscience. 2009;59(11):945–54. doi:.https://doi.org/10.1525/bio.2009.59.11.6
  19. Bouchard C Beauchamp G Leighton PA Lindsay R Bélanger D Ogden NH. Does high biodiversity reduce the risk of Lyme disease invasion? Parasit Vectors. 2013;6(1):195. doi:.https://doi.org/10.1186/1756-3305-6-195
  20. Ehrmann S Ruyts SC Scherer-Lorenzen M Bauhus J Brunet J Cousins SAO Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments. Parasit Vectors. 2018;11(1):23. doi:.https://doi.org/10.1186/s13071-017-2590-x
  21. Ostfeld RS. Biodiversity loss and the rise of zoonotic pathogens. Clin Microbiol Infect. 2009;15(Suppl 1):40–3. doi:.https://doi.org/10.1111/j.1469-0691.2008.02691.x
  22. Ruyts SC Landuyt D Ampoorter E Heylen D Ehrmann S Coipan EC Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks Tick Borne Dis. 2018;9(5):1143–52. doi:.https://doi.org/10.1016/j.ttbdis.2018.04.016
  23. Derne BT Fearnley EJ Lau CL Paynter S Weinstein P. Biodiversity and leptospirosis risk: a case of pathogen regulation? Med Hypotheses. 2011;77(3):339–44. doi:.https://doi.org/10.1016/j.mehy.2011.05.009
  24. Ezenwa VO Godsey MS King RJ Guptill SC. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci. 2006;273(1582):109–17. doi:.https://doi.org/10.1098/rspb.2005.3284
  25. Roche B Rohani P Dobson AP Guégan JF. The impact of community organization on vector-borne pathogens. Am Nat. 2013;181(1):1–11. doi:.https://doi.org/10.1086/668591
  26. Werden L Barker IK Bowman J Gonzales EK Leighton PA Lindsay LR Geography, deer, and host biodiversity shape the pattern of Lyme disease emergence in the Thousand Islands Archipelago of Ontario, Canada. PLoS One. 2014;9(1):e85640. doi:.https://doi.org/10.1371/journal.pone.0085640
  27. Wood CL Lafferty KD. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol Evol. 2013;28(4):239–47. doi:.https://doi.org/10.1016/j.tree.2012.10.011
  28. Eduardo AA Santos LABO Rebouças MC Martinez PA. Patterns of vector species richness and species composition as drivers of Chagas disease occurrence in Brazil. Int J Environ Health Res. 2018;28(6):590–8. doi:.https://doi.org/10.1080/09603123.2018.1497776
  29. Davidson G Chua TH Cook A Speldewinde P Weinstein P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J. 2019;18(1):66. doi:.https://doi.org/10.1186/s12936-019-2693-2
  30. Laporta GZ Lopez de Prado PI Kraenkel RA Coutinho RM Sallum MA. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Negl Trop Dis. 2013;7(3):e2139. doi:.https://doi.org/10.1371/journal.pntd.0002139
  31. Johnson PTJ Lund PJ Hartson RB Yoshino TP. Community diversity reduces Schistosoma mansoni transmission, host pathology and human infection risk. Proc Biol Sci. 2009;276(1662):1657–63. doi:.https://doi.org/10.1098/rspb.2008.1718
  32. Palo RT. Tick-borne encephalitis transmission risk: its dependence on host population dynamics and climate effects. Vector Borne Zoonotic Dis. 2014;14(5):346–52. doi:.https://doi.org/10.1089/vbz.2013.1386
  33. Ostfeld RS, Keesing F. Effects of Host Diversity on Infectious Disease. In: Futuyma DJ, editor. Annual Review of Ecology, Evolution, and Systematics. 2012;43:157–82.
  34. Schmidt KA Ostfeld RS. Biodiversity and the Dilution Effect in Disease Ecology. Ecology. 2001;82(3):609–19. doi:.https://doi.org/10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2
  35. Civitello DJ Cohen J Fatima H Halstead NT Liriano J McMahon TA Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc Natl Acad Sci USA. 2015;112(28):8667–71. doi:.https://doi.org/10.1073/pnas.1506279112
  36. Levi T Massey AL Holt RD Keesing F Ostfeld RS Peres CA. Does biodiversity protect humans against infectious disease? Comment. Ecology. 2016;97(2):536–42. doi:.https://doi.org/10.1890/15-354.1
  37. Randolph SE Dobson AD. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology. 2012;139(7):847–63. doi:.https://doi.org/10.1017/S0031182012000200
  38. Wood CL Lafferty KD DeLeo G Young HS Hudson PJ Kuris AM. Does biodiversity protect humans against infectious disease? Ecology. 2014;95(4):817–32. doi:.https://doi.org/10.1890/13-1041.1
  39. Wood CL Lafferty KD DeLeo G Young HS Hudson PJ Kuris AM. Does biodiversity protect humans against infectious disease? [Reply]. Ecology. 2016;97(2):543–6. doi:.https://doi.org/10.1890/15-1503.1
  40. Mihaljevic JR Joseph MB Orlofske SA Paull SH. The scaling of host density with richness affects the direction, shape, and detectability of diversity-disease relationships. PLoS One. 2014;9(5):e97812. doi:.https://doi.org/10.1371/journal.pone.0097812
  41. Ostfeld R Keesing F. The Function of Biodiversity in the Ecology of Vector-Borne Zoonotic Diseases. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 2000;78(12):2061–78. doi:.https://doi.org/10.1139/z00-172
  42. Keesing F Belden LK Daszak P Dobson A Harvell CD Holt RD Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468(7324):647–52. doi:.https://doi.org/10.1038/nature09575
  43. Keesing F Ostfeld RS. Is biodiversity good for your health? Science. 2015;349(6245):235–6. doi:.https://doi.org/10.1126/science.aac7892
  44. Butler CD. Infectious disease emergence and global change: thinking systemically in a shrinking world. Infect Dis Poverty. 2012;1(1):5. doi:.https://doi.org/10.1186/2049-9957-1-5
  45. Butler CD. Plagues, Pandemics, Health Security and War on Nature. J Hum Secur. 2020;16(1):53–7. doi:.https://doi.org/10.12924/johs2020.16010053
  46. Wallace RG Gilbert M Wallace R Pittiglio C Mattioli R Kock R. Did Ebola Emerge in West Africa by a Policy-Driven Phase Change in Agroecology? Environ Plann A. 2014;46:2533–42. doi:.https://doi.org/10.1068/a4712com
  47. Koopmans M. SARS-CoV-2 and the human-animal interface: outbreaks on mink farms. Lancet Infect Dis. 2021;21(1):18–9. doi:.https://doi.org/10.1016/S1473-3099(20)30912-9
  48. Johnson PT Preston DL Hoverman JT Henderson JS Paull SH Richgels KL Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology. 2012;93(1):56–64. doi:.https://doi.org/10.1890/11-0636.1
  49. Salkeld DJ Padgett KA Jones JH. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol Lett. 2013;16(5):679–86. doi:.https://doi.org/10.1111/ele.12101
  50. Wood CL McInturff A Young HS Kim D Lafferty KD. Human infectious disease burdens decrease with urbanization but not with biodiversity. Philos Trans R Soc Lond B Biol Sci. 2017;372(1722): 20160122. doi:.https://doi.org/10.1098/rstb.2016.0122
  51. Huang ZY VAN Langevelde F Estrada-Peña A Suzán G DE Boer WF. The diversity-disease relationship: evidence for and criticisms of the dilution effect. Parasitology. 2016;143(9):1075–86. doi:.https://doi.org/10.1017/S0031182016000536
  52. Kilpatrick AM Salkeld DJ Titcomb G Hahn MB. Conservation of biodiversity as a strategy for improving human health and well-being. Philos Trans R Soc Lond B Biol Sci. 2017;372(1722): 20160122. doi:.https://doi.org/10.1098/rstb.2016.0131
  53. Zinsstag J Roth F Orkhon D Chimed-Ochir G Nansalmaa M Kolar J A model of animal-human brucellosis transmission in Mongolia. Prev Vet Med. 2005;69(1-2):77–95. doi:.https://doi.org/10.1016/j.prevetmed.2005.01.017
  54. Zinsstag J Dürr S Penny MA Mindekem R Roth F Menendez Gonzalez S Transmission dynamics and economics of rabies control in dogs and humans in an African city. Proc Natl Acad Sci USA. 2009;106(35):14996–5001. doi:.https://doi.org/10.1073/pnas.0904740106
  55. Abakar MF Yahyaoui Azami H Justus Bless P Crump L Lohmann P Laager M Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco. PLoS Negl Trop Dis. 2017;11(2):e0005214. doi:.https://doi.org/10.1371/journal.pntd.0005214
  56. Tschopp R. Bovine Tuberculosis in Ethiopian Local Cattle and Wildlife: Epidemiology, Economics and Ecosystems. Doctoral Thesis, University of Basel, Faculty of Science. 2010.
  57. Tschopp R Berg S Argaw K Gadisa E Habtamu M Schelling E Bovine tuberculosis in Ethiopian wildlife. J Wildl Dis. 2010;46(3):753–62. doi:.https://doi.org/10.7589/0090-3558-46.3.753
  58. Karvonen AM Hyvärinen A Gehring U Korppi M Doekes G Riedler J PASTURE Study Group. Exposure to microbial agents in house dust and wheezing, atopic dermatitis and atopic sensitization in early childhood: a birth cohort study in rural areas. Clin Exp Allergy. 2012;42(8):1246–56. doi:.https://doi.org/10.1111/j.1365-2222.2012.04002.x
  59. Schaub B Vercelli D. Environmental protection from allergic diseases: From humans to mice and back. Curr Opin Immunol. 2015;36:88–93. doi:.https://doi.org/10.1016/j.coi.2015.07.004
  60. Haahtela T Holgate S Pawankar R Akdis CA Benjaponpitak S Caraballo L WAO Special Committee on Climate Change and Biodiversity. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organ J. 2013;6(1):3. doi:.https://doi.org/10.1186/1939-4551-6-3
  61. von Hertzen L Beutler B Bienenstock J Blaser M Cani PD Eriksson J Helsinki alert of biodiversity and health. Ann Med. 2015;47(3):218–25. doi:.https://doi.org/10.3109/07853890.2015.1010226
  62. Logan AC Jacka FN Prescott SL. Immune-Microbiota Interactions: Dysbiosis as a Global Health Issue. Curr Allergy Asthma Rep. 2016;16(2):13. doi:.https://doi.org/10.1007/s11882-015-0590-5
  63. Rook GA. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA. 2013;110(46):18360–7. doi:.https://doi.org/10.1073/pnas.1313731110
  64. Hanski I von Hertzen L Fyhrquist N Koskinen K Torppa K Laatikainen T Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109(21):8334–9. doi:.https://doi.org/10.1073/pnas.1205624109
  65. Karkman A Lehtimäki J Ruokolainen L. The ecology of human microbiota: dynamics and diversity in health and disease. Ann N Y Acad Sci. 2017;1399(1):78–92. doi:.https://doi.org/10.1111/nyas.13326
  66. Riiser A. The human microbiome, asthma, and allergy. Allergy Asthma Clin Immunol. 2015;11(1):35. doi:.https://doi.org/10.1186/s13223-015-0102-0
  67. Wollina U. Microbiome in atopic dermatitis. Clin Cosmet Investig Dermatol. 2017;10:51–6. doi:.https://doi.org/10.2147/CCID.S130013
  68. Osman KA Zinsstag J Tschopp R Schelling E Hattendorf J Umer A Nutritional status and intestinal parasites among young children from pastoralist communities of the Ethiopian Somali region. Matern Child Nutr. 2020;16(3):e12955. doi:.https://doi.org/10.1111/mcn.12955
  69. Vonaesch P Morien E Andrianonimiadana L Sanke H Mbecko JR Huus KE Afribiota Investigators. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc Natl Acad Sci USA. 2018;115(36):E8489–98. doi:.https://doi.org/10.1073/pnas.1806573115
  70. Vonaesch P Anderson M Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev. 2018;42(3):273–92. doi:.https://doi.org/10.1093/femsre/fuy003
  71. Aziz Q Doré J Emmanuel A Guarner F Quigley EM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil. 2013;25(1):4–15. doi:.https://doi.org/10.1111/nmo.12046
  72. Prescott SL Larcombe DL Logan AC West C Burks W Caraballo L The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10(1):29. doi:.https://doi.org/10.1186/s40413-017-0160-5
  73. Dimmitt RA Staley EM Chuang G Tanner SM Soltau TD Lorenz RG. Role of postnatal acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr. 2010;51(3):262–73. doi:.https://doi.org/10.1097/MPG.0b013e3181e1a114
  74. Shanahan F. Linking Lifestyle with Microbiota and Risk of Chronic Inflammatory Disorders. In: Rook GAW, editor. Hygiene Hypothesis and Darwinian Medicine. Progress in Inflammation Research Series. Cham, Switzerland: Birkhaüser; 2009. pp 93–102.
  75. Ruokolainen L Fyhrquist N Haahtela T. The rich and the poor: environmental biodiversity protecting from allergy. Curr Opin Allergy Clin Immunol. 2016;16(5):421–6. doi:.https://doi.org/10.1097/ACI.0000000000000304
  76. Doré J Simrén M Buttle L Guarner F. Hot topics in gut microbiota. United European Gastroenterol J. 2013;1(5):311–8. doi:.https://doi.org/10.1177/2050640613502477
  77. Mosca A Leclerc M Hugot JP. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front Microbiol. 2016;7:455. doi:.https://doi.org/10.3389/fmicb.2016.00455
  78. Swiss Academy of Sciences. Biodiversity, a Guarantee for Health? Swiss Academies Factsheet; 2019.
  79. Díaz S Pascual U Stenseke M Martín-López B Watson RT Molnár Z Assessing nature’s contributions to people. Science. 2018;359(6373):270–2. doi:.https://doi.org/10.1126/science.aap8826
  80. Methorst J Rehdanz K Mueller T Hansjürgens B Bonn A Böhning-Gaese K. The Importance of Species Diversity for Human Well-Being in Europe. Ecol Econ. 2020;181:106917. doi:. https://doi.org/10.1016/j.ecolecon.2020.106917
  81. Roche B Dobson AP Guégan JF Rohani P. Linking community and disease ecology: the impact of biodiversity on pathogen transmission. Philos Trans R Soc Lond B Biol Sci. 2012;367(1604):2807–13. doi:.https://doi.org/10.1098/rstb.2011.0364
  82. Dizney L Dearing MD. Behavioural differences: a link between biodiversity and pathogen transmission. Anim Behav. 2016;111:341–7. doi:.https://doi.org/10.1016/j.anbehav.2015.11.006
  83. Dobson AD Auld SK. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models. Am Nat. 2016;187(4):405–22. Published online March 31, 2016. doi:.https://doi.org/10.1086/685445
  84. Ostfeld RS Keesing F. Is Biodiversity Bad for Your Health? Ecosphere. 2017;8(3):e01676. doi:.https://doi.org/10.1002/ecs2.1676
  85. Hosseini PR Mills JN Prieur-Richard AH Ezenwa VO Bailly X Rizzoli A Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160129. doi:.https://doi.org/10.1098/rstb.2016.0129
  86. Brooks CP Zhang H. A null model of community disassembly effects on vector-borne disease risk. J Theor Biol. 2010;264(3):866–73. doi:.https://doi.org/10.1016/j.jtbi.2010.03.016
  87. Tischer CG Heinrich J. Exposure assessment of residential mould, fungi and microbial components in relation to children’s health: achievements and challenges. Int J Hyg Environ Health. 2013;216(2):109–14. doi:.https://doi.org/10.1016/j.ijheh.2012.05.002
  88. States SL Brinkerhoff RJ Carpi G Steeves TK Folsom-O’Keefe C DeVeaux M Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies. Infect Genet Evol. 2014;27:566–75. doi:.https://doi.org/10.1016/j.meegid.2014.04.014
  89. Miller E Huppert A. The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk. PLoS One. 2013;8(11):e80279. doi:.https://doi.org/10.1371/journal.pone.0080279
  90. Lachish S Murray KA. The Certainty of Uncertainty: Potential Sources of Bias and Imprecision in Disease Ecology Studies. Front Vet Sci. 2018;5:90. doi:.https://doi.org/10.3389/fvets.2018.00090
  91. Salkeld DJ Padgett KA Jones JH Antolin MF. Public health perspective on patterns of biodiversity and zoonotic disease. Proc Natl Acad Sci USA. 2015;112(46):E6261. Published online October 29, 2015. doi:.https://doi.org/10.1073/pnas.1517640112
  92. Morand S Jittapalapong S Suputtamongkol Y Abdullah MT Huan TB. Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One. 2014;9(2):e90032. doi:.https://doi.org/10.1371/journal.pone.0090032
  93. Whitmee S Haines A Beyrer C Boltz F Capon AG de Souza Dias BF Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet. 2015;386(10007):1973–2028. doi:.https://doi.org/10.1016/S0140-6736(15)60901-1
  94. Lovell R Wheeler BW Higgins SL Irvine KN Depledge MH. A systematic review of the health and well-being benefits of biodiverse environments. J Toxicol Environ Health B Crit Rev. 2014;17(1):1–20. doi:.https://doi.org/10.1080/10937404.2013.856361
  95. Tengö M Hill R Malmer P Raymond CM Spierenburg M Danielsen F Weaving Knowledge Systems in Ipbes, Cbd and Beyond—Lessons Learned for Sustainability. Curr Opin Environ Sustain. 2017;26-27:17–25. doi:.https://doi.org/10.1016/j.cosust.2016.12.005
  96. Convention on Biological Diversity, Subsidiary Body on Scientific, Technical and Technological Advice. Twenty-first meeting. Montreal, Canada, 11–14 December 2017. Guidance on Integrating Biodiversity Considerations into One Health Approaches. Based on CBD/SBSTTA/21/9.