Skip to main navigation menu Skip to main content Skip to site footer

Review article: Medical guidelines

Vol. 150 No. 4748 (2020)

Fluoropyrimidine chemotherapy: recommendations for DPYD genotyping and therapeutic drug monitoring of the Swiss Group of Pharmacogenomics and Personalised Therapy

DOI
https://doi.org/10.4414/smw.2020.20375
Cite this as:
Swiss Med Wkly. 2020;150:w20375
Published
24.11.2020

Summary

Fluoropyrimidines (FPs), mainly 5-fluorouracil (5-FU) and its oral prodrug capecitabine (Cap), remain the backbone of the treatment of many different solid tumors. Despite their broad use in clinical routine, 10–40% of patients experience severe, and in rare cases (0.2–0.5%) even lethal, FP-related toxicity in early chemotherapy cycles. Today, there is a plethora of evidence that genetic variants in the gene encoding for the 5-FU catabolising enzyme dihydropyrimidine dehydrogenase (DPD, encoded by DPYD) are predictive of severe FP-related toxicities, and international clinical practice recommendations for DPYD genotype-guided FP dosing and therapeutic drug monitoring (TDM) are available. In spite of this strong evidence and DPYD genotyping becoming standard practice in other countries, it is has not been widely adopted in Switzerland to date. Here, we discuss current guidelines on genotype-guided FP dosing and TDM, and propose recommendations tailored to the situation in Switzerland to facilitate their clinical uptake for the further individualisation of FP chemotherapy.

We recommend preemptive testing of four DPYD variants (c.1905+1G>A (rs3918290), c.1679T>G (rs55886062), c.2846A>T (rs67376798) and c.1129-5923C>G (rs75017182, c.1236G>A/HapB3)) in patients with an indication for FP-based chemotherapy, with the costs reimbursed through the compulsory health insurance in Switzerland. Carriers of these variants (6.5% in the Swiss population) have a 40–50% risk of developing severe early-onset toxicity when treated with standard FP doses. In these patients, we therefore recommend the use of a reduced starting dose, based on a dose adjustment scheme provided herein. Furthermore, we recommend the use of infusional 5-FU in patients with a DPYD risk genotype in order to enable TDM-based dose escalation. Only if the use of an infusional 5-FU regimen is not feasible should a slow titration of Cap, starting with the recommended reduced dose and basing further doses on monitoring of toxicity, be considered. Given that several studies have shown that TDM in 5-FU treatment improves not only the therapy’s safety, but potentially also its efficacy, we also include detailed TDM-based dosing guidelines and discuss the pre-analytical aspects of 5-FU TDM.

References

  1. Carrillo E, Navarro SA, Ramírez A, García MÁ, Griñán-Lisón C, Perán M, et al. 5-Fluorouracil derivatives: a patent review (2012 - 2014). Expert Opin Ther Pat. 2015;25(10):1131–44. doi:.https://doi.org/10.1517/13543776.2015.1056736
  2. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018;103(2):210–6. doi:.https://doi.org/10.1002/cpt.911
  3. Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol. 2018;19(11):1459–67. doi:.https://doi.org/10.1016/S1470-2045(18)30686-7
  4. Froehlich TK, Amstutz U, Aebi S, Joerger M, Largiadèr CR. Clinical importance of risk variants in the dihydropyrimidine dehydrogenase gene for the prediction of early-onset fluoropyrimidine toxicity. Int J Cancer. 2015;136(3):730–9. doi:.https://doi.org/10.1002/ijc.29025
  5. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. doi:.https://doi.org/10.1038/nrc1074
  6. Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics. 2011;12(9):1321–36. doi:.https://doi.org/10.2217/pgs.11.72
  7. Petrelli F, Cabiddu M, Barni S. 5-Fluorouracil or capecitabine in the treatment of advanced colorectal cancer: a pooled-analysis of randomized trials. Med Oncol. 2012;29(2):1020–9. doi:.https://doi.org/10.1007/s12032-011-9958-0
  8. Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D, et al.; BILCAP study group. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019;20(5):663–73. doi:.https://doi.org/10.1016/S1470-2045(18)30915-X
  9. Barin-Le Guellec C, Lafay-Chebassier C, Ingrand I, Tournamille JF, Boudet A, Lanoue MC, et al. Toxicities associated with chemotherapy regimens containing a fluoropyrimidine: A real-life evaluation in France. Eur J Cancer. 2020;124:37–46. doi:.https://doi.org/10.1016/j.ejca.2019.09.028
  10. Gusella M, Crepaldi G, Barile C, Bononi A, Menon D, Toso S, et al. Pharmacokinetic and demographic markers of 5-fluorouracil toxicity in 181 patients on adjuvant therapy for colorectal cancer. Ann Oncol. 2006;17(11):1656–60. doi:.https://doi.org/10.1093/annonc/mdl284
  11. Di Paolo A, Danesi R, Falcone A, Cionini L, Vannozzi F, Masi G, et al. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol. 2001;12(9):1301–6. doi:.https://doi.org/10.1023/A:1012294617392
  12. Etienne MC, Milano G, Renée N, Lagrange JL, Dassonville O, Thyss A, et al. [Population study of dihydropyrimidine dehydrogenase in cancer patients]. Bull Cancer. 1995;82(9):705–10. Article in French.
  13. Baker SD, Verweij J, Rowinsky EK, Donehower RC, Schellens JH, Grochow LB, et al. Role of body surface area in dosing of investigational anticancer agents in adults, 1991-2001. J Natl Cancer Inst. 2002;94(24):1883–8. doi:.https://doi.org/10.1093/jnci/94.24.1883
  14. Gamelin E, Boisdron-Celle M, Guérin-Meyer V, Delva R, Lortholary A, Genevieve F, et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: A potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol. 1999;17(4):1105–10. doi:.https://doi.org/10.1200/JCO.1999.17.4.1105
  15. Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(13):2099–105. doi:.https://doi.org/10.1200/JCO.2007.13.3934
  16. Saam J, Critchfield GC, Hamilton SA, Roa BB, Wenstrup RJ, Kaldate RR. Body surface area-based dosing of 5-fluoruracil results in extensive interindividual variability in 5-fluorouracil exposure in colorectal cancer patients on FOLFOX regimens. Clin Colorectal Cancer. 2011;10(3):203–6. doi:.https://doi.org/10.1016/j.clcc.2011.03.015
  17. Patel JN, O’Neil BH, Deal AM, Ibrahim JG, Sherrill GB, Olajide OA, et al. A community-based multicenter trial of pharmacokinetically guided 5-fluorouracil dosing for personalized colorectal cancer therapy. Oncologist. 2014;19(9):959–65. doi:.https://doi.org/10.1634/theoncologist.2014-0132
  18. Capitain O, Asevoaia A, Boisdron-Celle M, Poirier AL, Morel A, Gamelin E. Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a phase II, proof-of-concept study. Clin Colorectal Cancer. 2012;11(4):263–7. doi:.https://doi.org/10.1016/j.clcc.2012.05.004
  19. Saif MW, Choma A, Salamone SJ, Chu E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst. 2009;101(22):1543–52. doi:.https://doi.org/10.1093/jnci/djp328
  20. Kline CLB, Schiccitano A, Zhu J, Beachler C, Sheikh H, Harvey HA, et al. Personalized dosing via pharmacokinetic monitoring of 5-fluorouracil might reduce toxicity in early- or late-stage colorectal cancer patients treated with infusional 5-fluorouracil-based chemotherapy regimens. Clin Colorectal Cancer. 2014;13(2):119–26. doi:.https://doi.org/10.1016/j.clcc.2013.11.001
  21. Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, et al. Therapeutic Drug Monitoring in Oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther. 2019;105(3):598–613.
  22. Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16(16):1639–50. doi:.https://doi.org/10.1016/S1470-2045(15)00286-7
  23. Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, Boot H, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: A safety and cost analysis. J Clin Oncol. 2016;34(3):227–34. doi:.https://doi.org/10.1200/JCO.2015.63.1325
  24. Analysenliste (AL). Available at: https://www.bag.admin.ch/bag/de/home/versicherungen/krankenversicherung/krankenversicherung-leistungen-tarife/Analysenliste.html [accessed 2020 April 9].
  25. Büchel B, Sistonen J, Joerger M, Aebi Y, Schürch S, Largiadèr CR. Comparative evaluation of the My5-FU™ immunoassay and LC-MS/MS in monitoring the 5-fluorouracil plasma levels in cancer patients. Clin Chem Lab Med. 2013;51(8):1681–8. doi:.https://doi.org/10.1515/cclm-2012-0641
  26. Büchel B, Rhyn P, Schürch S, Bühr C, Amstutz U, Largiadèr CR. LC-MS/MS method for simultaneous analysis of uracil, 5,6-dihydrouracil, 5-fluorouracil and 5-fluoro-5,6-dihydrouracil in human plasma for therapeutic drug monitoring and toxicity prediction in cancer patients. Biomed Chromatogr. 2013;27(1):7–16. doi:.https://doi.org/10.1002/bmc.2741
  27. Fluorouracil and fluorouracil related substances (capecitabine, tegafur and flucytosine) containing medicinal products. European Medicines Agency. Available at: https://www.ema.europa.eu/en/medicines/human/referrals/fluorouracil-fluorouracil-related-substances-capecitabine-tegafur-flucytosine-containing-medicinal [accessed 2020 May18].
  28. Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie. Positionspapier: Dihydropyrimidin-Dehydrogenase (DPD) -Testung vor Einsatz von 5-Fluorouracil, Capecitabin und Tegafu. 2020.
  29. Lunenburg CATC, van der Wouden CH, Nijenhuis M, Crommentuijn-van Rhenen MH, de Boer-Veger NJ, Buunk AM,, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. Eur J Hum Genet. 2020;28(4):508–17. doi:.https://doi.org/10.1038/s41431-019-0540-0
  30. Martens FK, Huntjens DW, Rigter T, Bartels M, Bet PM, Cornel MC. DPD Testing Before Treatment With Fluoropyrimidines in the Amsterdam UMCs: An Evaluation of Current Pharmacogenetic Practice. Front Pharmacol. 2020;10:1609. doi:.https://doi.org/10.3389/fphar.2019.01609
  31. Agence nationale de sécurité du médicament et des produits de santé (ANSM). Prévention des effets indésirables graves liés à un déficit en dihydropyrimidine déshydrogénase (DPD) lors de traitement par fluoropyrimidines (5-fluorouracile et capécitabine) - Point d’information actualisé au 28 février 2018. Available at: https://ansm.sante.fr/S-informer/Points-d-information-Points-d-information/Prevention-des-effets-indesirables-graves-lies-a-un-deficit-en-dihydropyrimidine-deshydrogenase-DPD-lors-de-traitement-par-fluoropyrimidines-5-fluorouracile-et-capecitabine-Point-d-information-actualise-au-28-fevrier-2018 [accessed 2020 April 19].
  32. Hamzic S, Kummer D, Froehlich TK, Joerger M, Aebi S, Palles C, et al. Evaluating the role of ENOSF1 and TYMS variants as predictors in fluoropyrimidine-related toxicities: An IPD meta-analysis. Pharmacol Res. 2020;152:104594. doi:.https://doi.org/10.1016/j.phrs.2019.104594
  33. Nie Q, Shrestha S, Tapper EE, Trogstad-Isaacson CS, Bouchonville KJ, Lee AM, et al. Quantitative Contribution of rs75017182 to Dihydropyrimidine Dehydrogenase mRNA Splicing and Enzyme Activity. Clin Pharmacol Ther. 2017;102(4):662–70. doi:.https://doi.org/10.1002/cpt.685
  34. Henricks LM, Siemerink EJM, Rosing H, Meijer J, Goorden SMI, Polstra AM, et al. Capecitabine-based treatment of a patient with a novel DPYD genotype and complete dihydropyrimidine dehydrogenase deficiency. Int J Cancer. 2018;142(2):424–30. doi:.https://doi.org/10.1002/ijc.31065
  35. Etienne-Grimaldi M-C, Cozic N, Boyer J-C, Boige V, Diasio RB, Taieb J, et al. FUSAFE individual patient data meta-analysis (MA) to assess the performance of dihydropyrimidine dehydrogenase (DPD) gene polymorphisms for predicting grade 4-5 fluoropyrimidine (FP) toxicity. Ann Oncol. 2019;30:v214. doi:.https://doi.org/10.1093/annonc/mdz246.046
  36. Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Frederix GWJ, Kienhuis E, et al. A cost analysis of upfront DPYD genotype-guided dose individualisation in fluoropyrimidine-based anticancer therapy. Eur J Cancer. 2019;107:60–7. doi:.https://doi.org/10.1016/j.ejca.2018.11.010
  37. Henricks LM, van Merendonk LN, Meulendijks D, Deenen MJ, Beijnen JH, de Boer A, et al. Effectiveness and safety of reduced-dose fluoropyrimidine therapy in patients carrying the DPYD*2A variant: A matched pair analysis. Int J Cancer. 2019;144(9):2347–54. doi:.https://doi.org/10.1002/ijc.32022
  38. CPIC® Guideline for Fluoropyrimidines and DPYD – CPIC. Available at: https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/ [accessed 2020 September 9].
  39. Offer SM, Lee AM, Mattison LK, Fossum C, Wegner NJ, Diasio RB. A DPYD variant (Y186C) in individuals of african ancestry is associated with reduced DPD enzyme activity. Clin Pharmacol Ther. 2013;94(1):158–66. doi:.https://doi.org/10.1038/clpt.2013.69
  40. Etienne-Grimaldi M-C, Boyer JC, Beroud C, Mbatchi L, van Kuilenburg A, Bobin-Dubigeon C, et al. New advances in DPYD genotype and risk of severe toxicity under capecitabine. PLoS One. 2017;12(5):e0175998. doi:.https://doi.org/10.1371/journal.pone.0175998
  41. Hamzic S, Amstutz U, Largiadèr CR. Come a long way, still a ways to go: from predicting and preventing fluoropyrimidine toxicity to increased efficacy? Pharmacogenomics. 2018;19(8):689–92. doi:.https://doi.org/10.2217/pgs-2018-0040
  42. Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev. 2016;50:23–34. doi:.https://doi.org/10.1016/j.ctrv.2016.08.002
  43. de Gramont A, Krulik M, Cady J, Lagadec B, Maisani JE, Loiseau JP, et al. High-dose folinic acid and 5-fluorouracil bolus and continuous infusion in advanced colorectal cancer. Eur J Cancer Clin Oncol. 1988;24(9):1499–503. doi:.https://doi.org/10.1016/0277-5379(88)90341-0
  44. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34(8):1274–81. doi:.https://doi.org/10.1016/S0959-8049(98)00058-6
  45. Salman D, Biliune J, Kayyali R, Ashton J, Brown P, McCarthy T, et al. Evaluation of the performance of elastomeric pumps in practice: are we under-delivering on chemotherapy treatments? Curr Med Res Opin. 2017;33(12):2153–9. doi:.https://doi.org/10.1080/03007995.2017.1374936
  46. Hobbs JG, Ryan MK, Mohtar A, Sluggett AJ, Sluggett JK, Ritchie B, et al. Flow rate accuracy of ambulatory elastomeric and electronic infusion pumps when exposed to height and back pressures experienced during home infusion therapy. Expert Rev Med Devices. 2019;16(8):735–42. doi:.https://doi.org/10.1080/17434440.2019.1632187
  47. Which Ambulatory Infusion Pump Is Best for 5-FU? ONS Voice 2019. Available at: https://voice.ons.org/news-and-views/which-ambulatory-infusion-pump-is-best-for-5-fu [accessed 2020 April 19].
  48. FDA. Infusion Pump Improvement Initiative. Available at: https://www.fda.gov/medical-devices/infusion-pumps/white-paper-infusion-pump-improvement-initiative [accessed 2020 May1].
  49. Kaldate RR, Haregewoin A, Grier CE, Hamilton SA, McLeod HL. Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist. 2012;17(3):296–302. doi:.https://doi.org/10.1634/theoncologist.2011-0357
  50. Henricks LM, Kienhuis E, de Man FM, van der Veldt AAM, Hamberg P, van Kuilenburg ABP, et al. Treatment Algorithm for Homozygous or Compound Heterozygous DPYD Variant Allele Carriers With Low-Dose Capecitabine. JCO Precis Oncol. 2017. doi:.https://doi.org/10.1200/po.17.00118
  51. Blasco H, Boisdron-Celle M, Bougnoux P, Calais G, Tournamille JF, Ciccolini J, et al. A well-tolerated 5-FU-based treatment subsequent to severe capecitabine-induced toxicity in a DPD-deficient patient. Br J Clin Pharmacol. 2008;65(6):966–70. doi:.https://doi.org/10.1111/j.1365-2125.2008.03106.x

Most read articles by the same author(s)