Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 150 No. 2122 (2020)

Assessing the impact of non-pharmaceutical interventions on SARS-CoV-2 transmission in Switzerland

  • Joseph. C. Lemaitre
  • Javier Perez-Saez
  • Andrew S. Azman
  • Andrea Rinaldo
  • Jacques Fellay
DOI
https://doi.org/10.4414/smw.2020.20295
Cite this as:
Swiss Med Wkly. 2020;150:w20295
Published
30.05.2020

Summary

Following the rapid dissemination of COVID-19 cases in Switzerland, large-scale non-pharmaceutical interventions (NPIs) were implemented by the cantons and the federal government between 28 February and 20 March 2020. Estimates of the impact of these interventions on SARS-CoV-2 transmission are critical for decision making in this and future outbreaks. We here aim to assess the impact of these NPIs on disease transmission by estimating changes in the basic reproduction number (R0) at national and cantonal levels in relation to the timing of these NPIs. We estimated the time-varying R0 nationally and in eleven cantons by fitting a stochastic transmission model explicitly simulating within-hospital dynamics. We used individual-level data from more than 1000 hospitalised patients in Switzerland and public daily reports of hospitalisations and deaths. We estimated the national R0 to be 2.8 (95% confidence interval 2.1–3.8) at the beginning of the epidemic. Starting from around 7 March, we found a strong reduction in time-varying R0 with a 86% median decrease (95% quantile range [QR] 79–90%) to a value of 0.40 (95% QR 0.3–0.58) in the period of 29 March to 5 April. At the cantonal level, R0 decreased over the course of the epidemic between 53% and 92%. Reductions in time-varying R0 were synchronous with changes in mobility patterns as estimated through smartphone activity, which started before the official implementation of NPIs. We inferred that most of the reduction of transmission is attributable to behavioural changes as opposed to natural immunity, the latter accounting for only about 4% of the total reduction in effective transmission. As Switzerland considers relaxing some of the restrictions of social mixing, current estimates of time-varying R0 well below one are promising. However, as of 24 April 2020, at least 96% (95% QR 95.7–96.4%) of the Swiss population remains susceptible to SARS-CoV-2. These results warrant a cautious relaxation of social distance practices and close monitoring of changes in both the basic and effective reproduction numbers.

References

  1. World Health Organization. WHO Situation Report 90. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200419-sitrep-90-covid19.pdf?sfvrsn=551d47fd_4.
  2. HIT COVID Team. Health Interventions Tracking for COVID-19 (HIT-COVID). Zenodo. 2020. doi:.
  3. Cowling BJ, Ali ST, Ng TWY, Tsang TK, Li JCM, Fong MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020;5(5):e279–88. doi:.https://doi.org/10.1016/S2468-2667(20)30090-6
  4. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc Natl Acad Sci USA. 2020;117(19):10484–91. doi:.https://doi.org/10.1073/pnas.2004978117
  5. Imperial College COVID-19 Response Team. 2020. Report 13 - Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries. Available at: http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemio logy/mrc-global-infectious-disease-analysis/covid-19/report-13-europe-npi-impact/.
  6. Office fédéral de la santé publique (OFSP). Rapport sur la situation épidémiologique en Suisse et dans la Principauté de Liechtenstein. 2020. https://www.bag.admin.ch/bag/fr/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-a usbrueche-epidemien/novel-cov/situation-schweiz-und-international.html.
  7. Flaxman S, Mishra S, Gandy A, Unwin JT, Coupland H, Mellan TA, et al.; Imperial College COVID-19 Response Team. Report 13: Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries. London, UK: Imperial College London. 2020 30 March. doi:.
  8. Kermack WO, McKendrick AG. ‘A Contribution to the Mathematical Theory of Epidemics’. Proc R Soc Lond, A Contain Pap Math Phys Character. 1927;115(772):700–21. doi:.https://doi.org/10.1098/rspa.1927.0118
  9. King AA, Nguyen D, Ionides EL. Statistical Inference for Partially Observed Markov Processes via the R Package Pomp. ArXiv:1509.00503 [Stat]. 2015 September. http://arxiv.org/abs/1509.00503.
  10. Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the Generation Interval for COVID-19 Based on Symptom Onset Data. MedRxiv. 2020 5 March:20031815. doi:.
  11. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal Dynamics in Viral Shedding and Transmissibility of COVID-19. Nat Med. 2020;26(5):672–5. doi:.https://doi.org/10.1038/s41591-020-0869-5
  12. Liu Y, Centre for the Mathematical Modelling of Infectious Disease, Funk S, Flasche S. The Contribution of Pre-Symptomatic Infection to the Transmission Dynamics of COVID-2019. Wellcome Open Res. 2020;5:58. doi:.https://doi.org/10.12688/wellcomeopenres.15788.1
  13. Centre for Mathematiclal Modelling of Infectious Disease [Internet]. https://cmmid.github.io/topics/covid19/global-time-varying-transmission.html [Accessed 2020 April 30]
  14. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669–77. doi:.https://doi.org/10.1016/S1473-3099(20)30243-7
  15. Russell TW, Hellewell J, Jarvis CI, van Zandvoort K, Abbott S, Ratnayake R, et al.; Cmmid Covid-Working Group. Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. Euro Surveill. 2020;25(12):2000256. doi:.https://doi.org/10.2807/1560-7917.ES.2020.25.12.2000256
  16. openZH. OpenZH/Covid_19. Python. Specialist Unit for Open Government Data Canton of Zurich. 2020. https://github.com/openZH/covid_19.
  17. Probst D. Daenuprobst/Covid19-Cases-Switzerland. Python. 2020. https://github.com/daenuprobst/covid19-cases-switzerland.
  18. Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proc Natl Acad Sci USA. 2015;112(3):719–24. doi:.https://doi.org/10.1073/pnas.1410597112
  19. Cazelles B, Champagne C, Dureau J. Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models. PLOS Comput Biol. 2018;14(8):e1006211. doi:.https://doi.org/10.1371/journal.pcbi.1006211
  20. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. ‘Early Dynamics of Transmission and Control of COVID-19: A Mathematical Modelling Study’. Lancet Infect Dis. 2020;20:553–8. doi:.https://doi.org/10.1016/S1473-3099(20)30144-4
  21. Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16. doi:.https://doi.org/10.1093/aje/kwh255
  22. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12. doi:.https://doi.org/10.1093/aje/kwt133
  23. Lindeløv JK. Mcp: An R Package for Regression With Multiple Change Points. Preprint. Open Science Framework. 2020. doi:.
  24. Google LLC. Google COVID-19 Community Mobility Report. COVID-19 Community Mobility Report. 2020. https://www.google.com/covid19/mobility.
  25. O’Dea S. Smartphone Users in Switzerland 2018-2024. Statista. 20 April 2020. https://www.statista.com/statistics/494640/smartphone-users-in-switzerland/.
  26. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172(9):577–82. doi:.https://doi.org/10.7326/M20-0504
  27. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020:S1473-3099(20)30287-5. doi:.https://doi.org/10.1016/S1473-3099(20)30287-5
  28. Silvia S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Repeated Seroprevalence of Anti-SARS-CoV-2 IgG Antibodies in a Population-Based Sample from Geneva, Switzerland. MedRxiv. 2020 2 May:20088898. doi:.
  29. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–9. doi:.https://doi.org/10.1038/s41586-020-2196-x
  30. Lipsitch M, Joshi KD, Cobey SE. Comment on Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. GitHub. 2020 April. https://github.com/keyajoshi/Pan_response.
  31. Althaus CL. Real-Time Modeling and Projections of the COVID-19 Epidemic in Switzerland. 2020. https://ispmbern.github.io/covid-19/swiss-epidemic-model/.
  32. Scire J, Nadeau S, Vaughan T, Brupbacher G, Fuchs S, Sommer J, et al. Reproductive number of the COVID-19 epidemic in Switzerland with a focus on the Cantons of Basel-Stadt and Basel-Landschaft. Swiss Med Wkly. 2020;150:w20271. doi:.https://doi.org/10.4414/smw.2020.20271
  33. Office fédéral de la santé publique (OFSP). Nouvelles Règles d’hygiène et de Conduite Pour Se Protéger Contre Le Nouveau Coronavirus. 2020. https://www.admin.ch/gov/fr/accueil/documentation/communiques.msg-id-78304.html.
  34. Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med Wkly. 2020;150:w20224. doi:.https://doi.org/10.4414/smw.2020.20224
  35. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–8. doi:.https://doi.org/10.1126/science.abb5793
  36. Park SY, Kim Y-M, Yi S, Lee S, Na B-J, Kim CB, et al. Early Release - Coronavirus Disease Outbreak in Call Center, South Korea. Emerging Infectious Diseases Journal. 2020;26(8). doi:.https://doi.org/10.3201/eid2608.201274
  37. Yan P. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. J Theor Biol. 2008;251(2):238–52. doi:.https://doi.org/10.1016/j.jtbi.2007.11.027

Most read articles by the same author(s)