Skip to main navigation menu Skip to main content Skip to site footer

Viewpoint

Vol. 150 No. 1516 (2020)

HLA studies in the context of coronavirus outbreaks

  • Alicia Sanchez-Mazas
DOI
https://doi.org/10.4414/smw.2020.20248
Cite this as:
Swiss Med Wkly. 2020;150:w20248
Published
16.04.2020

References

  1. Sanchez-Mazas A. A review of HLA allele and SNP associations to highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150:w20214.doi:.https://doi.org/10.4414/smw.2020.20214
  2. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4(1):9. doi:.https://doi.org/10.1186/1471-2350-4-9
  3. Ng MH, Lau KM, Li L, Cheng SH, Chan WY, Hui PK, et al. Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis. 2004;190(3):515–8. doi:.https://doi.org/10.1086/421523
  4. Ng MH, Cheng SH, Lau KM, Leung GM, Khoo US, Zee BC, et al. Immunogenetics in SARS: a case-control study. Hong Kong Med J. 2010;16(5, Suppl 4):29–33.
  5. Yuan FF, Velickovic Z, Ashton LJ, Dyer WB, Geczy AF, Dunckley H, et al. Influence of HLA gene polymorphisms on susceptibility and outcome post infection with the SARS-CoV virus. Virol Sin. 2014;29(2):128–30. doi:.https://doi.org/10.1007/s12250-014-3398-x
  6. Xiong P, Zeng X, Song MS, Jia SW, Zhong MH, Xiao LL, et al. Lack of association between HLA-A, -B and -DRB1 alleles and the development of SARS: a cohort of 95 SARS-recovered individuals in a population of Guangdong, southern China. Int J Immunogenet. 2008;35(1):69–74. doi:.https://doi.org/10.1111/j.1744-313X.2007.00741.x
  7. Chen YMA, Liang SY, Shih YP, Chen CY, Lee YM, Chang L, et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol. 2006;44(2):359–65. doi:.https://doi.org/10.1128/JCM.44.2.359-365.2006
  8. Wang SF, Chen KH, Chen M, Li WY, Chen YJ, Tsao CH, et al. Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunol. 2011;24(5):421–6. doi:.https://doi.org/10.1089/vim.2011.0024
  9. Keicho N, Itoyama S, Kashiwase K, Phi NC, Long HT, Ha LD, et al. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol. 2009;70(7):527–31. doi:.https://doi.org/10.1016/j.humimm.2009.05.006
  10. Buus S. Description and prediction of peptide-MHC binding: the ‘human MHC project’. Curr Opin Immunol. 1999;11(2):209–13. doi:.https://doi.org/10.1016/S0952-7915(99)80035-1
  11. Sylvester-Hvid C, Nielsen M, Lamberth K, Røder G, Justesen S, Lundegaard C, et al. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens. 2004;63(5):395–400. doi:.https://doi.org/10.1111/j.0001-2815.2004.00221.x
  12. Blicher T, Kastrup JS, Buus S, Gajhede M. High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide. Acta Crystallogr D Biol Crystallogr. 2005;61(8):1031–40. doi:.https://doi.org/10.1107/S0907444905013090
  13. Tsao YP, Lin JY, Jan JT, Leng CH, Chu CC, Yang YC, et al. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins. Biochem Biophys Res Commun. 2006;344(1):63–71. doi:.https://doi.org/10.1016/j.bbrc.2006.03.152
  14. Cheung YK, Cheng SC, Sin FW, Chan KT, Xie Y. Induction of T-cell response by a DNA vaccine encoding a novel HLA-A*0201 severe acute respiratory syndrome coronavirus epitope. Vaccine. 2007;25(32):6070–7. doi:.https://doi.org/10.1016/j.vaccine.2007.05.025
  15. Rivino L, Tan AT, Chia A, Kumaran EA, Grotenbreg GM, MacAry PA, et al. Defining CD8+ T cell determinants during human viral infection in populations of Asian ethnicity. J Immunol. 2013;191(8):4010–9. doi:.https://doi.org/10.4049/jimmunol.1301507
  16. Zhang XW. A combination of epitope prediction and molecular docking allows for good identification of MHC class I restricted T-cell epitopes. Comput Biol Chem. 2013;45:30–5. doi:.https://doi.org/10.1016/j.compbiolchem.2013.03.003
  17. Hyun-Jung Lee C, Koohy H. In silico identification of vaccine targets for 2019-nCoV. F1000 Res. 2020;9:145. doi:.https://doi.org/10.12688/f1000research.22507.1
  18. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3):254. doi:.https://doi.org/10.3390/v12030254