Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 1718 (2020)

The cellular prion protein beyond prion diseases

  • Giorgia Manni
  • Victoria Lewis
  • Matteo Senesi
  • Giovanni Spagnolli
  • Francesca Fallarino
  • Steven J. Collins
  • Sophie Mouillet-Richard
  • Emiliano Biasini
DOI
https://doi.org/10.4414/smw.2020.20222
Cite this as:
Swiss Med Wkly. 2020;150:w20222
Published
24.04.2020

Summary

The cellular prion protein (PrPC), a cell surface glycoprotein originally identified for its central role in prion diseases (also called transmissible spongiform encephalopathies), has recently been implicated in the pathogenesis of other neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases, by acting as a toxicity-transducing receptor for different misfolded protein isoforms, or in some case by exerting neuroprotective effects. Interestingly, PrPC has also been reported to play unexpected functions outside the nervous system, for example by contributing to myelin homeostasis, regulating specific processes of the immune system and participating in various aspects of cancer progression. Collectively, these observations point to a much broader role for PrPC in physiological and disease processes than originally assumed. In this manuscript, we provide an overview of what is known about the role of PrPC beyond prion disorders and discuss the potential implications of targeting this protein in different diseases.

References

  1. Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem. 2017;86(1):27–68. doi:.https://doi.org/10.1146/annurev-biochem-061516-045115
  2. Powell T. Health Policy and Dementia. Curr Psychiatry Rep. 2018;20(1):4. doi:.https://doi.org/10.1007/s11920-018-0868-0
  3. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608. doi:.https://doi.org/10.15252/emmm.201606210
  4. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535–9. doi:.https://doi.org/10.1038/416535a
  5. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457(7233):1128–32. doi:.https://doi.org/10.1038/nature07761
  6. Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95(23):13363–83. doi:.https://doi.org/10.1073/pnas.95.23.13363
  7. Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol. 2007;8(7):552–61. doi:.https://doi.org/10.1038/nrm2204
  8. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996;379(6563):339–43. doi:.https://doi.org/10.1038/379339a0
  9. Brandner S, Raeber A, Sailer A, Blättler T, Fischer M, Weissmann C, et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA. 1996;93(23):13148–51. doi:.https://doi.org/10.1073/pnas.93.23.13148
  10. Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science. 2003;302(5646):871–4. doi:.https://doi.org/10.1126/science.1090187
  11. Aulić S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, et al. α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication. Sci Rep. 2017;7(1):10050. doi:.https://doi.org/10.1038/s41598-017-10236-x
  12. Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szegö ÉM, et al. α-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. 2017;20(11):1569–79. doi:.https://doi.org/10.1038/nn.4648
  13. Resenberger UK, Winklhofer KF, Tatzelt J. Cellular prion protein mediates toxic signaling of amyloid beta. Neurodegener Dis. 2012;10(1-4):298–300. doi:.https://doi.org/10.1159/000332596
  14. Corbett GT, Wang Z, Hong W, Colom-Cadena M, Rose J, Liao M, et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 2020;139(3):503–26. doi:.https://doi.org/10.1007/s00401-019-02114-9
  15. Biasini E, Turnbaugh JA, Unterberger U, Harris DA. Prion protein at the crossroads of physiology and disease. Trends Neurosci. 2012;35(2):92–103. doi:.https://doi.org/10.1016/j.tins.2011.10.002
  16. Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci. 2017;10:77. doi:.https://doi.org/10.3389/fnmol.2017.00077
  17. Nuvolone M, Hermann M, Sorce S, Russo G, Tiberi C, Schwarz P, et al. Strictly co-isogenic C57BL/6J-Prnp-/- mice: A rigorous resource for prion science. J Exp Med. 2016;213(3):313–27. doi:.https://doi.org/10.1084/jem.20151610
  18. Wulf MA, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol. 2017;15(1):34. doi:.https://doi.org/10.1186/s12915-017-0375-5
  19. Küffer A, Lakkaraju AK, Mogha A, Petersen SC, Airich K, Doucerain C, et al. The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature. 2016;536(7617):464–8. doi:.https://doi.org/10.1038/nature19312
  20. Mabbott NA. Immunology of Prion Protein and Prions. Prog Mol Biol Transl Sci. 2017;150:203–40. doi:.https://doi.org/10.1016/bs.pmbts.2017.06.004
  21. Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. Prog Mol Biol Transl Sci. 2017;150:1–34. doi:.https://doi.org/10.1016/bs.pmbts.2017.06.001
  22. Chesebro B, Race R, Wehrly K, Nishio J, Bloom M, Lechner D, et al. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature. 1985;315(6017):331–3. doi:.https://doi.org/10.1038/315331a0
  23. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–44. doi:.https://doi.org/10.1126/science.6801762
  24. Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC, et al. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci USA. 2007;104(26):11062–7. doi:.https://doi.org/10.1073/pnas.0609621104
  25. Griffiths HH, Whitehouse IJ, Baybutt H, Brown D, Kellett KA, Jackson CD, et al. Prion protein interacts with BACE1 protein and differentially regulates its activity toward wild type and Swedish mutant amyloid precursor protein. J Biol Chem. 2011;286(38):33489–500. doi:.https://doi.org/10.1074/jbc.M111.278556
  26. Whitehouse IJ, Miners JS, Glennon EB, Kehoe PG, Love S, Kellett KA, et al. Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-β levels and Braak stage. PLoS One. 2013;8(4):e59554. doi:.https://doi.org/10.1371/journal.pone.0059554
  27. Whitehouse IJ, Brown D, Baybutt H, Diack AB, Kellett KA, Piccardo P, et al. Ablation of Prion Protein in Wild Type Human Amyloid Precursor Protein (APP) Transgenic Mice Does Not Alter The Proteolysis of APP, Levels of Amyloid-β or Pathologic Phenotype. PLoS One. 2016;11(7):e0159119. doi:.https://doi.org/10.1371/journal.pone.0159119
  28. Vincent B, Sunyach C, Orzechowski HD, St George-Hyslop P, Checler F. p53-Dependent transcriptional control of cellular prion by presenilins. J Neurosci. 2009;29(20):6752–60. doi:.https://doi.org/10.1523/JNEUROSCI.0789-09.2009
  29. Lewis V, Whitehouse IJ, Baybutt H, Manson JC, Collins SJ, Hooper NM. Cellular prion protein expression is not regulated by the Alzheimer’s amyloid precursor protein intracellular domain. PLoS One. 2012;7(2):e31754. doi:.https://doi.org/10.1371/journal.pone.0031754
  30. Rial D, Piermartiri TC, Duarte FS, Tasca CI, Walz R, Prediger RD. Overexpression of cellular prion protein (PrPC) prevents cognitive dysfunction and apoptotic neuronal cell death induced by amyloid-β (Aβ1–40) administration in mice. Neuroscience. 2012;215:79–89. doi:.https://doi.org/10.1016/j.neuroscience.2012.04.034
  31. Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Gen Physiol. 2008;131(6):i5. doi:.https://doi.org/10.1085/JGP1316OIA5
  32. Khosravani H, Zhang Y, Zamponi GW. Cellular prion protein null mice display normal AMPA receptor mediated long term depression. Prion. 2008;2(2):48–50. doi:.https://doi.org/10.4161/pri.2.2.6628
  33. You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, et al. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA. 2012;109(5):1737–42. doi:.https://doi.org/10.1073/pnas.1110789109
  34. Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH. The cellular prion protein traps Alzheimer’s Aβ in an oligomeric form and disassembles amyloid fibers. FASEB J. 2013;27(5):1847–58. doi:.https://doi.org/10.1096/fj.12-222588
  35. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA. 2010;107(5):2295–300. doi:.https://doi.org/10.1073/pnas.0911829107
  36. Kessels HW, Nguyen LN, Nabavi S, Malinow R. The prion protein as a receptor for amyloid-beta. Nature. 2010;466(7308):E3–4, discussion E4–5. doi:.https://doi.org/10.1038/nature09217
  37. Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J, et al. Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med. 2010;2(8):306–14. doi:.https://doi.org/10.1002/emmm.201000082
  38. Caetano FA, Beraldo FH, Hajj GN, Guimaraes AL, Jürgensen S, Wasilewska-Sampaio AP, et al. Amyloid-beta oligomers increase the localization of prion protein at the cell surface. J Neurochem. 2011;117(3):538–53. doi:.https://doi.org/10.1111/j.1471-4159.2011.07225.x
  39. Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, et al. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci. 2012;32(47):16857–71. doi:.https://doi.org/10.1523/JNEUROSCI.1858-12.2012
  40. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012;15(9):1227–35. doi:.https://doi.org/10.1038/nn.3178
  41. Um JW, Strittmatter SM. Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion. 2013;7(1):37–41. doi:.https://doi.org/10.4161/pri.22212
  42. Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, et al. An N-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo. J Biol Chem. 2013;288(11):7857–66. doi:.https://doi.org/10.1074/jbc.M112.423954
  43. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci. 2010;30(18):6367–74. doi:.https://doi.org/10.1523/JNEUROSCI.0395-10.2010
  44. Kudo W, Lee HP, Zou WQ, Wang X, Perry G, Zhu X, et al. Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death. Hum Mol Genet. 2012;21(5):1138–44. doi:.https://doi.org/10.1093/hmg/ddr542
  45. Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, et al. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci. 2011;31(20):7259–63. doi:.https://doi.org/10.1523/JNEUROSCI.6500-10.2011
  46. Chung E, Ji Y, Sun Y, Kascsak RJ, Kascsak RB, Mehta PD, et al. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer’s disease model mouse. BMC Neurosci. 2010;11(1):130. doi:.https://doi.org/10.1186/1471-2202-11-130
  47. Cox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM, et al. Anti-PrPC antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol. 2019;6(3):554–74. doi:.https://doi.org/10.1002/acn3.730
  48. Freir DB, Nicoll AJ, Klyubin I, Panico S, Mc Donald JM, Risse E, et al. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat Commun. 2011;2(1):336. doi:.https://doi.org/10.1038/ncomms1341
  49. Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, García-Aznar JM, et al. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons. Mol Neurobiol. 2018;55(3):1847–60. doi:.https://doi.org/10.1007/s12035-017-0451-4
  50. La Vitola P, Beeg M, Balducci C, Santamaria G, Restelli E, Colombo L, et al. Cellular prion protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects. Brain. 2019;142(2):249–54. doi:.https://doi.org/10.1093/brain/awy318
  51. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008;88(2):673–728. doi:.https://doi.org/10.1152/physrev.00007.2007
  52. Aguzzi A. Prions and the immune system: a journey through gut, spleen, and nerves. Adv Immunol. 2003;81:123–71. doi:.https://doi.org/10.1016/S0065-2776(03)81004-0
  53. McKinley MP, Bolton DC, Prusiner SB. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983;35(1):57–62. doi:.https://doi.org/10.1016/0092-8674(83)90207-6
  54. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 1993;32(8):1991–2002. doi:.https://doi.org/10.1021/bi00059a016
  55. Mabbott NA, Alibhai JD, Manson J. The role of the immune system in prion infection. Handb Clin Neurol. 2018;153:85–107. doi:.https://doi.org/10.1016/B978-0-444-63945-5.00005-2
  56. Elhelaly AE, Inoshima Y, Ishiguro N. Characterization of early transient accumulation of PrP(Sc) in immune cells. Biochem Biophys Res Commun. 2013;439(3):340–5. doi:.https://doi.org/10.1016/j.bbrc.2013.08.085
  57. Aguzzi A, Sigurdson CJ. Antiprion immunotherapy: to suppress or to stimulate? Nat Rev Immunol. 2004;4(9):725–36. doi:.https://doi.org/10.1038/nri1437
  58. Buchholz CJ, Bach P, Nikles D, Kalinke U. Prion protein-specific antibodies for therapeutic intervention of transmissible spongiform encephalopathies. Expert Opin Biol Ther. 2006;6(3):293–300. doi:.https://doi.org/10.1517/14712598.6.3.293
  59. Wisniewski T, Chabalgoity JA, Goni F. ¿Es factible la vacunación contra la encefalopatía espongiforme transmisible? [Is vaccination against transmissible spongiform encephalopathy feasible?] Rev Sci Tech. 2007;26(1):243–51. doi:.https://doi.org/10.20506/rst.26.1.1739
  60. Wisniewski T, Goñi F. Immunomodulation for prion and prion-related diseases. Expert Rev Vaccines. 2010;9(12):1441–52. doi:.https://doi.org/10.1586/erv.10.131
  61. Wisniewski T, Goñi F. Could immunomodulation be used to prevent prion diseases? Expert Rev Anti Infect Ther. 2012;10(3):307–17. doi:.https://doi.org/10.1586/eri.11.177
  62. Bachy V, Ballerini C, Gourdain P, Prignon A, Iken S, Antoine N, et al. Mouse vaccination with dendritic cells loaded with prion protein peptides overcomes tolerance and delays scrapie. J Gen Virol. 2010;91(Pt 3):809–20. doi:.https://doi.org/10.1099/vir.0.013417-0
  63. Gregoire S, Logre C, Metharom P, Loing E, Chomilier J, Rosset MB, et al. Identification of two immunogenic domains of the prion protein--PrP--which activate class II-restricted T cells and elicit antibody responses against the native molecule. J Leukoc Biol. 2004;76(1):125–34. doi:.https://doi.org/10.1189/jlb.1203656
  64. Carnaud C, Bachy V. Cell-based immunotherapy of prion diseases by adoptive transfer of antigen-loaded dendritic cells or antigen-primed CD(4+) T lymphocytes. Prion. 2010;4(2):66–71. doi:.https://doi.org/10.4161/pri.4.2.12597
  65. Málaga-Trillo E, Sempou E. PrPs: Proteins with a purpose: Lessons from the zebrafish. Prion. 2009;3(3):129–33. doi:.https://doi.org/10.4161/pri.3.3.9651
  66. Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, et al. Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 2009;7(3):e55. doi:.https://doi.org/10.1371/journal.pbio.1000055
  67. Solis GP, Malaga-Trillo E, Plattner H, Stuermer CA. Cellular roles of the prion protein in association with reggie/flotillin microdomains. Front Biosci. 2010;15(1):1075–85. doi:.https://doi.org/10.2741/3662
  68. Brown HR, Goller NL, Rudelli RD, Merz GS, Wolfe GC, Wisniewski HM, et al. The mRNA encoding the scrapie agent protein is present in a variety of non-neuronal cells. Acta Neuropathol. 1990;80(1):1–6. doi:.https://doi.org/10.1007/BF00294214
  69. Burthem J, Urban B, Pain A, Roberts DJ. The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood. 2001;98(13):3733–8. doi:.https://doi.org/10.1182/blood.V98.13.3733
  70. Aguzzi A, Nuvolone M, Zhu C. The immunobiology of prion diseases. Nat Rev Immunol. 2013;13(12):888–902. doi:.https://doi.org/10.1038/nri3553
  71. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, et al. Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med. 1999;5(11):1308–12. doi:.https://doi.org/10.1038/15264
  72. Dodelet VC, Cashman NR. Prion protein expression in human leukocyte differentiation. Blood. 1998;91(5):1556–61. doi:.https://doi.org/10.1182/blood.V91.5.1556
  73. Holada K, Vostal JG. Different levels of prion protein (PrPc) expression on hamster, mouse and human blood cells. Br J Haematol. 2000;110(2):472–80. doi:.https://doi.org/10.1046/j.1365-2141.2000.02158.x
  74. Kubosaki A, Yusa S, Nasu Y, Nishimura T, Nakamura Y, Saeki K, et al. Distribution of cellular isoform of prion protein in T lymphocytes and bone marrow, analyzed by wild-type and prion protein gene-deficient mice. Biochem Biophys Res Commun. 2001;282(1):103–7. doi:.https://doi.org/10.1006/bbrc.2001.4538
  75. Li R, Liu D, Zanusso G, Liu T, Fayen JD, Huang JH, et al. The expression and potential function of cellular prion protein in human lymphocytes. Cell Immunol. 2001;207(1):49–58. doi:.https://doi.org/10.1006/cimm.2000.1751
  76. Dürig J, Giese A, Schulz-Schaeffer W, Rosenthal C, Schmücker U, Bieschke J, et al. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol. 2000;108(3):488–95. doi:.https://doi.org/10.1046/j.1365-2141.2000.01881.x
  77. Isaacs JD, Jackson GS, Altmann DM. The role of the cellular prion protein in the immune system. Clin Exp Immunol. 2006;146(1):1–8. doi:.https://doi.org/10.1111/j.1365-2249.2006.03194.x
  78. Hugel B, Martínez MC, Kunzelmann C, Blättler T, Aguzzi A, Freyssinet JM. Modulation of signal transduction through the cellular prion protein is linked to its incorporation in lipid rafts. Cell Mol Life Sci. 2004;61(23):2998–3007. doi:.https://doi.org/10.1007/s00018-004-4318-2
  79. Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, et al. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. Brain. 2010;133(Pt 2):375–88. doi:.https://doi.org/10.1093/brain/awp298
  80. Politopoulou G, Seebach JD, Schmugge M, Schwarz HP, Aguzzi A. Age-related expression of the cellular prion protein in human peripheral blood leukocytes. Haematologica. 2000;85(6):580–7.
  81. Cashman NR, Loertscher R, Nalbantoglu J, Shaw I, Kascsak RJ, Bolton DC, et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell. 1990;61(1):185–92. doi:.https://doi.org/10.1016/0092-8674(90)90225-4
  82. Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med. 2004;199(3):303–13. doi:.https://doi.org/10.1084/jem.20031562
  83. Chen Z, Lund R, Aittokallio T, Kosonen M, Nevalainen O, Lahesmaa R. Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. J Immunol. 2003;171(7):3627–35. doi:.https://doi.org/10.4049/jimmunol.171.7.3627
  84. Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA. 2004;101(48):16885–90. doi:.https://doi.org/10.1073/pnas.0407417101
  85. Isaacs JD, Garden OA, Kaur G, Collinge J, Jackson GS, Altmann DM. The cellular prion protein is preferentially expressed by CD4+ CD25+ Foxp3+ regulatory T cells. Immunology. 2008;125(3):313–9. doi:.https://doi.org/10.1111/j.1365-2567.2008.02853.x
  86. Ford MJ, Burton LJ, Morris RJ, Hall SM. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience. 2002;113(1):177–92. doi:.https://doi.org/10.1016/S0306-4522(02)00155-0
  87. Durai V, Murphy KM. Functions of Murine Dendritic Cells. Immunity. 2016;45(4):719–36. doi:.https://doi.org/10.1016/j.immuni.2016.10.010
  88. del Hoyo GM, Martín P, Vargas HH, Ruiz S, Arias CF, Ardavín C. Characterization of a common precursor population for dendritic cells. Nature. 2002;415(6875):1043–7. doi:.https://doi.org/10.1038/4151043a
  89. Ballerini C, Gourdain P, Bachy V, Blanchard N, Levavasseur E, Grégoire S, et al. Functional implication of cellular prion protein in antigen-driven interactions between T cells and dendritic cells. J Immunol. 2006;176(12):7254–62. doi:.https://doi.org/10.4049/jimmunol.176.12.7254
  90. Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol. 2015;6:450. doi:.https://doi.org/10.3389/fimmu.2015.00450
  91. McCulloch L, Brown KL, Mabbott NA. Ablation of the cellular prion protein, PrPC, specifically on follicular dendritic cells has no effect on their maturation or function. Immunology. 2013;138(3):246–57. doi:.https://doi.org/10.1111/imm.12031
  92. Liu J, Zhao D, Liu C, Ding T, Yang L, Yin X, et al. Prion protein participates in the protection of mice from lipopolysaccharide infection by regulating the inflammatory process. J Mol Neurosci. 2015;55(1):279–87. doi:.https://doi.org/10.1007/s12031-014-0319-2
  93. de Almeida CJ, Chiarini LB, da Silva JP, E Silva PM, Martins MA, Linden R. The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol. 2005;77(2):238–46. doi:.https://doi.org/10.1189/jlb.1103531
  94. Uraki R, Sakudo A, Ando S, Kitani H, Onodera T. Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells. Int J Mol Med. 2010;26(4):527–32.
  95. Wang M, Zhao D, Yang Y, Liu J, Wang J, Yin X, et al. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages. PLoS One. 2014;9(7):e102785. doi:.https://doi.org/10.1371/journal.pone.0102785
  96. McBride SM. Prion protein: a pattern recognition receptor for viral components and uric acid responsible for the induction of innate and adaptive immunity. Med Hypotheses. 2005;65(3):570–7. doi:.https://doi.org/10.1016/j.mehy.2005.02.038
  97. Obst J, Simon E, Mancuso R, Gomez-Nicola D. The Role of Microglia in Prion Diseases: A Paradigm of Functional Diversity. Front Aging Neurosci. 2017;9:207. doi:.https://doi.org/10.3389/fnagi.2017.00207
  98. Dervishi E, Lam TH, Dunn SM, Zwierzchowski G, Saleem F, Wishart DS, et al. Recombinant mouse prion protein alone or in combination with lipopolysaccharide alters expression of innate immunity genes in the colon of mice. Prion. 2015;9(1):59–73. doi:.https://doi.org/10.1080/19336896.2015.1019694
  99. Johnson ML, Grazul-Bilska AT, Reynolds LP, Redmer DA. Prion (PrPC) expression in ovine uteroplacental tissues increases after estrogen treatment of ovariectomized ewes and during early pregnancy. Reproduction. 2014;148(1):1–10. doi:.https://doi.org/10.1530/REP-13-0548
  100. Tanji K, Saekia K, Matsumoto Y, Takeda M, Hirasawa K, Doi K, et al. Analysis of PrPc mRNA by in situ hybridization in brain, placenta, uterus and testis of rats. Intervirology. 1995;38(6):309–15. doi:.https://doi.org/10.1159/000150457
  101. Salvesen Ø, Reiten MR, Espenes A, Bakkebø MK, Tranulis MA, Ersdal C. LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation. 2017;14(1):106. doi:.https://doi.org/10.1186/s12974-017-0879-5
  102. Onodera T, Sakudo A, Tsubone H, Itohara S. Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol Immunol. 2014;58(7):361–74. doi:.https://doi.org/10.1111/1348-0421.12162
  103. Tsutsui S, Hahn JN, Johnson TA, Ali Z, Jirik FR. Absence of the cellular prion protein exacerbates and prolongs neuroinflammation in experimental autoimmune encephalomyelitis. Am J Pathol. 2008;173(4):1029–41. doi:.https://doi.org/10.2353/ajpath.2008.071062
  104. Gourdain P, Ballerini C, Nicot AB, Carnaud C. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J Neuroinflammation. 2012;9(1):25. doi:.https://doi.org/10.1186/1742-2094-9-25
  105. Martin GR, Keenan CM, Sharkey KA, Jirik FR. Endogenous prion protein attenuates experimentally induced colitis. Am J Pathol. 2011;179(5):2290–301. doi:.https://doi.org/10.1016/j.ajpath.2011.07.025
  106. Bishop MT, Pennington C, Heath CA, Will RG, Knight RS. PRNP variation in UK sporadic and variant Creutzfeldt Jakob disease highlights genetic risk factors and a novel non-synonymous polymorphism. BMC Med Genet. 2009;10(1):146. doi:.https://doi.org/10.1186/1471-2350-10-146
  107. Pasupuleti M, Roupe M, Rydengård V, Surewicz K, Surewicz WK, Chalupka A, et al. Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One. 2009;4(10):e7358. doi:.https://doi.org/10.1371/journal.pone.0007358
  108. Ding T, Zhou X, Kouadir M, Shi F, Yang Y, Liu J, et al. Cellular prion protein participates in the regulation of inflammatory response and apoptosis in BV2 microglia during infection with Mycobacterium bovis. J Mol Neurosci. 2013;51(1):118–26. doi:.https://doi.org/10.1007/s12031-013-9962-2
  109. Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, et al. Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci. 2012;69(8):1331–52. doi:.https://doi.org/10.1007/s00018-011-0879-z
  110. Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res. 2002;62(10):2890–6.
  111. Zhao Y, You H, Liu F, An H, Shi Y, Yu Q, et al. Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells. Cancer Lett. 2002;185(2):211–8. doi:.https://doi.org/10.1016/S0304-3835(02)00264-1
  112. Diarra-Mehrpour M, Arrabal S, Jalil A, Pinson X, Gaudin C, Piétu G, et al. Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res. 2004;64(2):719–27. doi:.https://doi.org/10.1158/0008-5472.CAN-03-1735
  113. de Wit M, Jimenez CR, Carvalho B, Belien JA, Delis-van Diemen PM, Mongera S, et al. Cell surface proteomics identifies glucose transporter type 1 and prion protein as candidate biomarkers for colorectal adenoma-to-carcinoma progression. Gut. 2012;61(6):855–64. doi:.https://doi.org/10.1136/gutjnl-2011-300511
  114. Domingues PH, Nanduri LSY, Seget K, Venkateswaran SV, Agorku D, Viganó C, et al. Cellular Prion Protein PrPC and Ecto-5′-Nucleotidase Are Markers of the Cellular Stress Response to Aneuploidy. Cancer Res. 2017;77(11):2914–26. doi:.https://doi.org/10.1158/0008-5472.CAN-16-3052
  115. Du L, Rao G, Wang H, Li B, Tian W, Cui J, et al. CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73(8):2682–94. doi:.https://doi.org/10.1158/0008-5472.CAN-12-3759
  116. Le Corre D, Ghazi A, Balogoun R, Pilati C, Aparicio T, Martin-Lannerée S, et al. The cellular prion protein controls the mesenchymal-like molecular subtype and predicts disease outcome in colorectal cancer. EBioMedicine. 2019;46:94–104. doi:.https://doi.org/10.1016/j.ebiom.2019.07.036
  117. Lopes MH, Santos TG, Rodrigues BR, Queiroz-Hazarbassanov N, Cunha IW, Wasilewska-Sampaio AP, et al. Disruption of prion protein-HOP engagement impairs glioblastoma growth and cognitive decline and improves overall survival. Oncogene. 2015;34(25):3305–14. doi:.https://doi.org/10.1038/onc.2014.261
  118. Pan Y, Zhao L, Liang J, Liu J, Shi Y, Liu N, et al. Cellular prion protein promotes invasion and metastasis of gastric cancer. FASEB J. 2006;20(11):1886–8. doi:.https://doi.org/10.1096/fj.06-6138fje
  119. Wiegmans AP, Saunus JM, Ham S, Lobb R, Kutasovic JR, Dalley AJ, et al. Secreted cellular prion protein binds doxorubicin and correlates with anthracycline resistance in breast cancer. JCI Insight. 2019;5:5. doi:.https://doi.org/10.1172/jci.insight.124092
  120. Li QQ, Cao XX, Xu JD, Chen Q, Wang WJ, Tang F, et al. The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel. Cell Mol Life Sci. 2009;66(3):504–15. doi:.https://doi.org/10.1007/s00018-008-8548-6
  121. Liang J, Luo G, Ning X, Shi Y, Zhai H, Sun S, et al. Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein. Biochem Cell Biol. 2007;85(3):375–83. doi:.https://doi.org/10.1139/O07-052
  122. Chieng CK, Say YH. Cellular prion protein contributes to LS 174T colon cancer cell carcinogenesis by increasing invasiveness and resistance against doxorubicin-induced apoptosis. Tumour Biol. 2015;36(10):8107–20. doi:.https://doi.org/10.1007/s13277-015-3530-z
  123. Li QQ, Sun YP, Ruan CP, Xu XY, Ge JH, He J, et al. Cellular prion protein promotes glucose uptake through the Fyn-HIF-2α-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci. 2011;102(2):400–6. doi:.https://doi.org/10.1111/j.1349-7006.2010.01811.x
  124. Corsaro A, Bajetto A, Thellung S, Begani G, Villa V, Nizzari M, et al. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget. 2016;7(25):38638–57. doi:.https://doi.org/10.18632/oncotarget.9575
  125. Provenzano L, Ryan Y, Hilton DA, Lyons-Rimmer J, Dave F, Maze EA, et al. Cellular prion protein (PrPC) in the development of Merlin-deficient tumours. Oncogene. 2017;36(44):6132–42. doi:.https://doi.org/10.1038/onc.2017.200
  126. Iglesia RP, Prado MB, Cruz L, Martins VR, Santos TG, Lopes MH. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8(1):76. doi:.https://doi.org/10.1186/s13287-017-0518-1
  127. Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, et al. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. Am J Pathol. 2016;186(11):2945–56. doi:.. Correction in: Am J Pathol. 2016;187(3):689 https://doi.org/10.1016/j.ajpath.2016.07.010
  128. Halliez S, Martin-Lannerée S, Passet B, Hernandez-Rapp J, Castille J, Urien C, et al. Prion protein localizes at the ciliary base during neural and cardiovascular development, and its depletion affects α-tubulin post-translational modifications. Sci Rep. 2015;5(1):17146. doi:.https://doi.org/10.1038/srep17146
  129. Santos TG, Silva IR, Costa-Silva B, Lepique AP, Martins VR, Lopes MH. Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells. 2011;29(7):1126–36. doi:.https://doi.org/10.1002/stem.664
  130. Zhuang D, Liu Y, Mao Y, Gao L, Zhang H, Luan S, et al. TMZ-induced PrPc/par-4 interaction promotes the survival of human glioma cells. Int J Cancer. 2012;130(2):309–18. doi:.https://doi.org/10.1002/ijc.25985
  131. Du J, Pan Y, Shi Y, Guo C, Jin X, Sun L, et al. Overexpression and significance of prion protein in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC7901/ADR. Int J Cancer. 2005;113(2):213–20. doi:.https://doi.org/10.1002/ijc.20570
  132. Luo G, Wang W, Wu Q, Lu Y, Su T, Gu N, et al. MGr1-Antigen/37 kDa laminin receptor precursor promotes cellular prion protein induced multi-drug-resistance of gastric cancer. Oncotarget. 2017;8(42):71630–41. doi:.https://doi.org/10.18632/oncotarget.17795
  133. Cheng Y, Tao L, Xu J, Li Q, Yu J, Jin Y, et al. CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol Carcinog. 2014;53(9):686–97. doi:.https://doi.org/10.1002/mc.22021
  134. Meslin F, Conforti R, Mazouni C, Morel N, Tomasic G, Drusch F, et al. Efficacy of adjuvant chemotherapy according to Prion protein expression in patients with estrogen receptor-negative breast cancer. Ann Oncol. 2007;18(11):1793–8. doi:.https://doi.org/10.1093/annonc/mdm406
  135. Meslin F, Hamaï A, Gao P, Jalil A, Cahuzac N, Chouaib S, et al. Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death. Cancer Res. 2007;67(22):10910–9. doi:.https://doi.org/10.1158/0008-5472.CAN-07-0512
  136. Atkinson CJ, Kawamata F, Liu C, Ham S, Győrffy B, Munn AL, et al. EGFR and Prion protein promote signaling via FOXO3a-KLF5 resulting in clinical resistance to platinum agents in colorectal cancer. Mol Oncol. 2019;13(4):725–37. doi:.https://doi.org/10.1002/1878-0261.12411
  137. Park JY, Jeong JK, Lee JH, Moon JH, Kim SW, Lee YJ, et al. Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment. Oncotarget. 2015;6(7):5342–53. doi:.https://doi.org/10.18632/oncotarget.3028
  138. Liang J, Ge F, Guo C, Luo G, Wang X, Han G, et al. Inhibition of PI3K/Akt partially leads to the inhibition of PrP(C)-induced drug resistance in gastric cancer cells. FEBS J. 2009;276(3):685–94. doi:.https://doi.org/10.1111/j.1742-4658.2008.06816.x
  139. Gil M, Kim YK, Kim KE, Kim W, Park CS, Lee KJ. Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem Biophys Res Commun. 2016;470(1):213–9. doi:.https://doi.org/10.1016/j.bbrc.2016.01.038
  140. de Lacerda TC, Costa-Silva B, Giudice FS, Dias MV, de Oliveira GP, Teixeira BL, et al. Prion protein binding to HOP modulates the migration and invasion of colorectal cancer cells. Clin Exp Metastasis. 2016;33(5):441–51. doi:.https://doi.org/10.1007/s10585-016-9788-8
  141. Lin SC, Lin CH, Shih NC, Liu HL, Wang WC, Lin KY, et al. Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene. 2020;39(2):385–98. doi:.https://doi.org/10.1038/s41388-019-0994-0
  142. Li C, Yu S, Nakamura F, Pentikäinen OT, Singh N, Yin S, et al. Pro-prion binds filamin A, facilitating its interaction with integrin beta1, and contributes to melanomagenesis. J Biol Chem. 2010;285(39):30328–39. doi:.https://doi.org/10.1074/jbc.M110.147413
  143. Yang L, Gao Z, Hu L, Wu G, Yang X, Zhang L, et al. Glycosylphosphatidylinositol anchor modification machinery deficiency is responsible for the formation of pro-prion protein (PrP) in BxPC-3 cells and increases cancer cell motility. J Biol Chem. 2016;291(13):6785. doi:.https://doi.org/10.1074/jbc.A115.705830
  144. Lu W, Kang Y. Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell. 2019;49(3):361–74. doi:.https://doi.org/10.1016/j.devcel.2019.04.010
  145. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29. doi:.https://doi.org/10.1038/nrclinonc.2017.44
  146. Martin-Lannerée S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, et al. PrP(C) from stem cells to cancer. Front Cell Dev Biol. 2014;2:55.
  147. Raymond GJ, Zhao HT, Race B, Raymond LD, Williams K, Swayze EE, et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight. 2019;4(16):e131175. doi:.https://doi.org/10.1172/jci.insight.131175
  148. Barbieri G, Palumbo S, Gabrusiewicz K, Azzalin A, Marchesi N, Spedito A, et al. Silencing of cellular prion protein (PrPC) expression by DNA-antisense oligonucleotides induces autophagy-dependent cell death in glioma cells. Autophagy. 2011;7(8):840–53. doi:.https://doi.org/10.4161/auto.7.8.15615
  149. Spagnolli G, Rigoli M, Orioli S, Sevillano AM, Faccioli P, Wille H, et al. Full atomistic model of prion structure and conversion. PLoS Pathog. 2019;15(7):e1007864. doi:.https://doi.org/10.1371/journal.ppat.1007864