Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 0506 (2019)

The value of volume substitution in patients with septic and haemorrhagic shock with respect to the microcirculation

  • Martin Siegemund
  • Alexa Hollinger
  • Eva C. Gebhard
  • Jonas D. Scheuzger
  • Daniel Bolliger
DOI
https://doi.org/10.4414/smw.2019.20007
Cite this as:
Swiss Med Wkly. 2019;149:w20007
Published
04.02.2019

Summary

After decades of ordinary scientific interest, fluid resuscitation of patients with septic and haemorrhagic shock took centre stage in intensive care research at the turn of the millennium. By that time, resuscitation fluids were the mainstay of haemodynamic stabilisation, avoidance of vasopressors and treatment of hypovolaemia in patients in shock, but were accompanied by adverse events such as excessive tissue oedema. With the spread of early goal-directed therapy research intensified and it was realised that type, volume and timing of resuscitation fluids might affect the course and outcome of critically ill patients. At the same time, the importance of microvascular blood flow as target of resuscitation was accepted.

Today, once-forbidden albumin is the recommended colloid in severe sepsis and septic shock, and the European Medical Agency is considering the removal of starch solutions from the European market because of an increased incidence of acute kidney injury and mortality. This is unprecedented, especially because the administration of low-molecular-weight starches seems to have advantages in indications other than sepsis, and because practices in fluid resuscitation have changed fundamentally since the negative starch studies. Crystalloids are still the mainstay of hypovolaemia treatment in critically ill patients, but awareness is increasing that electrolyte composition, strong ion gap, tonicity and the bicarbonate-substituting anion may have an effect on adverse effects and outcome. In haemorrhagic shock, the utilisation of crystalloids and colloids is retreating, and plasma and erythrocyte concentrates are gaining more importance in the resuscitation of the patient with acute bleeding. However, there are still influential voices warning against the liberal usage of plasma concentrates and erythrocytes in trauma and haemorrhagic shock.

This review describes the evidence relating to fluid resuscitation in sepsis, septic shock and massive haemorrhage. Beside the scientific evidence based on clinical trials, possible effects on the microcirculation and, therefore, organ function will be illustrated and areas of future research highlighted. The critical appraisal of the existing evidence should enable the reader to choose the optimal volume substitution for an individual patient.

References

  1. Semler MW, Rice TW. Sepsis Resuscitation: Fluid Choice and Dose. Clin Chest Med. 2016;37(2):241–50. doi:.https://doi.org/10.1016/j.ccm.2016.01.007
  2. Siegemund M, van Bommel J, Ince C. Assessment of regional tissue oxygenation. Intensive Care Med. 1999;25(10):1044–60. doi:.https://doi.org/10.1007/s001340051011
  3. Tatara T. Context-sensitive fluid therapy in critical illness. J Intensive Care. 2016;4(1):20. doi:.https://doi.org/10.1186/s40560-016-0150-7
  4. Chang R, Holcomb JB. Choice of Fluid Therapy in the Initial Management of Sepsis, Severe Sepsis, and Septic Shock. Shock. 2016;46(1):17–26. doi:.https://doi.org/10.1097/SHK.0000000000000577
  5. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascón GA, et al.; ADQI XIV Workgroup. The Endothelium in Sepsis. Shock. 2016;45(3):259–70. doi:.https://doi.org/10.1097/SHK.0000000000000473
  6. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40. doi:.https://doi.org/10.1097/ALN.0b013e3181863117
  7. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94. doi:.https://doi.org/10.1093/bja/aer515
  8. Stiel L, Meziani F, Helms J. Neutrophil Activation During Septic Shock. Shock. 2018;49(4):371–84. doi:.https://doi.org/10.1097/SHK.0000000000000980
  9. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104. doi:.https://doi.org/10.1164/rccm.200109-016OC
  10. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–31. doi:.https://doi.org/10.1097/01.CCM.0000138558.16257.3F
  11. Marechal X, Favory R, Joulin O, Montaigne D, Hassoun S, Decoster B, et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008;29(5):572–6.
  12. Rahbar E, Cardenas JC, Baimukanova G, Usadi B, Bruhn R, Pati S, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med. 2015;13(1):117. doi:.https://doi.org/10.1186/s12967-015-0481-5
  13. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906. doi:.https://doi.org/10.1161/CIRCULATIONAHA.106.684852
  14. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363(7):689–91. doi:.https://doi.org/10.1056/NEJMcibr1007320
  15. Liang Y, Li X, Zhang X, Li Z, Wang L, Sun Y, et al. Elevated levels of plasma TNF-α are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-κB and p38 mitogen-activated protein kinase in endothelial cells. Shock. 2014;41(4):275–81. doi:.https://doi.org/10.1097/SHK.0000000000000116
  16. Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538. doi:.https://doi.org/10.1186/s13054-014-0538-5
  17. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al., National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. doi:.https://doi.org/10.1056/NEJMoa062200
  18. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Valdivia A, Sailors RM, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138(6):637–42, discussion 642–3. doi:.https://doi.org/10.1001/archsurg.138.6.637
  19. Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14(4):217–30. doi:.https://doi.org/10.1038/nrneph.2017.184
  20. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al.; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77. doi:.https://doi.org/10.1056/NEJMoa010307
  21. Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17. doi:.https://doi.org/10.1056/NEJM199902113400601
  22. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al., ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506. doi:.https://doi.org/10.1056/NEJMoa1404380
  23. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al., ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93. doi:.https://doi.org/10.1056/NEJMoa1401602
  24. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al.; ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11. doi:.https://doi.org/10.1056/NEJMoa1500896
  25. Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med. 2015;41(9):1549–60. doi:.https://doi.org/10.1007/s00134-015-3822-1
  26. Rowan KM, Angus DC, Bailey M, Barnato AE, Bellomo R, Canter RR, et al., PRISM Investigators. Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med. 2017;376(23):2223–34. doi:.https://doi.org/10.1056/NEJMoa1701380
  27. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–9. doi:.https://doi.org/10.1002/hep.20720
  28. Fleck A, Hawker F, Wallace PI, Raines G, Trotter J, Ledingham IM, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;325(8432):781–4. doi:.https://doi.org/10.1016/S0140-6736(85)91447-3
  29. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304–77. doi:.https://doi.org/10.1007/s00134-017-4683-6
  30. Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med. 2017;45(6):1061–93. doi:.https://doi.org/10.1097/CCM.0000000000002425
  31. Reviewers CIGA, Reviewers CIGA ; Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998;317(7153):235–40. doi:.https://doi.org/10.1136/bmj.317.7153.235
  32. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R ; SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56. doi:.https://doi.org/10.1056/NEJMoa040232
  33. Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R ; SAFE Study Investigators. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96. doi:.https://doi.org/10.1007/s00134-010-2039-6
  34. Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al., George Institute for International Health. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84. doi:.https://doi.org/10.1056/NEJMoa067514
  35. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al.; ALBIOS Study Investigators. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21. doi:.https://doi.org/10.1056/NEJMoa1305727
  36. Charpentier J, Mira J-P. Efficacy and tolerance of hyperoncotic albumin administration in septic shock patients: the EARSS study. Intensive Care Med. 2011;37(Suppl 1):S115. [abstract 0438].
  37. Caironi P, Langer T, Gattinoni L. Albumin in critically ill patients: the ideal colloid? Curr Opin Crit Care. 2015;21(4):302–8. doi:.https://doi.org/10.1097/MCC.0000000000000223
  38. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349(jul22 10):g4561. doi:.. Correction in: BMJ. 2014;349:g4850. doi:https://doi.org/10.1136/bmj.g4561
  39. Xu JY, Chen QH, Xie JF, Pan C, Liu SQ, Huang LW, et al. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials. Crit Care. 2014;18(6):702. doi:.https://doi.org/10.1186/s13054-014-0702-y
  40. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51. doi:.https://doi.org/10.1056/NEJMra1208627
  41. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357(9260):911–6. doi:.https://doi.org/10.1016/S0140-6736(00)04211-2
  42. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al.; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39. doi:.https://doi.org/10.1056/NEJMoa070716
  43. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, et al.; 6S Trial Group; Scandinavian Critical Care Trials Group. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34. doi:.https://doi.org/10.1056/NEJMoa1204242
  44. Perner A, Haase N, Winkel P, Guttormsen AB, Tenhunen J, Klemenzson G, et al. Long-term outcomes in patients with severe sepsis randomised to resuscitation with hydroxyethyl starch 130/0.42 or Ringer’s acetate. Intensive Care Med. 2014;40(7):927–34. doi:.https://doi.org/10.1007/s00134-014-3311-y
  45. Müller RB, Haase N, Lange T, Wetterslev J, Perner A. Acute kidney injury with hydroxyethyl starch 130/0.42 in severe sepsis. Acta Anaesthesiol Scand. 2015;59(3):329–36. doi:.https://doi.org/10.1111/aas.12453
  46. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al.; CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11. doi:.https://doi.org/10.1056/NEJMoa1209759
  47. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94. doi:.https://doi.org/10.1186/cc11358
  48. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declère AD, et al.; CRISTAL Investigators. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310(17):1809–17. doi:.https://doi.org/10.1001/jama.2013.280502
  49. Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013;346(feb15 1):f839. doi:.https://doi.org/10.1136/bmj.f839
  50. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88. doi:.https://doi.org/10.1001/jama.2013.430
  51. Rochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, et al.; Fluids in Sepsis and Septic Shock Group. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55. doi:.https://doi.org/10.7326/M14-0178
  52. Perner A, Prowle J, Joannidis M, Young P, Hjortrup PB, Pettilä V. Fluid management in acute kidney injury. Intensive Care Med. 2017;43(6):807–15. doi:.https://doi.org/10.1007/s00134-017-4817-x
  53. Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y, et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012;40(9):2543–51. doi:.https://doi.org/10.1097/CCM.0b013e318258fee7
  54. Moeller C, Fleischmann C, Thomas-Rueddel D, Vlasakov V, Rochwerg B, Theurer P, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016;35:75–83. doi:.https://doi.org/10.1016/j.jcrc.2016.04.011
  55. Ma PL, Peng XX, Du B, Hu XL, Gong YC, Wang Y, et al. Sources of Heterogeneity in Trials Reporting Hydroxyethyl Starch 130/0.4 or 0.42 Associated Excess Mortality in Septic Patients: A Systematic Review and Meta-regression. Chin Med J (Engl). 2015;128(17):2374–82. doi:.https://doi.org/10.4103/0366-6999.163387
  56. Orbegozo Cortés D, Gamarano Barros T, Njimi H, Vincent JL. Crystalloids versus colloids: exploring differences in fluid requirements by systematic review and meta-regression. Anesth Analg. 2015;120(2):389–402. doi:.https://doi.org/10.1213/ANE.0000000000000564
  57. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65. doi:.https://doi.org/10.1097/CCM.0b013e3181feeb15
  58. Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32. doi:.https://doi.org/10.1007/s00134-016-4675-y
  59. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36(6):949–55. doi:.https://doi.org/10.1007/s00134-010-1843-3
  60. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24. doi:.https://doi.org/10.1097/SLA.0b013e318256be72
  61. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci (Lond). 2003;104(1):17–24.
  62. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72. doi:.https://doi.org/10.1001/jama.2012.13356
  63. Raghunathan K, Shaw A, Nathanson B, Stürmer T, Brookhart A, Stefan MS, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91. doi:.https://doi.org/10.1097/CCM.0000000000000305
  64. Shaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluszkiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40(12):1897–905. doi:.https://doi.org/10.1007/s00134-014-3505-3
  65. Neyra JA, Canepa-Escaro F, Li X, Manllo J, Adams-Huet B, Yee J, et al.; Acute Kidney Injury in Critical Illness Study Group. Association of Hyperchloremia With Hospital Mortality in Critically Ill Septic Patients. Crit Care Med. 2015;43(9):1938–44. doi:.https://doi.org/10.1097/CCM.0000000000001161
  66. Raghunathan K, Bonavia A, Nathanson BH, Beadles CA, Shaw AD, Brookhart MA, et al. Association between Initial Fluid Choice and Subsequent In-hospital Mortality during the Resuscitation of Adults with Septic Shock. Anesthesiology. 2015;123(6):1385–93. doi:.https://doi.org/10.1097/ALN.0000000000000861
  67. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al.; SPLIT Investigators; ANZICS CTG. Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit: The SPLIT Randomized Clinical Trial. JAMA. 2015;314(16):1701–10. doi:.https://doi.org/10.1001/jama.2015.12334
  68. Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al.; SALT Investigators * and the Pragmatic Critical Care Research Group; SALT Investigators. Balanced Crystalloids versus Saline in the Intensive Care Unit. The SALT Randomized Trial. Am J Respir Crit Care Med. 2017;195(10):1362–72. doi:.https://doi.org/10.1164/rccm.201607-1345OC
  69. Sen A, Keener CM, Sileanu FE, Foldes E, Clermont G, Murugan R, et al. Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival. Crit Care Med. 2017;45(2):e146–53. doi:.https://doi.org/10.1097/CCM.0000000000002063
  70. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al.; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced Crystalloids versus Saline in Critically Ill Adults. N Engl J Med. 2018;378(9):829–39. doi:.https://doi.org/10.1056/NEJMoa1711584
  71. Cannon JW. Hemorrhagic Shock. N Engl J Med. 2018;378(4):370–9. doi:.https://doi.org/10.1056/NEJMra1705649
  72. Dutton RP. Management of traumatic haemorrhage--the US perspective. Anaesthesia. 2015;70(Suppl 1):108–11, e38. doi:.https://doi.org/10.1111/anae.12894
  73. Wise R, Faurie M, Malbrain MLNG, Hodgson E. Strategies for Intravenous Fluid Resuscitation in Trauma Patients. World J Surg. 2017;41(5):1170–83. doi:.https://doi.org/10.1007/s00268-016-3865-7
  74. Jabaley C, Dudaryk R. Fluid resuscitation for trauma patients: crystalloids versus colloids. Curr Anesthesiol Rep. 2014;4(3):216–24. doi:.https://doi.org/10.1007/s40140-014-0067-4
  75. Schöchl H, Voelckel W, Schlimp CJ. Management of traumatic haemorrhage--the European perspective. Anaesthesia. 2015;70(Suppl 1):102–7, e35–7. doi:.https://doi.org/10.1111/anae.12901
  76. Chappell D, Jacob M. Hydroxyethyl starch - the importance of being earnest. Scand J Trauma Resusc Emerg Med. 2013;21(1):61. doi:.https://doi.org/10.1186/1757-7241-21-61
  77. Haase N, Perner A. Hydroxyethyl starch for resuscitation. Curr Opin Crit Care. 2013;19(4):321–5. doi:.https://doi.org/10.1097/MCC.0b013e3283632de6
  78. Bickell WH. Are victims of injury sometimes victimized by attempts at fluid resuscitation? Ann Emerg Med. 1993;22(2):225–6. doi:.https://doi.org/10.1016/S0196-0644(05)80208-2
  79. Bunn F, Trivedi D. Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev. 2012;(7):CD001319.
  80. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567. doi:.https://doi.org/10.1002/14651858.CD000567.pub6
  81. Rehm M, Haller M, Brechtelsbauer H, Akbulut C, Finsterer U. Extra protein loss not caused by surgical bleeding in patients with ovarian cancer. Acta Anaesthesiol Scand. 1998;42(1):39–46. doi:.https://doi.org/10.1111/j.1399-6576.1998.tb05078.x
  82. de Crescenzo C, Gorouhi F, Salcedo ES, Galante JM. Prehospital hypertonic fluid resuscitation for trauma patients: A systematic review and meta-analysis. J Trauma Acute Care Surg. 2017;82(5):956–62. doi:.https://doi.org/10.1097/TA.0000000000001409
  83. Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–95. doi:.https://doi.org/10.1213/ANE.0b013e318210385c
  84. Bundesärztekammer. Querschnitts-Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Bundesärztekammer, editor: Deutscher Ärzte Verlag; 2015.
  85. Kozek-Langenecker S, Sørensen B, Hess JR, Spahn DR. Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care. 2011;15(5):R239. doi:.https://doi.org/10.1186/cc10488
  86. Ho AM, Dion PW, Yeung JH, Holcomb JB, Critchley LA, Ng CS, et al. Prevalence of survivor bias in observational studies on fresh frozen plasma:erythrocyte ratios in trauma requiring massive transfusion. Anesthesiology. 2012;116(3):716–28. doi:.https://doi.org/10.1097/ALN.0b013e318245c47b
  87. Armand R, Hess JR. Treating coagulopathy in trauma patients. Transfus Med Rev. 2003;17(3):223–31. doi:.https://doi.org/10.1016/S0887-7963(03)00022-1
  88. Innerhofer P, Fries D, Mittermayr M, Innerhofer N, von Langen D, Hell T, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017;4(6):e258–71. doi:.https://doi.org/10.1016/S2352-3026(17)30077-7
  89. Lewis SR, Pritchard MW, Evans DJ, Butler AR, Alderson P, Smith AF, et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018;8:CD000567. doi:.https://doi.org/10.1002/14651858.CD000567.pub7
  90. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al.; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53. doi:.https://doi.org/10.1097/01.CCM.0000194725.48928.3A
  91. Micek ST, McEvoy C, McKenzie M, Hampton N, Doherty JA, Kollef MH. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit Care. 2013;17(5):R246. doi:.https://doi.org/10.1186/cc13072
  92. Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43(1):68–73. doi:.https://doi.org/10.1097/SHK.0000000000000268
  93. Besen BA, Taniguchi LU. Negative Fluid Balance in Sepsis: When and How? Shock. 2017;47(1S, Suppl 1):35–40. doi:.https://doi.org/10.1097/SHK.0000000000000701
  94. Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, et al.; Intensive Care Over Nations Investigators. Higher Fluid Balance Increases the Risk of Death From Sepsis: Results From a Large International Audit. Crit Care Med. 2017;45(3):386–94. doi:.https://doi.org/10.1097/CCM.0000000000002189
  95. Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al.; VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87. doi:.https://doi.org/10.1056/NEJMoa067373
  96. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al.; LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752–61. doi:.https://doi.org/10.1164/rccm.200912-1918OC
  97. Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39(4):689–94. doi:.https://doi.org/10.1097/CCM.0b013e318206d2a3

Most read articles by the same author(s)