Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 2930 (2018)

In-vitro characterisation of a novel antimicrobial agent, TNP-2092, against Helicobacter pylori clinical isolates

  • Ben Wang
  • Qiaoyun Zhao
  • Wenzhu Yin
  • Ying Yuan
  • Xiaomei Wang
  • You-hua Wang
  • Hui Wang
  • Wen Ye
  • Shuping Chen
  • Hai-long Guo
  • Yong Xie
DOI
https://doi.org/10.4414/smw.2018.14630
Cite this as:
Swiss Med Wkly. 2018;148:w14630
Published
24.07.2018

Summary

BACKGROUND AND OBJECTIVES

TNP-2092 is a novel dual-action lead compound consisting of rifamycin SV and 4H-4-oxo-quinolizine pharmacophores, with a broad spectrum of antibacterial activities. This compound is currently in the early stage of clinical development for Helicobacter pylori infection. The aim of the present study was to determine the antibacterial activity of TNP-2092 against H. pylori isolated from primary patients.

METHODS

A total of 100 H. pylori clinical isolates from primary patients were selected. The minimum inhibitory concentrations (MICs) for clarithromycin, levofloxacin, rifampin and TNP-2092 were determined using an agar dilution method. A time-kill study was performed with different concentrations of TNP-2092 relevant to MIC against H. pylori ATCC strain 43504 for up to 24 hours. The time-kill study with drug concentrations of 0–4 × MIC was also used to determine the antibacterial activity of TNP-2092 against H. pylori under different pH conditions (pH 4–7).

RESULTS

The primary resistance percentages to clarithromycin, levofloxacin, rifampin and TNP-2092 were 13, 18, 1 and 1%, respectively. TNP-2092 killing kinetics were both concentration and time dependent. The effectiveness of TNP-2092 against H. pylori was gradually reduced with a decrease in pH.

CONCLUSIONS

TNP-2092 is highly active against H. pylori and against strains resistant to clarithromycin or levofloxacin. Its antibacterial activity is both concentration- and time-dependent .The antibacterial activity of TNP-2092 appears to be pH-dependent and is more active under neutral pH. TNP-2092 represents a promising new therapy for the treatment of H. pylori infection in primary patients.

References

  1. McColl KE. Clinical practice. Helicobacter pylori infection. N Engl J Med. 2010;362(17):1597–604. doi:.https://doi.org/10.1056/NEJMcp1001110
  2. Gisbert JP, Calvet X, Cosme A, Almela P, Feu F, Bory F, et al.; H. pylori Study Group of the Asociación Española de Gastroenterología (Spanish Gastroenterology Association). Long-term follow-up of 1,000 patients cured of Helicobacter pylori infection following an episode of peptic ulcer bleeding. Am J Gastroenterol. 2012;107(8):1197–204. doi:.https://doi.org/10.1038/ajg.2012.132
  3. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, et al.; European Helicobacter Study Group. Management of helicobacter pylori infection--the Maastricht IV/ Florence Consensus Report. Gut. 2012;61(5):646–64. doi:.https://doi.org/10.1136/gutjnl-2012-302084
  4. Gisbert JP, Calvet X, Gomollón F, Monés J ; Grupo Conferencia Española de Consenso sobre Helicobacter pylori. Tratamiento erradicador de Helicobacter pylori. Recomendaciones de la II Conferencia Española de Consenso [Eradication treatment of Helicobacter pylori. Recommendations of the II Spanish Consensus Conference]. Med Clin (Barc). 2005;125(8):301–16. Article in Spanish. doi:.https://doi.org/10.1157/13078424
  5. Graham DY, Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut. 2010;59(8):1143–53. doi:.https://doi.org/10.1136/gut.2009.192757
  6. Megraud F. Helicobacter pylori and antibiotic resistance. Gut. 2007;56(11):1502. doi:.https://doi.org/10.1136/gut.2007.132514
  7. Megraud F, Coenen S, Versporten A, Kist M, Lopez-Brea M, Hirschl AM, et al.; Study Group participants. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut. 2013;62(1):34–42. doi:.https://doi.org/10.1136/gutjnl-2012-302254
  8. Ma Z, Lynch AS. Development of a Dual-Acting Antibacterial Agent (TNP-2092) for the Treatment of Persistent Bacterial Infections. J Med Chem. 2016;59(14):6645–57. doi:.https://doi.org/10.1021/acs.jmedchem.6b00485
  9. Robertson GT, Bonventre EJ, Doyle TB, Du Q, Duncan L, Morris TW, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: studies of the mode of action in Staphylococcus aureus. Antimicrob Agents Chemother. 2008;52(7):2313–23. doi:.https://doi.org/10.1128/AAC.01649-07
  10. Robertson GT, Bonventre EJ, Doyle TB, Du Q, Duncan L, Morris TW, et al. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: microbiology profiling studies with staphylococci and streptococci. Antimicrob Agents Chemother. 2008;52(7):2324–34. doi:.https://doi.org/10.1128/AAC.01651-07
  11. Karpiuk I, Tyski S. Looking for the new preparations for antibacterial therapy III. New antimicrobial agents from the quinolones group in clinical trials. Przegl Epidemiol. 2013;67(3):455–60, 557–61.
  12. European Committee on Antimicrobial Susceptibility Testing. EUCAST clinical breakpoints for Helicobacter pylori. Available from: http://www.eucast.org/clinical_breakpoints/
  13. Su P, Li Y, Li H, Zhang J, Lin L, Wang Q, et al. Antibiotic resistance of Helicobacter pylori isolated in the Southeast Coastal Region of China. Helicobacter. 2013;18(4):274–9. doi:.https://doi.org/10.1111/hel.12046
  14. Gao W, Cheng H, Hu F, Li J, Wang L, Yang G, et al. The evolution of Helicobacter pylori antibiotics resistance over 10 years in Beijing, China. Helicobacter. 2010;15(5):460–6. doi:.https://doi.org/10.1111/j.1523-5378.2010.00788.x
  15. Hao H, Yuan Z, Shen Z, Han J, Sahin O, Liu P, et al. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother. 2013;57(3):1369–78. doi:.https://doi.org/10.1128/AAC.01927-12
  16. Molina-Infante J, Perez-Gallardo B, Fernandez-Bermejo M, Hernandez-Alonso M, Vinagre G, Dueñas C, et al. Clinical trial: clarithromycin vs. levofloxacin in first-line triple and sequential regimens for Helicobacter pylori eradication. Aliment Pharmacol Ther. 2010;31(10):1077–84.
  17. Sakinc T, Baars B, Wüppenhorst N, Kist M, Huebner J, Opferkuch W. Influence of a 23S ribosomal RNA mutation in Helicobacter pylori strains on the in vitro synergistic effect of clarithromycin and amoxicillin. BMC Res Notes. 2012;5(1):603. doi:.https://doi.org/10.1186/1756-0500-5-603
  18. Lee H, Hong SN, Min BH, Lee JH, Rhee PL, Lee YC, et al. Comparison of efficacy and safety of levofloxacin-containing versus standard sequential therapy in eradication of Helicobacter pylori infection in Korea. Dig Liver Dis. 2015;47(2):114–8. doi:.https://doi.org/10.1016/j.dld.2014.10.014
  19. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 1997;61(3):377–92.
  20. Gisbert JP, Morena F. Systematic review and meta-analysis: levofloxacin-based rescue regimens after Helicobacter pylori treatment failure. Aliment Pharmacol Ther. 2006;23(1):35–44. doi:.https://doi.org/10.1111/j.1365-2036.2006.02737.x
  21. Liou JM, Lin JT, Chang CY, Chen MJ, Cheng TY, Lee YC, et al. Levofloxacin-based and clarithromycin-based triple therapies as first-line and second-line treatments for Helicobacter pylori infection: a randomised comparative trial with crossover design. Gut. 2010;59(5):572–8. doi:.https://doi.org/10.1136/gut.2009.198309
  22. Federico A, Nardone G, Gravina AG, Iovene MR, Miranda A, Compare D, et al. Efficacy of 5-day levofloxacin-containing concomitant therapy in eradication of Helicobacter pylori infection. Gastroenterology. 2012;143(1):55–61.e1, e13–4. doi:.https://doi.org/10.1053/j.gastro.2012.03.043
  23. Karczewska E, Klesiewicz K, Wojtas-Bonior I, Skiba I, Sito E, Czajecki K, et al. Levofloxacin resistance of Helicobacter pylori strains isolated from patients in southern Poland, between 2006-2012. Acta Pol Pharm. 2014;71(3):477–83.
  24. Mégraud F. Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori. Gastroenterology. 1998;115(5):1278–82. doi:.https://doi.org/10.1016/S0016-5085(98)70101-5
  25. Pinheiro M, Pereira-Leite C, Arêde M, Nunes C, Caio JM, Moiteiro C, et al. Evaluation of the structure-activity relationship of rifabutin and analogs: a drug-membrane study. ChemPhysChem. 2013;14(12):2808–16. doi:.https://doi.org/10.1002/cphc.201300262
  26. Fujimura S, Kato S, Kawamura T, Watanabe A. In vitro activity of rifampicin against Helicobacter pylori isolated from children and adults. J Antimicrob Chemother. 2002;49(3):541–3. doi:.https://doi.org/10.1093/jac/49.3.541
  27. Heep M, Beck D, Bayerdörffer E, Lehn N. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob Agents Chemother. 1999;43(6):1497–9.
  28. Chey WD, Wong BC ; Practice Parameters Committee of the American College of Gastroenterology. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol. 2007;102(8):1808–25. doi:.https://doi.org/10.1111/j.1572-0241.2007.01393.x
  29. O’Connor JP, Taneike I, O’Morain C. Improving compliance with helicobacter pylori eradication therapy: when and how? Therap Adv Gastroenterol. 2009;2(5):273–9. doi:.https://doi.org/10.1177/1756283X09337342