Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 1314 (2018)

Gamma knife radiosurgery for arteriovenous malformations: general principles and preliminary results in a Swiss cohort

  • Matthieu Raboud
  • Constantin Tuleasca
  • Philippe Maeder
  • Luis Schiappacasse
  • Maud Marguet
  • Roy Thomas Daniel
  • Marc Levivier
DOI
https://doi.org/10.4414/smw.2018.14602
Cite this as:
Swiss Med Wkly. 2018;148:w14602
Published
03.04.2018

Summary

INTRODUCTION

Arteriovenous malformations (AVMs) are a type of vascular malformation characterised by an abnormal connection between arteries and veins, bypassing the capillary system. This absence of capillaries generates an elevated pressure (hyperdebit), in both the AVM and the venous drainage, increasing the risk of rupture. Management modalities are: observation, microsurgical clipping, endovascular treatment and radiosurgery. The former can be used alone or in the frame of a multidisciplinary approach. We review our single-institution experience with gamma knife radiosurgery (GKR) over a period of 5 years.

MATERIALS AND METHODS

The study was open-label, prospective and nonrandomised. Fifty-seven consecutive patients, benefitting from 64 GKR treatments, were included. All were treated with Leksell Gamma Knife Perfexion (Elekta Instruments, AB, Sweden) between July 2010 and August 2015. All underwent stereotactic multimodal imaging: standard digital subtraction angiography, magnetic resonance imaging and computed tomography angiography. We report obliteration rates, radiation-induced complications and haemorrhages during follow-up course.

RESULTS

The mean age was 46 years (range 13–79 years). The mean follow-up period was 36.4 months (median 38, range 12–75 months). Most common pretherapeutic clinical presentation was haemorrhage (50%). The most common Pollock-Flickinger score was between 1.01 and 1.5 (46%) and Spetzler-Martin grade III (46%). In 39 (60.1%) of cases, GKR was performed as upfront therapeutic option. The mean gross target volume (GTV) was 2.3 ml (median 1.2, range 0.03–11.3 ml). Mean marginal dose was 22.4 Gy (median 24, range 18–24 Gy). The mean prescription isodose volume (PIV) was 2.9 ml (median 1.8, range 0.065–14.6 ml). The overall obliteration rates (all treatments combined) at 12, 24, 36, 48 and 60 months were 4.8, 16.9%, 37.4, 63.6 and 78.4%, respectively. The main predictive factors for complete obliteration were: higher mean marginal dose (23.3 vs 21.0 Gy), lower GTV (mean 1.5 vs 3.5 ml) and absence of previous embolisation (at 60 months 61.8% prior embolisation compared with 82.4% without prior embolisation) (for all p <0.05). Eight (14%) patients experienced complications after GKR. Overall definitive morbidity rate was 3.1%. No patient died from causes related to GKR. However, during the obliteration period, one case of extremely rare fatal haemorrhage occurred.

CONCLUSION

Radiosurgery is a safe and effective treatment modality for intracranial AVMs in selected cases. It can be used as upfront therapy or in the frame of a combined management. Obliteration rates are high, with minimal morbidity. The treatment effect is progressive and subsequent and regular clinical and radiological follow-up is needed to evaluate this effect.

References

  1. Solomon RA, Connolly ES, Jr. Arteriovenous Malformations of the Brain. N Engl J Med. 2017;377(5):498.
  2. Marks MP, Lane B, Steinberg G, Chang P. Vascular characteristics of intracerebral arteriovenous malformations in patients with clinical steal. AJNR Am J Neuroradiol. 1991;12(3):489–96.
  3. McCormick WF, Nofzinger JD. “Cryptic” vascular malformations of the central nervous system. J Neurosurg. 1966;24(5):865–75. doi:.https://doi.org/10.3171/jns.1966.24.5.0865
  4. McCormick WF. The pathology of vascular (“arteriovenous”) malformations. J Neurosurg. 1966;24(4):807–16. doi:.https://doi.org/10.3171/jns.1966.24.4.0807
  5. Jellinger K. Vascular malformations of the central nervous system: a morphological overview. Neurosurg Rev. 1986;9(3):177–216. doi:.https://doi.org/10.1007/BF01743136
  6. Berman MF, Sciacca RR, Pile-Spellman J, Stapf C, Connolly ES, Jr, Mohr JP, et al. The epidemiology of brain arteriovenous malformations. Neurosurgery. 2000;47(2):389–96, discussion 397. doi:.https://doi.org/10.1097/00006123-200008000-00023
  7. Al-Shahi R, Fang JS, Lewis SC, Warlow CP. Prevalence of adults with brain arteriovenous malformations: a community based study in Scotland using capture-recapture analysis. J Neurol Neurosurg Psychiatry. 2002;73(5):547–51. doi:.https://doi.org/10.1136/jnnp.73.5.547
  8. Minakawa T, Tanaka R, Koike T, Takeuchi S, Sasaki O. Angiographic follow-up study of cerebral arteriovenous malformations with reference to their enlargement and regression. Neurosurgery. 1989;24(1):68–74. doi:.https://doi.org/10.1227/00006123-198901000-00011
  9. Rubin BA, Brunswick A, Riina H, Kondziolka D. Advances in radiosurgery for arteriovenous malformations of the brain. Neurosurgery. 2014;74(Suppl 1):S50–9. doi:.https://doi.org/10.1227/NEU.0000000000000219
  10. Hartmann A, Mast H, Mohr JP, Koennecke HC, Osipov A, Pile-Spellman J, et al. Morbidity of intracranial hemorrhage in patients with cerebral arteriovenous malformation. Stroke. 1998;29(5):931–4. doi:.https://doi.org/10.1161/01.STR.29.5.931
  11. Heros RC, Tu YK. Is surgical therapy needed for unruptured arteriovenous malformations? Neurology. 1987;37(2):279–86. doi:.https://doi.org/10.1212/WNL.37.2.279
  12. Pikus HJ, Beach ML, Harbaugh RE. Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J Neurosurg. 1998;88(4):641–6. doi:.https://doi.org/10.3171/jns.1998.88.4.0641
  13. Schlienger M, Lefkopoulos D, Nataf F, Mammar H, Missir O, Meder J-F, et al. Repeat linear accelerator radiosurgery for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2003;56(2):529–36. doi:.https://doi.org/10.1016/S0360-3016(02)04472-3
  14. Gruber A, Bavinzski G, Kitz K, Barthelmes S, Mayr M, Knosp E. Multimodality Management of Cerebral Arteriovenous Malformations with Special Reference to AVM-Related Hemorrhages During Ongoing Staged Treatment. Acta Neurochir Suppl (Wien). 2016;123:153–8. doi:.https://doi.org/10.1007/978-3-319-29887-0_22
  15. Potts MB, Zumofen DW, Raz E, Nelson PK, Riina HA. Curing arteriovenous malformations using embolization. Neurosurg Focus. 2014;37(3):E19. doi:.https://doi.org/10.3171/2014.6.FOCUS14228
  16. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):347–54. doi:.https://doi.org/10.1016/S0167-8140(02)00103-2
  17. Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg. 1991;75(4):512–24. doi:.https://doi.org/10.3171/jns.1991.75.4.0512
  18. Régis J, Massager N, Lévrier O, Dufour H, Porcheron D, Reyns N, et al. Traitement radiochirurgical gamma-knife des malformations arterio-veineuses du tronc cerebral. Resultats preliminaires [Gamma-knife radiosurgery for brainstem arteriovenous malformations. Preliminary results]. Neurochirurgie. 2001;47(2-3 Pt 2):291–7. [].
  19. Massager N, Régis J, Kondziolka D, Njee T, Levivier M. Gamma knife radiosurgery for brainstem arteriovenous malformations: preliminary results. J Neurosurg. 2000;93(Suppl 3):102–3.
  20. Schwyzer L, Yen CP, Evans A, Zavoian S, Steiner L. Long-term results of gamma knife surgery for partially embolized arteriovenous malformations. Neurosurgery. 2012;71(6):1139–47, discussion 1147–8. doi:.https://doi.org/10.1227/NEU.0b013e3182720280
  21. Pollock BE, Flickinger JC. A proposed radiosurgery-based grading system for arteriovenous malformations. J Neurosurg. 2002;96(1):79–85. doi:.https://doi.org/10.3171/jns.2002.96.1.0079
  22. van Beijnum J, van der Worp HB, Buis DR, Al-Shahi Salman R, Kappelle LJ, Rinkel GJ, et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA. 2011;306(18):2011–9. doi:.https://doi.org/10.1001/jama.2011.1632
  23. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al.; international ARUBA investigators. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–21. doi:.https://doi.org/10.1016/S0140-6736(13)62302-8
  24. Mohr JP, Moskowitz AJ, Stapf C, Hartmann A, Lord K, Marshall SM, et al. The ARUBA trial: current status, future hopes. Stroke. 2010;41(8):e537–40. doi:.https://doi.org/10.1161/STROKEAHA.110.580274
  25. Pradilla G, Coon AL, Huang J, Tamargo RJ. Surgical treatment of cranial arteriovenous malformations and dural arteriovenous fistulas. Neurosurg Clin N Am. 2012;23(1):105–22. doi:.https://doi.org/10.1016/j.nec.2011.10.002
  26. Steiner L, Leksell L, Forster DM, Greitz T, Backlund EO. Stereotactic radiosurgery in intracranial arterio-venous malformations. Acta Neurochir (Wien). 1974;(Suppl 21):195–209.
  27. Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 1997;87(3):352–7. doi:.https://doi.org/10.3171/jns.1997.87.3.0352
  28. Szeifert GT, Levivier M, Lorenzoni J, Nyáry I, Major O, Kemeny AA. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg. 2013;27:119–29. doi:.https://doi.org/10.1159/000341772
  29. Nataf F, Schlienger M, Lefkopoulos D, Merienne L, Ghossoub M, Foulquier JN, et al. Radiosurgery of cerebral arteriovenous malformations in children: a series of 57 cases. Int J Radiat Oncol Biol Phys. 2003;57(1):184–95. doi:.https://doi.org/10.1016/S0360-3016(03)00445-0
  30. Kawaguchi O, Nyui Y, Kunieda E, Onozuka S, Tsukamoto N, Fukada J, et al. Radiosurgical treatment planning for intracranial AVM based on images generated by principal component analysis--a simulation study. Keio J Med. 2009;58(1):41–9. doi:.https://doi.org/10.2302/kjm.58.41
  31. Castel JP, Kantor G. Morbidite et mortalite du traitement chirurgical des malformations arterio-veineuses cerebrales. Donnees actuelles et analyse de la litterature recente [Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature]. Neurochirurgie. 2001;47(2-3 Pt 2):369–83.
  32. Ogilvy CS, Stieg PE, Awad I, Brown RD, Jr, Kondziolka D, Rosenwasser R, et al.; Stroke Council, American Stroke Association. Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Circulation. 2001;103(21):2644–57. doi:.https://doi.org/10.1161/01.CIR.103.21.2644
  33. Rodríguez-Boto G, Gutiérrez-González R, Gil A, Serna C, López-Ibor L. Combined staged therapy of complex arteriovenous malformations: initial experience. Acta Neurol Scand. 2013;127(4):260–7. doi:.https://doi.org/10.1111/j.1600-0404.2012.01706.x
  34. Szajner M, Roman T, Markowicz J, Szczerbo-Trojanowska M. Onyx(®) in endovascular treatment of cerebral arteriovenous malformations - a review. Pol J Radiol. 2013;78(3):35–41. doi:.https://doi.org/10.12659/PJR.889120
  35. Weber T, Maier-Funk C, Ohlhauser D, Hillenbrand A, Cammerer G, Barth TF, et al. Accurate preoperative localization of parathyroid adenomas with C-11 methionine PET/CT. Ann Surg. 2013;257(6):1124–8. doi:.https://doi.org/10.1097/SLA.0b013e318289b345
  36. Valavanis A, Yaşargil MG. The endovascular treatment of brain arteriovenous malformations. Adv Tech Stand Neurosurg. 1998;24:131–214. doi:.https://doi.org/10.1007/978-3-7091-6504-1_4