Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 4546 (2017)

Cellular protection mechanisms that minimise accumulation of mutations in intestinal tissue

  • Lotte Bruens
  • Jacco van Rheenen
DOI
https://doi.org/10.4414/smw.2017.14539
Cite this as:
Swiss Med Wkly. 2017;147:w14539
Published
08.11.2017

Summary

The epithelial lining of the intestine is constantly exposed to a hostile environment containing a mixture of gastric acids, consumed harmful substances and microbes. It is widely accepted that the intestine has multiple mechanisms to protect itself against tissue damage. Here, we review three cellular protection mechanisms that protect intestinal tissue against accumulation of somatic mutations: the conveyer belt-like structure, stem cell competition and crypt fusion. We highlight the events that can perturb these cellular protection mechanisms, and their impact on accumulation of new (oncogenic) mutations. Lastly, we review the potential of in-vitro and intravital microscopy techniques to study the dynamics of these protection processes. These studies may identify new targets that can be used to manipulate cellular protection mechanisms in such a way that accumulation of new mutations can be reduced. Importantly, reducing mutation accumulation has the potential to delay aging, and the initiation and progression of diseases such as colorectal cancer.

References

  1. Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013;154(2):274–84. doi:.https://doi.org/10.1016/j.cell.2013.07.004
  2. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, et al. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell. 2016;165(7):1708–20. doi:. Correction in: Cell. 2016;167(4):1137. https://doi.org/10.1016/j.cell.2016.05.018
  3. Wright NA. Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Pathol. 2000;81(2):117–43. doi:.https://doi.org/10.1046/j.1365-2613.2000.00146.x
  4. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974;141(4):537–61. doi:.https://doi.org/10.1002/aja.1001410407
  5. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7. doi:.https://doi.org/10.1038/nature06196
  6. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. doi:.https://doi.org/10.1038/nature07935
  7. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11. doi:.https://doi.org/10.1038/nature07602
  8. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457(7229):603–7. doi:.https://doi.org/10.1038/nature07589
  9. Potten CS, Kovacs L, Hamilton E. Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet. 1974;7(3):271–83.
  10. Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE, et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci USA. 2008;105(30):10420–5. doi:.https://doi.org/10.1073/pnas.0804800105
  11. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012;149(1):146–58. doi:.https://doi.org/10.1016/j.cell.2012.02.042
  12. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40(7):915–20. doi:.https://doi.org/10.1038/ng.165
  13. Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA. 2011;108(1):179–84. doi:.https://doi.org/10.1073/pnas.1013004108
  14. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334(6061):1420–4. doi:.https://doi.org/10.1126/science.1213214
  15. Barriga FM, Montagni E, Mana M, Mendez-Lago M, Hernando-Momblona X, Sevillano M, et al. Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. Cell Stem Cell. 2017;20(6):801–816.e7. doi:.https://doi.org/10.1016/j.stem.2017.02.007
  16. Muñoz J, Stange DE, Schepers AG, van de Wetering M, Koo B-K, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4′ cell markers. EMBO J. 2012;31(14):3079–91. doi:.https://doi.org/10.1038/emboj.2012.166
  17. Vermeulen L, Snippert HJ. Stem cell dynamics in homeostasis and cancer of the intestine. Nat Rev Cancer. 2014;14(7):468–80. doi:.https://doi.org/10.1038/nrc3744
  18. van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012;14(10):1099–104. doi:.https://doi.org/10.1038/ncb2581
  19. Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495(7439):65–9. doi:.https://doi.org/10.1038/nature11965
  20. Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, et al. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. Cell Stem Cell. 2016;18(2):203–13. doi:.https://doi.org/10.1016/j.stem.2016.01.001
  21. Roth S, Franken P, Sacchetti A, Kremer A, Anderson K, Sansom O, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One. 2012;7(6):e38965. doi:.https://doi.org/10.1371/journal.pone.0038965
  22. Jadhav U, Saxena M, O’Neill NK, Saadatpour A, Yuan G-C, Herbert Z, et al. Dynamic Reorganization of Chromatin Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+ Intestinal Stem Cells. Cell Stem Cell. 2017;21(1):65–77.e5. doi:.https://doi.org/10.1016/j.stem.2017.05.001
  23. Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, et al. Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell. 2017;21(1):78–90.e6. doi:.https://doi.org/10.1016/j.stem.2017.06.014
  24. Li N, Yousefi M, Nakauka-Ddamba A, Jain R, Tobias J, Epstein JA, et al. Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Reports. 2014;3(5):876–91. doi:.https://doi.org/10.1016/j.stemcr.2014.09.011
  25. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251–5. doi:.https://doi.org/10.1038/nature14966
  26. Scheele CLGJ, Hannezo E, Muraro MJ, Zomer A, Langedijk NSM, van Oudenaarden A, et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature. 2017;542(7641):313–7. doi:.https://doi.org/10.1038/nature21046
  27. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152(1-2):25–38. doi:.https://doi.org/10.1016/j.cell.2012.12.012
  28. Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124(3):1283–95. doi:.https://doi.org/10.1172/JCI73434
  29. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45(1):98–103. doi:.https://doi.org/10.1038/ng.2481
  30. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al.; Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:.https://doi.org/10.1038/nature11252
  31. Shih IM, Wang TL, Traverso G, Romans K, Hamilton SR, Ben-Sasson S, et al. Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci USA. 2001;98(5):2640–5. doi:.https://doi.org/10.1073/pnas.051629398
  32. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143(1):134–44. doi:.https://doi.org/10.1016/j.cell.2010.09.016
  33. Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330(6005):822–5. doi:.https://doi.org/10.1126/science.1196236
  34. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469(7330):415–8. doi:.https://doi.org/10.1038/nature09637
  35. Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 2011;30(6):1104–9. doi:.https://doi.org/10.1038/emboj.2011.26
  36. Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, de Sauvage FJ, Simons BD, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature. 2014;507(7492):362–5. doi:.https://doi.org/10.1038/nature12972
  37. Kozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI, Kemp R, et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell. 2013;13(5):626–33. doi:.https://doi.org/10.1016/j.stem.2013.08.001
  38. Baker AM, Cereser B, Melton S, Fletcher AG, Rodriguez-Justo M, Tadrous PJ, et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Reports. 2014;8(4):940–7. doi:.https://doi.org/10.1016/j.celrep.2014.07.019
  39. Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science. 2013;342(6161):995–8. doi:.https://doi.org/10.1126/science.1243148
  40. Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 2014;15(1):62–9. doi:.https://doi.org/10.1002/embr.201337799
  41. Kon S, Ishibashi K, Katoh H, Kitamoto S, Shirai T, Tanaka S, et al. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nat Cell Biol. 2017;19(5):530–41. doi:.https://doi.org/10.1038/ncb3509
  42. Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011;145(6):851–62. doi:.https://doi.org/10.1016/j.cell.2011.05.033
  43. Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17(14):1709–13. doi:.https://doi.org/10.1101/gad.267103
  44. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959–63. doi:.https://doi.org/10.1038/nature03659
  45. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell. 1998;1(5):673–83. doi:.https://doi.org/10.1016/S1097-2765(00)80067-2
  46. He XC, Zhang J, Tong W-G, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. 2004;36(10):1117–21. doi:.https://doi.org/10.1038/ng1430
  47. Aoki R, Shoshkes-Carmel M, Gao N, Shin S, May CL, Golson ML, et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol. 2016;2(2):175–88. doi:.https://doi.org/10.1016/j.jcmgh.2015.12.004
  48. Stzepourginski I, Nigro G, Jacob J-M, Dulauroy S, Sansonetti PJ, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci USA. 2017;114(4):E506–13. doi:.https://doi.org/10.1073/pnas.1620059114
  49. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435(7044):964–8. doi:.https://doi.org/10.1038/nature03589
  50. Haramis A-PG, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science. 2004;303(5664):1684–6. doi:.https://doi.org/10.1126/science.1093587
  51. Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015;21(1):62–70. doi:.https://doi.org/10.1038/nm.3750
  52. Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5(+) intestinal stem-cell self-renewal. Nature. 2017;545(7653):238–42. doi:.https://doi.org/10.1038/nature22313
  53. Totafurno J, Bjerknes M, Cheng H. The crypt cycle. Crypt and villus production in the adult intestinal epithelium. Biophys J. 1987;52(2):279–94. doi:.https://doi.org/10.1016/S0006-3495(87)83215-0
  54. Cairnie AB, Millen BH. Fission of crypts in the small intestine of the irradiated mouse. Cell Tissue Kinet. 1975;8(2):189–96.
  55. Cheng H, McCulloch C, Bjerknes M. Effects of 30% intestinal resection on whole population cell kinetics of mouse intestinal epithelium. Anat Rec. 1986;215(1):35–41. doi:.https://doi.org/10.1002/ar.1092150106
  56. Clarke RM. The effect of growth and of fasting on the number of villi and crypts in the small intestine of the albino rat. J Anat. 1972;112(Pt 1):27–33.
  57. Park HS, Goodlad RA, Wright NA. Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol. 1995;147(5):1416–27.
  58. Bjerknes M. A test of the stochastic theory of stem cell differentiation. Biophys J. 1986;49(6):1223–7. doi:.https://doi.org/10.1016/S0006-3495(86)83751-1
  59. Cheng H, Bjerknes M. Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec. 1985;211(4):420–6. doi:.https://doi.org/10.1002/ar.1092110408
  60. Langlands AJ, Almet AA, Appleton PL, Newton IP, Osborne JM, Näthke IS, et al. Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche. Hynes N, editor. PLOS Biol. 2016;14(6):e1002491.
  61. Bruens L, Ellenbroek SIJ, van Rheenen J, Snippert HJ. In Vivo Imaging Reveals Existence of Crypt Fission and Fusion in Adult Mouse Intestine. Gastroenterology. 2017;153(3):674–677.e3. doi:.https://doi.org/10.1053/j.gastro.2017.05.019
  62. Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA. 2006;103(3):714–9. doi:.https://doi.org/10.1073/pnas.0505903103
  63. Garcia SB, Park HS, Novelli M, Wright NA. Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets. J Pathol. 1999;187(1):61–81. doi:.https://doi.org/10.1002/(SICI)1096-9896(199901)187:1<61::AID-PATH247>3.0.CO;2-I
  64. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8. doi:.https://doi.org/10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q
  65. Zhu D, Keohavong P, Finkelstein SD, Swalsky P, Bakker A, Weissfeld J, et al. K-ras gene mutations in normal colorectal tissues from K-ras mutation-positive colorectal cancer patients. Cancer Res. 1997;57(12):2485–92.
  66. Aivado M, Gynes M, Gorelov V, Schmidt WU, Röher HD, Goretzki PE. “Field cancerization”--ein zusätzliches Phänomen in der Entwicklung von Colontumoren? K-ras-Codon-12-Mutationen in normaler Colonmucosa von Patienten mit colorectalen Neoplasien. [“Field cancerization”--an additional phenomenon in development of colon tumors? K-ras codon 12 mutations in normal colonic mucosa of patients with colorectal neoplasms]. Chirurg. 2000;71(10):1230–4, discussion 1234–5. Article in German. doi:.https://doi.org/10.1007/s001040051207
  67. Preston SL, Wong W-M, Chan AO-O, Poulsom R, Jeffery R, Goodlad RA, et al. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res. 2003;63(13):3819–25.
  68. Fischer JM, Schepers AG, Clevers H, Shibata D, Liskay RM. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention. Carcinogenesis. 2014;35(1):237–46. doi:.https://doi.org/10.1093/carcin/bgt296
  69. Wasan HS, Park H-S, Liu KC, Mandir NK, Winnett A, Sasieni P, et al. APC in the regulation of intestinal crypt fission. J Pathol. 1998;185(3):246–55. doi:.https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<246::AID-PATH90>3.0.CO;2-8
  70. Dekaney CM, Fong JJ, Rigby RJ, Lund PK, Henning SJ, Helmrath MA. Expansion of intestinal stem cells associated with long-term adaptation following ileocecal resection in mice. Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G1013–22. doi:.https://doi.org/10.1152/ajpgi.00218.2007
  71. Dekaney CM, Gulati AS, Garrison AP, Helmrath MA, Henning SJ. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G461–70. doi:.https://doi.org/10.1152/ajpgi.90446.2008
  72. Fischer JM, Calabrese PP, Miller AJ, Muñoz NM, Grady WM, Shibata D, et al. Single cell lineage tracing reveals a role for TgfβR2 in intestinal stem cell dynamics and differentiation. Proc Natl Acad Sci USA. 2016;113(43):12192–7. doi:.https://doi.org/10.1073/pnas.1611980113
  73. Cheng H, Bjerknes M, Amar J, Gardiner G. Crypt production in normal and diseased human colonic epithelium. Anat Rec. 1986;216(1):44–8. doi:.https://doi.org/10.1002/ar.1092160108
  74. Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife. 2016;5:5. doi:.https://doi.org/10.7554/eLife.18489
  75. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7. doi:.https://doi.org/10.1038/nature14415
  76. Alieva M, Ritsma L, Giedt RJ, Weissleder R, van Rheenen J. Imaging windows for long-term intravital imaging: General overview and technical insights. Intravital. 2014;3(2):e29917. doi:.https://doi.org/10.4161/intv.29917
  77. Ellenbroek SIJ, van Rheenen J. Imaging hallmarks of cancer in living mice. Nat Rev Cancer. 2014;14(6):406–18. doi:.https://doi.org/10.1038/nrc3742
  78. Scheele CLGJ, Maynard C, van Rheenen J. Intravital Insights into Heterogeneity, Metastasis, and Therapy Responses. Trends Cancer. 2016;2(4):205–16. doi:.https://doi.org/10.1016/j.trecan.2016.03.001
  79. Suijkerbuijk SJE, van Rheenen J. From good to bad: Intravital imaging of the hijack of physiological processes by cancer cells. Dev Biol. 2017;428(2):328–37. doi:.https://doi.org/10.1016/j.ydbio.2017.04.015
  80. Ritsma L, Steller EJA, Beerling E, Loomans CJM, Zomer A, Gerlach C, et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci Transl Med. 2012;4(158):158ra145. doi:.https://doi.org/10.1126/scitranslmed.3004394
  81. Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Borel Rinkes IH, van Rheenen J. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc. 2013;8(3):583–94. doi:.https://doi.org/10.1038/nprot.2013.026
  82. Fumagalli A, Drost J, Suijkerbuijk SJE, van Boxtel R, de Ligt J, Offerhaus GJ, et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 2017;114(12):E2357–64. doi:.https://doi.org/10.1073/pnas.1701219114