Skip to main navigation menu Skip to main content Skip to site footer

Review article: Medical guidelines

Vol. 147 No. 2728 (2017)

Rehabilitation in patients with pulmonary arterial hypertension

DOI
https://doi.org/10.4414/smw.2017.14462
Cite this as:
Swiss Med Wkly. 2017;147:w14462
Published
07.07.2017

Summary

Exertional dyspnoea is a leading symptom in patients with pulmonary arterial hypertension (PAH). Patients suffering from PAH report poor quality of life, have skeletal muscle dysfunction and in the absence of advanced medical therapy deteriorate progressively due to right heart failure which can lead to death. For decades, patients with PAH were advised to avoid exercise in fear of exacerbated right heart failure. Recently, it has been shown that a highly supervised rehabilitation programme in expert centres leads to significant improvements in symptoms, quality of life, exercise capacity and may even enhance haemodynamics in selected stable patients treated with advanced regimens of PAH-targeted drugs. As a consequence of these promising results, pulmonary rehabilitation performed in an expert centre has been included in recent guidelines. The underlying mechanisms are not completely understood, but positive effects can be measured in different organ systems such as skeletal muscles, the cardiopulmonary system and immune system (inflammation), and also on the psychological level. Thus, improvements in 6-minute walking distance (6MWD), peak oxygen uptake (VO2 peak), muscle strength and muscle endurance, as well as physical and mental quality of life scores (SF-36 questionnaire) have been shown. Different training protocols have been used. Essential are qualified patient selection in expert centres, a low workload endurance and dumbbell (weight lifting) training avoiding strenuous exercise and exhaustion, thorough patient education and close supervision by experts especially during the first weeks. Adverse events may occur (e.g., pre-/syncope, arrhythmia, respiratory infections). PAH patients tend to overestimate their physical capacity, not perceiving their own limits properly, which makes education and expert advice even more important as exercise training can also worsen the right heart failure. Therefore, a core issue of the multidisciplinary rehabilitation is the close cooperation between the experienced rehabilitation clinic offering a specialised programme for PAH patients and the PAH expert centre, which takes care of the patient and is thoroughly involved in the training programme. Further multicentre international randomised trials are needed to evaluate whether this specialised programme is feasible within different healthcare systems and to assess long term effects and survival.

References

  1. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317
  2. Mereles D, Ehlken N, Kreuscher S, Ghofrani S, Hoeper MM, Halank M, et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114(14):1482–9. https://doi.org/10.1161/CIRCULATIONAHA.106.618397
  3. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery J-L, Barbera JA, et al.; ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537. https://doi.org/10.1093/eurheartj/ehp297
  4. Grünig E, Ehlken N, Ghofrani A, Staehler G, Meyer FJ, Juenger J, et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration. 2011;81(5):394–401. https://doi.org/10.1159/000322475
  5. Grünig E, Lichtblau M, Ehlken N, Ghofrani HA, Reichenberger F, Staehler G, et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J. 2012;40(1):84–92. https://doi.org/10.1183/09031936.00123711
  6. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al.; ATS/ERS Task Force on Pulmonary Rehabilitation. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–64. https://doi.org/10.1164/rccm.201309-1634ST
  7. Osadnik CR, Rodrigues FMM, Camillo CA, Loeckx M, Janssens W, Dooms C, et al. Principles of rehabilitation and reactivation. Respiration. 2015;89(1):2–11. https://doi.org/10.1159/000370246
  8. Byberg L, Melhus H, Gedeborg R, Sundström J, Ahlbom A, Zethelius B, et al. Total mortality after changes in leisure time physical activity in 50 year old men: 35 year follow-up of population based cohort. BMJ. 2009;338(mar05 2):b688. https://doi.org/10.1136/bmj.b688
  9. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Antó JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. Thorax. 2006;61(9):772–8. https://doi.org/10.1136/thx.2006.060145
  10. Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of Moderate to Vigorous Physical Activity on All-Cause Mortality in Middle-aged and Older Australians. JAMA Intern Med. 2015;175(6):970–7. https://doi.org/10.1001/jamainternmed.2015.0541
  11. Arem H, Moore SC, Patel A, Hartge P, Berrington de Gonzalez A, Visvanathan K, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175(6):959–67. https://doi.org/10.1001/jamainternmed.2015.0533
  12. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32. https://doi.org/10.7326/M14-1651
  13. Lakoski SG, Willis BL, Barlow CE, Leonard D, Gao A, Radford NB, et al. Midlife Cardiorespiratory Fitness, Incident Cancer, and Survival After Cancer in Men: The Cooper Center Longitudinal Study. JAMA Oncol. 2015;1(2):231–7. https://doi.org/10.1001/jamaoncol.2015.0226
  14. Weissmann N, Peters DM, Klöpping C, Krüger K, Pilat C, Katta S, et al. Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice. Am J Physiol Lung Cell Mol Physiol. 2014;306(11):L986–95. https://doi.org/10.1152/ajplung.00275.2013
  15. Colombo R, Siqueira R, Becker CU, Fernandes TG, Pires KM, Valença SS, et al. Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol. 2013;91(1):38–44. https://doi.org/10.1139/cjpp-2012-0261
  16. Favret F, Henderson KK, Allen J, Richalet J-P, Gonzalez NC. Exercise training improves lung gas exchange and attenuates acute hypoxic pulmonary hypertension but does not prevent pulmonary hypertension of prolonged hypoxia. J Appl Physiol (1985). 2006;100(1):20–5. https://doi.org/10.1152/japplphysiol.00673.2005
  17. Huber LC, Bye H, Brock M ; Swiss Society of Pulmonary Hypertension. The pathogenesis of pulmonary hypertension--an update. Swiss Med Wkly. 2015;145:w14202. doi:.https://doi.org/10.4414/smw.2015.14202
  18. Mann DL, Reid MB. Exercise training and skeletal muscle inflammation in chronic heart failure: feeling better about fatigue. J Am Coll Cardiol. 2003;42(5):869–72. https://doi.org/10.1016/S0735-1097(03)00847-7
  19. Harbaum L, Renk E, Yousef S, Glatzel A, Lüneburg N, Hennigs JK, et al. Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension. BMC Pulm Med. 2016;16(1):145. https://doi.org/10.1186/s12890-016-0301-6
  20. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. https://doi.org/10.1038/nrendo.2012.49
  21. Pedersen BK. Muscle as a secretory organ. Compr Physiol. 2013;3(3):1337–62. doi:.https://doi.org/10.1002/cphy.c120033
  22. Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci. 2014;8:170. https://doi.org/10.3389/fncel.2014.00170
  23. de Man FS, Handoko ML, Groepenhoff H, van ’t Hul AJ, Abbink J, Koppers RJ, et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2009;34(3):669–75. https://doi.org/10.1183/09031936.00027909
  24. Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, et al. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J Cardiopulm Rehabil Prev. 2010;30(5):319–23. https://doi.org/10.1097/HCR.0b013e3181d6f962
  25. Favret F, Henderson KK, Richalet J-P, Gonzalez NC. Effects of exercise training on acclimatization to hypoxia: systemic O2 transport during maximal exercise. J Appl Physiol (1985). 2003;95(4):1531–41. https://doi.org/10.1152/japplphysiol.01220.2001
  26. Marra AM, Egenlauf B, Bossone E, Eichstaedt C, Grünig E, Ehlken N. Principles of rehabilitation and reactivation: pulmonary hypertension. Respiration. 2015;89(4):265–73. https://doi.org/10.1159/000371855
  27. Weinstein AA, Chin LMK, Keyser RE, Kennedy M, Nathan SD, Woolstenhulme JG, et al. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir Med. 2013;107(5):778–84. https://doi.org/10.1016/j.rmed.2013.02.006
  28. Pandey A, Garg S, Khunger M, Garg S, Kumbhani DJ, Chin KM, et al. Efficacy and Safety of Exercise Training in Chronic Pulmonary Hypertension: Systematic Review and Meta-Analysis. Circ Heart Fail. 2015;8(6):1032–43. doi:.https://doi.org/10.21275/v4i11.NOV151297
  29. Ehlken N, Lichtblau M, Klose H, Weidenhammer J, Fischer C, Nechwatal R, et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016;37(1):35–44. https://doi.org/10.1093/eurheartj/ehv337
  30. Mathai SC, Puhan MA, Lam D, Wise RA. The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(5):428–33. https://doi.org/10.1164/rccm.201203-0480OC
  31. Becker-Grünig T, Klose H, Ehlken N, Lichtblau M, Nagel C, Fischer C, et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol. 2013;168(1):375–81. https://doi.org/10.1016/j.ijcard.2012.09.036
  32. Nagel C, Prange F, Guth S, Herb J, Ehlken N, Fischer C, et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS One. 2012;7(7):e41603. https://doi.org/10.1371/journal.pone.0041603
  33. Grünig E, Maier F, Ehlken N, Fischer C, Lichtblau M, Blank N, et al. Exercise training in pulmonary arterial hypertension associated with connective tissue diseases. Arthritis Res Ther. 2012;14(3):R148. https://doi.org/10.1186/ar3883

Most read articles by the same author(s)